Introduction

Setup

Unforced flow

Steady blowing

Periodic Forcing

Sliding mode

Conclusions and future work
Transportation industry

Railway industry
- **10 000 employees**
- **1st European region for railway**
- 4 International manufacturers leaders
- 1 Billion euros sales revenue

Automobile industry
- **36 000 employees**
- **1st French region for car industry**
- 3 Cars Manufacturers
- 550 000 Vehicles
- 7 production plants

Logistics
- **41 500 employees**
- **3rd French region for logistics**
- 1st French harbor platform
 (Boulogne, Calais, Dunkerque)
Transportation industry

PROBLEM
Reduce gas consumption

Rear face

Front face 3%
Cooling system 8%
Front top side 5%

Car floor 30%
Car edge 2%
Wheel 2%
Rearview mirror and other similar equipments 7%
Automotive problem

- Flow configuration

PROBLEM

Reduce gas consumption

Drag reduction

$$F_D = \iint_{S_w} (P_{t\infty} - P_{t_{sw}})d\sigma + \frac{1}{2} \rho V_{\infty}^2 \iint_{S_w} \left(\frac{V_z^2}{V_{\infty}^2} + \frac{V_z^2}{V_{\infty}^2} \right) d\sigma - \frac{1}{2} \rho V_{\infty}^2 \iint_{S_w} \left(1 - \frac{V_x}{V_{\infty}} \right)^2 d\sigma$$
Automotive problem

- Methods of flow control

✗ Passive control
 (Small variation in the geometric configuration)
 Limitations of design requirements

✓ Active control (Injection of momentum)
Introduction

Setup
Unforced flow
Steady blowing
Periodic Forcing
Sliding mode
Conclusions and future work
Wind tunnel

Characteristics:

✓ Closed-loop wind tunnel
✓ Max. velocity 60m/s (200km/h)
✓ Optimal test section: 2m x 2m, length 10m
Physical System

Square back ahmed body

\[h = 0.135m \quad r = 0.05m \]
\[w = 0.170m \quad g = 0.035m \]
\[l = 0.370m \]

\[U_\infty = 10m/s \]
\[Re_h = 9 \times 10^4 \]
Physical System

PIV

2000 double frame pictures
7Hz repetition rate
Interrogation window 16x16 pixels^2
50% overlapping

PIV domain
3.7h x 1.8h
Sensor and actuator characteristics

Sensor

- A force and torque balance:
 - Drag, lift and drift
 - Sensing range up to 165N
 - Error 0.03N
- 2 sub-miniature piezo-resistive Kulite sensors:
 - Nominal measurement range of 35Kpa
 - Sampling frequency 10KHz

Actuator

- Actuator slit (width $h_s = 0.1\,mm$ and a length $w_a = 150\,mm$)
- Pressure supplied by a compressor
- Pulsed blowing driven by a FESTO-MH2 solenoid valve
- Velocities up to 30m/s (@ 6bar)

Jet velocity V_j
Steady jet velocity $V_{j0} = 16m/s$
Introduction
Setup
Unforced flow
Steady blowing
Periodic Forcing
Sliding mode
Conclusions and future work
Unforced flow

Instantaneous flow field #265
- Velocity field
- Unforced shear-layer vortex

Time average cross-stream velocity
- Streamlines
- Forward flow probability 50%
- Recirculation length L_r
Unforced flow

Present study
\[g = 0.035m \]
\[Re_h = 9 \times 10^4 \]

Li et al. (2017)
\[g = 0.05m \]
\[Re_h = 3 \times 10^5 \]

Eulalie (2015)
\[g = 0.035 - 0.07 \ m \]
\[Re_h = 4 \times 10^5 \]
Introduction
Setup
Unforced flow
Steady blowing
Periodic Forcing
Sliding mode
Conclusions and future work
Steady blowing

- Active flow control

Open-loop control

\[s(t) = F_a(t) \]
Steady blowing

Control law

$$b(t) = V_{j0}$$

Experimental plant

$$U_\infty$$

$$P(t)$$

$$F_d(t)$$

Sensors
Steady blowing
Introduction
Setup
Unforced flow
Steady blowing
Periodic Forcing
Sliding mode control (SMC)
Conclusions and future work
Control law

\[
b(t) = sq(f \ast DC)
\]

Experimental plant

<table>
<thead>
<tr>
<th>(f)</th>
<th>(S_t_A = f_a h / U_\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.0675</td>
</tr>
<tr>
<td>10</td>
<td>0.15</td>
</tr>
<tr>
<td>30</td>
<td>0.405</td>
</tr>
</tbody>
</table>
Periodic blowing
Steady blowing vs Periodic forcing

\[St_0 = 0.15 \]
Steady blowing vs Periodic forcing

\[St_0 = 0.15 \]
Steady blowing vs Periodic forcing

\[St_0 = 0.15 \]
Steady blowing vs Periodic forcing

\[S_{t0} = 0.15 \]
Steady blowing vs Periodic forcing

\[St_0 = 0.15 \]
Introduction
Setup
Unforced flow
Steady blowing
Periodic Forcing
Sliding mode control (SMC)
Future work
- **Active flow control**

Open-loop control

- Actuation $b(t)$ to Experimental plant
- Sensor $s(t) = F_d(t)$

Closed-loop control

- Actuation $b(t)$ to Experimental plant
- Controller $s(t) = F_d(t)$
- Sensor $s(t) = F_d(t)$
\[
\dot{s}(t) = f(s, t) + g(s, t) \cdot b(t)
\]
\[b(t) = \begin{cases} 1 & \text{if } \sigma(t) - \sigma^* < 0 \\ 0 & \text{if } \sigma(t) - \sigma^* > 0 \end{cases} \]

The control law is represented by the symbol \(b(t) \) which is a function of the error between the current state \(\sigma(t) \) and the desired state \(\sigma^* \).

The experimental plant is shown with input \(U_\infty \) and output \(P(t) \).

The diagram also shows the relationship of the output variables \(F_d(t) \) and \(S^* = F_d \) to the control system.
Choose s^*

Reaching phase
- Wait for $s(t)$ to arrive to s^*

Sliding phase
- Keep $s(t)$ at s^*
SMC

Control law

\[b(t) = \begin{cases}
1 & \text{if } \sigma(t) - \sigma^* < 0 \\
0 & \text{if } \sigma(t) - \sigma^* > 0
\end{cases} \]

Experimental plant

Sensors

\[U_{\infty} \]

\[P(t) \]

\[F_d(t) \]

\[S^* = F_d \]
Choose s^*

Reaching phase

- Wait for $s(t)$ to arrive to s^*

Sliding phase

- Keep $s(t)$ at s^*

$\dot{s}(t) = f(s, t) + g(s, t) \cdot b(t)$
\[\dot{s}(t) = \alpha s(t) + \beta b(t) \]

\[\sigma^* = s(t) \]

\[b(t) = \begin{cases}
1 & \text{if } \sigma(t) - \sigma^* < 0 \\
0 & \text{if } \sigma(t) - \sigma^* > 0
\end{cases} \]

\[\dot{s}(t) = f(s, t) + g(s, t).b(t) \rightarrow \dot{s}(t) = \alpha s(t) + \beta b(t) \]
\[\dot{s}(t) = \alpha s(t) + \beta b(t - h) \]
\[\sigma^* = s(t) \]

\[b(t) = \begin{cases}
1 & \text{if } \sigma(t) - \sigma^* < 0 \\
0 & \text{if } \sigma(t) - \sigma^* > 0
\end{cases} \]
\[\dot{s}(t) = \alpha s(t) + \beta b(t - h) \]

\[\sigma^* = s(t) + \beta \int_{t-h}^{t} b(p) dp \]

\[
\begin{align*}
 b(t) = \begin{cases}
 1 & \text{if } \sigma(t) - \sigma^* < 0 \\
 0 & \text{if } \sigma(t) - \sigma^* > 0
\end{cases}
\end{align*}
\]
SMC Identification

Sensor without delay

$$\dot{s}(t) = \alpha_1 s(t) - \alpha_2 s(t) + (\beta - \gamma s(t - h) + \gamma (t - \tau)) b(t - h)$$

Sensor with delay

$$FIT(\%) = \left\{1 - \frac{\|S_{exp} - S_{sim}\|_{L^2}}{\|S_{exp} - S_{exp}\|_{L^2}}\right\} \times 100\% = 53\%$$

$$\alpha_1 = 27.37 \quad \alpha_2 = 32.70 \quad \beta = 1.97 \quad \gamma = 1.92 \quad \tau = 0.18 \quad h = 0.01$$

Feingesicht et al. (2017) Int. J. Robust Nonlinear Control
Sliding mode control

\[\dot{s}(t) = \alpha s(t) + \beta b(t - h) \]
\[\sigma^* = s(t) + \gamma \int_{t-\tau+h}^{t} s(p)dp + \int_{t-h}^{t} (\alpha_1 s(p) + (\beta - \gamma s(p) + \gamma s(p - \tau + h))b(p))dp \]

\[b(t) = \begin{cases}
1 & \text{if } \sigma(t) - \sigma^* < 0 \\
0 & \text{if } \sigma(t) - \sigma^* > 0
\end{cases} \]
Introduction
Setup
Unforced flow
Steady blowing
Periodic Forcing
Sliding mode control (SMC)
Conclusion and future work
Conclusion
Future work

Sliding mode for Drift and Lift
 • Andrey Polyakov, Jean-Pierre Richard, Maxime Feingesicht & Franc Kerherve

Active flow control strategies
 • LAMIH Automatic department (ARI project)

Ahmed body (SISO MLC) Drag reduction
 • Ruiying Li, Eurika Kaiser & Bernd Noack,

CROM
 • Eurika Kaiser & Bernd Noack,

Real car active flow control
Acknowledgments

R. Martinuzzi
Mechanical and Manufacturing Faculty
University of Calgary, Calgary, Canada.

E. Kaiser
Mechanical Engineering Department
University of Washington, Seattle, USA.

T. Duriez
Engineering Faculty
Buenos Aires, Argentina
Acknowledgments

Questions?
Camila.chovet@etu.univ-valenciennes.fr