Analysis and control of the wake past the square-back Ahmed geometry

Mathieu GRANDEMANGE1,2 – Marc GOHLKE2 – Olivier CADOT1

1 ENSTA ParisTech, Palaiseau – France
2 PSA Peugeot Citroën, Vélizy-Villacoublay – France
Motivations

• Drag repartition over a vehicle:

 - Friction effects 10%
 - Side mirrors and others… 5%
 - Fore-body 5%
 - Air cooling 10%
 - After-body 30%
 - Wheels 15%
 - Under-body 25%

⇒ Study of the square-back model of Ahmed et al. (1984)

• Geometry massively used in the framework of flow control for drag reduction
Experimental set-up

- Eiffel wind tunnel
- Square-back Ahmed model
- \(\text{Re} = U_0H/\nu = 10^5 \)

Quantities normalized by \(H \) and \(U_0 \)

- 2D strain gauge balance: drag and lift
- Velocimetry: PIV and hot-wire measurements
- Pressure taps on the geometry
Mean flow: fluctuations of velocity

- Mean flow with a massive separation on the base

- Boundary layer detachments on the fore-body, reattachment on the sides around \(x = -3 \)

- Low base pressure responsible for 70% of the total drag as in Ahmed et al. (1984)

 ➔ Mixing layer activity associated with coherent wake motions
Global modes

- PIV at 3 kHz

- Two modes at $f^- = 35.4$ Hz and $f^+ = 48.4$ Hz:
 \[
 \text{St}_H = 0.13 \quad \text{i.e.} \quad \text{St}_W = 0.17 \\
 \text{St}_H = 0.17
 \]

⇒ Wake oscillations in the y and z directions
Bi-stability: introduction

- Low frequency evolutions in the velocity signal at B

Wake position in the y direction?

[Diagram showing velocity signals at A and B with frequency spectra]
Bi-stability: evidence

- Instantaneous velocity fields at 10 Hz ➔ Wake position in the y and z directions

Barycentrum of velocity loss:

\[y_W = 0.043 \]
\[z_W = 0.575 \]

- Two preferred wake positions

Bi-stability: asymmetric flow

- Symmetric mean flow with two saddle points
- Superposition of two asymmetric flows with only one saddle point
Pressure signature of the bi-stability

- Base pressure distribution as an indicator of topology
- Asymmetry limited to the after-body
Experiments in laminar regime

1 cm/s < \(U_0 \) < 4 cm/s

200 < Re < 800

Study of the stable states depending on the Reynolds number
Stable laminar wakes

Steady Symmetric (SS)
Re = 310

Steady Asymmetric (SA)
Re = 360

Unsteady Asymmetric (UA)
Re = 420

Reminiscent in turbulent regimes

Grandemange et al. (2012)
Conclusion on the natural flow

- **Oscillations** of the wake in the cross-flow directions:
 - Low energy in the structures around the separatrix
 - Limited effect on drag

- **Bi-stability** of the flow:
 - Off-centered wake position
 - Statistically symmetric flow
 - Lateral force \(\rightarrow\) Responsible for part of the drag

\(\rightarrow\) Wake control using local disturbances ?
Flow control using local disturbances

- Efficient to control the vortex shedding past cylinders
- High sensitivity in the mixing layers

Dalton et al. (2001)
Local disturbances in 3D wakes

- Global modes present in 3D wakes
- Sensitive to local disturbance

Axisymmetric geometries

Sensitivity of the stationary mode

Sensitivity of the oscillating mode

Theoretical study: Meliga et al. (2009)
Control using a vertical control cylinder

- Cylinder moved in the wake
- Construction of sensitivity maps
Vertical control cylinder: effects on the wake

- One asymmetric state selected by the disturbance

⇒ High sensitivity to residual asymmetries
Vertical disturbance: Sensitivity maps

- Selected asymmetric state dependent on x_C and y_C
- Bi-stability reduced in the middle of the recirculation bubble
- Stable centered wake \Leftrightarrow Increase in C_{pb}
Control using an horizontal control cylinder

- Displacement in the wake

\[d = 0.05H \]

- 5% drag reduction
- 9% increase in the recirculation length

Natural flow

Optimal disturbed flow

\[x_C = 0.45 - z_C = 0.24 \]
Optimal horizontal control cylinder position

Natural flow

Optimal disturbed flow

\[x_C = 0.45 - z_C = 0.24 \]

- Bi-stability suppressed
- Reduction of the wake width
- Slight reduction of the fluctuating velocities

Bi-stability sensitive to the top-bottom balance of the mixing layers

- **Introduction**
- **Natural flow**
- **Disturbed flow**
 - Context
 - Vertical cylinder
 - Horizontal cylinder
- **Conclusion**
Conclusions & perspectives

- **Two global modes** associated with oscillations in the cross-flow directions
 Kiya & Abe (1999): wake of rectangular and elliptic normal plates
 ➔ Not responsible for large part of the drag

- **Bi-stability** of the natural flow:
 - Two asymmetric states ➔ statistical symmetric mean flow
 - Linked to a bifurcation in the laminar wake
 - High sensitivity to the symmetry of the set-up

- **Additional induced drag** associated with the forces in the cross-flow directions:
 ➔ ≈ 5% of the total drag

Thanks to ESPCI for lending the low Reynolds water tunnel
Thank you for your attention

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Natural flow</th>
<th>Disturbed flow</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivations</td>
<td>Mean wake</td>
<td>Context</td>
<td></td>
</tr>
<tr>
<td>Experimental set-up</td>
<td>Global modes</td>
<td>Vertical cylinder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bi-stability</td>
<td>Horizontal cylinder</td>
<td></td>
</tr>
</tbody>
</table>