Unsteady pulsed jets using pneumatic valves for flow separation control: effect of internal acoustic waves on external flow structure

Marc Michard, Sylvie Sesmat, Thomas Castelain, Emmanuel Jondeau, Eric Bideaux, Antoine Bourgeois

Symposium GDR 2502 Contrôle des Décollements
09 November 2017
• Interest in Aerodynamics of square-back bodies
• Recent projects on flow control for drag reduction with fluidic injection → Use of synthetic or pulsed jets at 2D and 3D model rear combined with flaps.
• Definition of a new model under the framework of Activ_ROAD program (ANR) to study the effects of flow control on simplified personal cars and trucks.
• Idealized pulsed jet time-evolution

Command signal V
Velocity at nozzle exit U
- Idealized pulsed jet time-evolution

Command signal V

Velocity at nozzle exit U
• Idealized pulsed jet time-evolution

Command signal V

Velocity at nozzle exit U

Δt

DC. T

t
• Idealized pulsed jet time-evolution

Command signal V

Velocity at nozzle exit U

- Interest in sharp velocity increase after opening: vorticity,
- Fast-response actuator: high-frequency periodic or non-periodic time evolution of velocity,
- Manageable DC: reduction of flow control cost
• Idealized pulsed jet time-evolution

Command signal V
Velocity at nozzle exit U

- Interest in sharp velocity increase after opening: vorticity,
- Fast-response actuator: high-frequency periodic or non-periodic time evolution of velocity,
- Manageable DC: reduction of flow control cost

• Basic set-up for pulsed jet generation

Flow to be controlled

- Tank
- Valve
- Nozzle
Some typical results obtained

- Joseph et al.
 Exp. in Fluids, 2012
 $f = 200$ Hz
Some typical results obtained

- **Joseph et al.**
 Exp.in Fluids, 2012
 \(f = 200 \text{ Hz} \)

- **Barros et al.**
 JFM, 2016
 \(f = 610 \text{ Hz} \)
Some typical results obtained

- **Joseph et al.**
 Exp. in Fluids, 2012
 $f = 200$ Hz

- **Barros et al.**
 JFM, 2016
 $f = 610$ Hz,

- **PhD Thesis, M.Szmigiel, LMFA**
Some typical results obtained

- **Joseph et al.**
 Exp.in Fluids, 2012
 f=200 Hz

- **Barros et al.**
 JFM, 2016
 f = 610 Hz,

- **PhD Thesis, M.Szmigiel, LMFA**

What physical mechanism(s) may have such an influence on the pulsed jet characteristics?
Outline

1 Experimental set-up
 1 Pneumatic setup
 2 Valve and control board
 3 Flow measurements

2 Results
 1 Illustration of typical results
 2 Processing using dimensionless parameters
 3 Basic modeling

3 Conclusions
Experimental set-up

- Pneumatic set-up

Main Tank → Pressure regulator → Tank → Valve → Nozzle
Experimental set-up

- Pneumatic set-up

- Pneumatic valve: high speed two-port solenoid valve (SMC SX11-AJ)
Experimental set-up

• Pneumatic set-up

- Pneumatic valve: high speed two-port solenoid valve (SMC SX11-AJ)
- Pressure return force to close the valve instead of classical return spring.
Experimental set-up

• Pneumatic set-up

- Main Tank ➔ Pressure regulator ➔ Tank ➔ Valve ➔ Nozzle

• Pneumatic valve: high speed two-port solenoid valve (SMC SX11-AJ)
• Pressure return force to close the valve instead of classical return spring.
• Control board specifically developed by Ampère

![TTL Control Signal](image)

- Phase 1: Current increase (470 μS)
- Phase 2: Current control
Experimental set-up

- Pneumatic set-up

- Pneumatic valve: high speed two-port solenoid valve (SMC SX11-AJ)
- Pressure return force to close the valve instead of classical return spring.
- Control board specifically developed by Ampère

- Pressure measurements upstream of the valve (Kulite ETL-1-140)

TTL control signal

- Phase 1: Current increase (470 μs)
- Phase 2: Current control
Experimental set-up

- Pneumatic set-up

- Pneumatic valve: high speed two-port solenoid valve (SMC SX11-AJ)
- Pressure return force to close the valve instead of classical return spring.
- Control board specifically developed by Ampère

- Pressure measurements upstream of the valve (Kulite ETL-1-140)
- Velocity measurements at the nozzle exit (Dantec 55P01 probe and Dantec miniCTA)

Phase 1: Current increase (470 μS)
Phase 2: Current control
Typical result for an actuation frequency of 10 Hz

- Noticeable oscillations on pressure and velocity signals, vanishing at the end of each phase (opening or closing)
- Peculiarity of hw signal at closing: rectified waveform
- For each phase, differences in oscillation frequency between the flow upstream and downstream the valve.
- For each location (downstream/upstream), fixed oscillation frequency.
Test-cases for identification of internal acoustic waves

Nine different configurations

- with variation in inlet pressure P_{in}, L_{up} and L_{down}
- at fixed duty-cycle (50%) and actuation frequency (10 Hz)

<table>
<thead>
<tr>
<th>P_{in} [barA]</th>
<th>L_{up} [mm]</th>
<th>L_{down} [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>450</td>
<td>185</td>
</tr>
<tr>
<td>2.88</td>
<td>206</td>
<td>169</td>
</tr>
<tr>
<td>3.7</td>
<td>206</td>
<td>177</td>
</tr>
</tbody>
</table>

→ Normalization possible between the different results obtained by varying P_{in}, L_{down} and L_{up}
Identification of a time delay

- The time delays at opening and at closing are different,
Identification of a time delay

- the time delays at opening and at closing are different,
- at closing, the time delay decreases when P_{in} is increased.
 → valve working principle: closing is obtained by pressure force (pneumatic spring)
Identification of a time delay

- the time delays at opening and at closing are different,
- at closing, the time delay decreases when P_{in} is increased.
 → valve working principle: closing is obtained by pressure force (pneumatic spring)
- at opening, the time delay is independent of P_{in},
 → Opening of the valve done by the electromechanical force of the solenoid, thus delay less sensitive to pressure
Time delay modelling

- time delay in velocity signals increases linearly with the downstream length L_{down} for a given pressure.
Time delay modelling

- time delay in velocity signals increases linearly with the downstream length L_{down} for a given pressure.
- Movement of the mobile part of the valve is very fast, time delay assumed to result from
 - a delay due to the valve opening (or closing)
 - plus a delay due to the wave propagation from the valve to the sensor (pressure at upstream, and velocity at downstream)
Time delay modelling

![Graphs showing time delay modelling](image)

- time delay in velocity signals increases linearly with the downstream length L_{down} for a given pressure.
- Movement of the mobile part of the valve is very fast, time delay assumed to result from
 - a delay due to the valve opening (or closing)
 - plus a delay due to the wave propagation from the valve to the sensor (pressure at upstream, and velocity at downstream)

Good match with time delays identified from experimental data
Normalization

Normalized results from the 9 tested configurations.

- upstream (resp. downstream) oscillation frequency independent of downstream (resp. upstream) length,
Normalization

Normalized results from the 9 tested configurations.

- upstream (resp. downstream) oscillation frequency independent of downstream (resp. upstream) length,
- oscillation frequency after closing is equal to that after opening
Normalization

Normalized results from the 9 tested configurations.

- upstream (resp. downstream) oscillation frequency independent of downstream (resp. upstream) length,
- oscillation frequency after closing is equal to that after opening
- oscillation frequencies are independent of the inlet pressure supply.
Normalization

Normalized results from the 9 tested configurations.

- upstream (resp. downstream) oscillation frequency independent of downstream (resp. upstream) length,
- oscillation frequency after closing is equal to that after opening
- oscillation frequencies are independent of the inlet pressure supply.
- the amplitude of the first peaks of pressure (resp. velocity) are:
 - nearly proportional to P_{steady} (resp. V_{steady}),
 - independent of the lengths of the connecting pipes,
Normalization

Normalized results from the 9 tested configurations.

- upstream (resp. downstream) oscillation frequency independent of downstream (resp. upstream) length,
- oscillation frequency after closing is equal to that after opening
- oscillation frequencies are independent of the inlet pressure supply.
- the amplitude of the first peaks of pressure (resp. velocity) are:
 - nearly proportional to P_{steady} (resp. V_{steady}),
 - independent of the lengths of the connecting pipes,
- the oscillation damping coefficient is independent of the inlet pressure and the lengths L_{down} and L_{up}.
Pressure oscillations **upstream** of the valve

After closing

Tank

\[L_{up} \]

Valve
Pressure oscillations upstream of the valve

After closing

![Diagram of a tank with a valve and a pipe](image)

Good agreement between the experiments and the closed-end tube model (max. deviation of 5% in estimation of f_1)

$$f_{2n+1} = (2n+1)\frac{c}{4L_{up}}; \quad f_1 = \frac{c}{4L_{up}}$$
Pressure oscillations upstream of the valve

After closing

Good agreement between the experiments and the closed-end tube model (max. deviation of 5% in estimation of f_1)

After opening

$$f_{2n+1} = (2n+1)\frac{c}{4L_{up}} ; \quad f_1 = \frac{c}{4L_{up}}$$

$$f_n = (n)\frac{c}{2L_{up}} ; \quad f_1 = \frac{c}{2L_{up}}$$
Pressure oscillations upstream of the valve

After closing

![Diagram of a tank, valve, and upstream length](image)

\[f_{2n+1} = (2n+1) \frac{c}{4L_{up}}; \quad f_1 = \frac{c}{4L_{up}} \]

Good agreement between the experiments and the closed-end tube model (max. deviation of 5% in estimation of \(f_1 \))

After opening

![Graphs of opening and closing pressures](image)

\[f_n = (n) \frac{c}{2L_{up}}; \quad f_1 = \frac{c}{2L_{up}} \]
Pressure oscillations upstream of the valve

After closing

Tank

Valve

\[L_{up} \]

\[f_{2n+1} = (2n+1) \frac{c}{4L_{up}} \]

\[f_1 = \frac{c}{4L_{up}} \]

Good agreement between the experiments and the closed-end tube model (max. deviation of 5% in estimation of \(f_1 \))

After opening

Closed-end tube model still holds
Physical interpretation: Contraction due to valve throat \(\equiv \) closed termination
Velocity oscillations downstream of the valve

- 'Simpler' case: sonic section in the valve such that Closed-end tube model is relevant
- Estimation of equivalent pipe length taking the nozzle geometry into account not straightforward.
 Good agreement between the experiments and the closed-end tube model (max. deviation of 8% in estimation of f_1)
Modelling of damping

Two possible sources of damping:

- Acoustic radiation
- Viscous effects

L_{up}
Modelling of damping

Two possible sources of damping:

- Acoustic radiation
- Viscous effects

L_{up}
Modelling of damping

Two possible sources of damping:

- Acoustic radiation
- Viscous effects

Modelling* of the damping coefficient α (in time) after closing:

$$\alpha = \sqrt{\frac{\omega d}{2r}} \left(1 + \sqrt{\frac{\chi}{\nu}} \left(\frac{C_p}{C_v} - 1\right)\right)$$

where d can be seen as a 'penetration depth' for viscous effects. For zero-mean flows,

$$d = \sqrt{\frac{2\nu}{\omega}}$$

(*) Moloney & Hatten, American Journal of Physics, 2001
Modelling of damping

Estimation of logarithmic decrement δ: experiments (symbols)/ model (solid line):

δ

$L_{up}=450\,\text{mm}$

Confirmation of viscous effects as predominant cause of damping
Modelling of damping

Estimation of logarithmic decrement δ : experiments (symbols)/ model (solid line) :

Confirmation of viscous effects as predominant cause of damping

$L_{up} = 450\text{mm}$

$L_{up} = 206\text{mm}$

- **Conclusions**
 - Existence of pressure (acoustic) waves in pipes upstream and downstream of the valve in a pulsed jet system.
 - Decoupling of the pressure waves upstream and downstream of the valve.
 - Oscillation frequency well approximated by closed-end tube model.

- **Future work**
 - At high actuation frequencies, complex interactions between acoustic waves generated at opening with waves generated at closing,
 - Resonance if actuation frequency is close to the acoustic waves frequency: possible optimization for large blowing velocity peaks at constant inlet pressure.
 - Very different blowing velocity patterns at the nozzle exit can be achieved when varying DC or actuation frequency around.
• Acknowledgments
 • This work was performed within the program "Activ_ROAD" (ANR15CE220002) operated by the French National Research Agency (ANR).
 • The manufacturing by Pprime of the diffuser model used here and further employed in the program is gratefully acknowledged.