Flow control on a 3D backward facing ramp by pulsed jets

3rd GDR Symposium

P. Josepha, D. Bortolusa, F. Grasso\textsuperscript{a\textbf{b}}

a Institut AéroTechnique (IAT-CNAM), 15 rue Marat, 78210 Saint-Cyr-l’Ecole (France)
b CNAM, Laboratoire DynFluid, 151 Boulevard de l’Hôpital, 75013 Paris (France)

Email: pierric.joseph@cnam.fr

Acknowledgements:
This work was carried out in the framework of the FOSCO project, supported by iC ARTS
Introduction

• FOSCO Project
 – « FOrcing for Separation COntrol »
 – Sequel of CARAVAJE project (flow control by pulsed jets applied to automotive vehicles)

 – Objective: comprehension of the physical mechanisms associated with periodic forcing
 – Test case: simple geometry but close to industrial preoccupations
Summary

• Experimental setup
 – Test case
 – Wind tunnel arrangement
 – Instrumentation

• Base flow characterization
 – Mean flow topology
 – Mean pressure distribution
 – Incoming flow characterization
 – PIV investigations

• Flow control experiments
 – Control strategy
 – Control system
 – Jets characterization
 – Parametric study
 – Mean flow modifications

• Conclusions and perspectives
Experimental setup

- Test case: the 3D backward facing ramp
 - Why not the classical Ahmed body?

- Critical, bi-stable angle
- "High drag" case unfavorable
- Underbody without moving floor
- Etc.

- Geometry well adapted for control studies related to notchback configuration
Experimental setup

• Wind tunnel arrangement
 – Automotive wind tunnel (S4) with test chamber of 5 m x 3 m, U_0 up to 44 m.s\(^{-1}\) and turbulence intensity $\approx 1.2\%$
 – Model installed on raised floor to deal with the natural boundary layer of the wind tunnel
 – Additional instrumented area on the raised floor due to the expected flow topology
Experimental setup

• Instrumentation
 – PIV system (2D2C – 2D3C)
 – 200 mJ, 15Hz Nd:YAG Laser
 – 4 Mpx cameras
 – Seeding with oil droplets (2µm)
 – Adaptive correlation algorithm
 – 16 x 16 pixels with 50% overlap

• Steady pressure measurements

 – Flow symmetric in the mean
 – 141 pressure taps on half of the model
 – Scanivalve pressure scanner
 – Accuracy: 0.03%
 – Results expressed as pressure coefficient:

\[C_p = \frac{p - p_0}{\frac{1}{2} \rho U_0^2} \]
Summary

• Experimental setup
 – Test case
 – Wind tunnel arrangement
 – Instrumentation
• Base flow characterization
 – Mean flow topology
 – Mean pressure repartition
 – Incoming flow characterization
 – PIV investigations
• Flow control experiments
 – Control strategy
 – Control system
 – Jets characterization
 – Parametric study
 – Mean flow modifications
• Conclusions and perspectives
Base flow characterization

• Mean Flow topology
 – Oil flow visualizations* at $Re_L = 1.4 \times 10^6$ ($U_0 = 20 \text{ m.s}^{-1}$)

 - Similar flow pattern with notchback car

* dodecan, silicon oil, oleic acid and titanium oxide
Base flow characterization

• Mean pressure distribution
 – Pressure coefficient (C_p) iso-contours ($Re_L = 1.4 \times 10^6; U_0 = 20 \text{ m.s}^{-1}$)

 – “Print” of the mean recirculation area
 – Lack of information regarding side regions (both for the top and the lateral edges of the slant)
Base flow characterization

• Incoming flow characterization

 – Boundary layer measurement at $X = -5 \times 10^{-2} \text{ m}$, $Y = 9.5 \times 10^{-2} \text{ m}$
 – $Re_L = 1.4 \times 10^6$ ($U_0 = 20 \text{ m.s}^{-1}$)

 \[\begin{align*}
 \delta_{99} &= 26 \times 10^{-3} \text{ m} \\
 \delta^* &= 2.8 \times 10^{-3} \text{ m} \\
 \theta &= 2.3 \times 10^{-3} \text{ m} \\
 H &= 1.24
 \end{align*} \]

 – Similarities with the boundary layer developing on the roof of the Ahmed body
Base flow characterization

• PIV investigations
 – Longitudinal plane \((Y = 0, \text{Re}_L = 1.4 \times 10^6, U_0 = 20 \text{ m.s}^{-1})\)

 \[L_R \approx 0.26 \text{ m, independent from Reynolds number...} \]

 \[\ldots \text{but strongly affected by edge sharpness} \]
Base flow characterization

• PIV investigations
 – Transversal plane \((X = 0.124 \text{ m}, \text{Re}_L = 1.4 \times 10^6, U_0 = 20 \text{ m.s}^{-1})\)

 – Vortex core location independent from Reynolds number
Summary

• Experimental setup
 – Test case
 – Wind tunnel arrangement
 – Instrumentation
• Base flow characterization
 – Mean flow topology
 – Mean pressure repartition
 – Incoming flow characterization
 – PIV investigations
• Flow control experiments
 – Control strategy
 – Control system
 – Jets characterization
 – Parametric study
 – Mean flow modifications
• Conclusions and perspectives
Flow control experiments

• Control strategy
 – Objective: suppression or reduction of the mean recirculation area
 – Introduction of counter-rotating vortex pairs (CRV)

 – Momentum transfer between free flow and low velocity area
 – CRV created through **pulsed jets**
 – Dynamic vortex generators (Ortmanns et al. 2008)
Flow control experiments

• Control system
 – Pulsed jets produced by magnetic valves (see Joseph et al. 2012)
 – Valves driven by TTL (rectangular, 0 – 5V) signal with variable frequency and duty cycle
 – 89 rectangular jets located at X = - 1 x 10^{-2} m upstream of the separation point
Flow control experiments

- Jets characterization
 - Strong variations of spatio-temporal characteristics with the command parameters: supply pressure p_s, duty cycle DC and command frequency f_j
 - Hot wire measurements with 1D probe at $Z = 1 \times 10^{-3} \text{ m}$

\[f_j = 70 \text{ Hz}, \quad DC = 50\% \]

\[f_j = 70 \text{ Hz}, \quad p_s = 6 \text{ bar} \]

\[DC = 50\%, \quad p_s = 6 \text{ bar} \]
Flow control experiments

- Mean flow modifications
 - Parametric study (C_μ, St_J and U_0)
 - Monitoring of pressure recovery on a single point

 - Interaction with flow instabilities ?
 - Special functioning mode of the actuators ?
 - 190 Hz implies only “overshoot“ on the temporal history of the jet velocity

Addional measurements:

Re_L = 1.4 \times 10^6 \ (U_0 = 20 \ m.s^{-1})

- $C_\mu = 19 \times 10^{-3}$
- $C_\mu = 8.9 \times 10^{-3}$
- $C_\mu = 0.8 \times 10^{-3}$

$p_S = 6 \ \text{bar}$

- $U_0 = 20 \ \text{m.s}^{-1}$
- $U_0 = 30 \ \text{m.s}^{-1}$
- $U_0 = 40 \ \text{m.s}^{-1}$
Flow control experiments

- Mean flow modifications
 - PIV measurements (XZ plane, $Y = 0$, $Re_L = 1.4 \times 10^6$, $U_0 = 20 \text{ m.s}^{-1}$)
 - $C_\mu = 19 \times 10^{-3}$, $St_J = 0.89$ and $DC = 50$

- Suppression of the recirculation area
Flow control experiments

• Mean flow modifications
 – Pressure coefficient C_p mapping ($Re_L = 1.4 \times 10^6$, $U_0 = 20 \text{ m.s}^{-1}$)
 – $C_{\mu} = 19 \times 10^{-3}$, $St_J = 0.89$ and DC = 50%

 - Global pressure recovery...
 - ... but lack of information on the side area (low pressure expected)
 - C_x ?
Flow control experiments

- Mean flow modifications
 - PIV measurements (YZ plane, $X = 0.124$ m, $Re_L = 1.4 \times 10^6$, $U_0 = 20$ m.s$^{-1}$)
 - $C_\mu = 19 \times 10^{-3}$, $St_J = 0.89$ and DC = 50%

- Displacement of vortex cores location and increase in size
- Additional flow structures: Görtler vortices?
Flow control experiments

• Mean flow modifications
 – PIV measurements (YZ plane, $X = 0.124 \text{ m}$, $Re_L = 1.4 \times 10^6$, $U_0 = 20 \text{ m.s}^{-1}$)
 – $C_\mu = 19 \times 10^{-3}$
 \[St_J = 0.83 \quad DC = 50\% \]
 \[St_J = 0.28 \quad DC = 50\% \]
 – Strong influence of the actuation frequency on the additional flow structure (still under investigation)
Conclusions

- Base flow consistent with wake of a notchback automotive
- Separated bulb along with pair of longitudinal vortices
- Control action leads to reattachment
- Pressure increases globally, but effect on C_x still to be addressed
- Control action mainly driven by actuator characteristics rather than by interaction with flow instabilities
- However local influence on mean flow topology
Perspectives

- Unsteady measurements
- C_x evaluation through conservation of momentum
- Numerical simulation (research code developed for DNS with high order resolution)

Instantaneous Q criterion ($Re_L = 1.4 \times 10^6$)

Preliminary numerical results (isosurface $U/U_0 = 0.88$, $Re_L = 2.1 \times 10^6$)
References

