Global stability of an isolated cylindrical rugosity

J.-C. Loiseau(1), J.-C. Robinet(1) and E. Leriche(2)

(1): DynFluid Laboratory - Arts & Métiers-ParisTech - 75013 Paris, France
(2): LML - University of Lille 1 - 59655 Villeneuve d’Ascq, France

GDR Contrôle des décollements
- Orsay - France - November 15-16 2012
Motivations

• **Problem** :
 - 45% of the drag on airplanes is due to skin friction,
 - turbulent boundary layers induce more skin friction than laminar ones.

• **Motivations** :
 - What are the mechanisms responsible for transition?
 - Can we predict threshold for it?
 - How to control and delay transition in boundary layer flows in order to reduce the drag?
Background

- Multiple transition scenarios have been found:
 - Tollmien-Schlichting waves (modal instability)
 - Streamwise streaks (non-modal instability)
 - Localized perturbation of specific shape (non-linear optimal perturbations)
 - ...

(a) Tollmien-Schlichting waves
(b) Streamwise streaks
Stability to TS waves can be improved introducing a spanwise modulation of the boundary layer:
- Periodic array of roughness elements creates horseshoe vortices inducing streamwise streaks further downstream,
- the resulting boundary layer is less sensitive to 2D TS waves.

Figures taken from Fransson et al.
Background

- **Problem**: If the amplitude of the streaks is too large, transition occurs right downstream the roughness element!
 - What is the mechanism responsible for this?
- Experimental work has been conducted in the 60’s by von Doenhoff & Braslow.

- Empirical criterion for transition:
 \[
 Re_c = 600 \left(\frac{k}{d} \right)^{\frac{2}{5}}
 \]
Geometry & Notations

Sketch of the computational arrangement and various scales used for DNS and stability analysis.

- \(\left(L_x, L_y, L_z \right) / h = (17, 4, 40) \),
- \(d/h = 1 \),
- Inflow : Blasius boundary layer
- Reynolds number : \(Re = U_e h / \nu \)
Global approach

- Linearized Navier-Stokes equations about a baseflow
 \[
 \frac{\partial u}{\partial t} + (U \cdot \nabla) u + (u \cdot \nabla) U = -\nabla p + \frac{1}{Re} \nabla^2 u
 \]
 \[
 \nabla \cdot u = 0
 \]
 \[
 u(x, 0) = u_0
 \]

- Initial value problem
 \[
 \frac{\partial u}{\partial t} = Au
 \]
 \[
 u(0) = u_0
 \]

- Formal Solution
 \[
 u(t) = e^{At} u_0
 \]

- Investigation of matrix exponential properties
Numerical Difficulties

- **Numerics**: Develop tools for fully 3D stability problems
 - Three inhomogeneous directions
 - Impossibility to store the Jacobian matrix and hence to perform any direct eigenvalue calculation

- **Dimension of discretized system**:

<table>
<thead>
<tr>
<th>Base Flow</th>
<th>Inhomogeneous direction(s)</th>
<th>Dimension of $u(t)$</th>
<th>Storage of A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poiseuille</td>
<td>$U(y)$</td>
<td>1D</td>
<td>10^2</td>
</tr>
<tr>
<td>Blasius</td>
<td>$U(x, y)$</td>
<td>2D</td>
<td>10^5</td>
</tr>
<tr>
<td>Roughness</td>
<td>$U(x, y, z)$</td>
<td>3D</td>
<td>10^7</td>
</tr>
</tbody>
</table>

- Use Navier-Stokes solver or any CFD code to approximate the action of exponential matrix:

 $$u(\Delta t) = e^{A(\Delta t)} u_0$$
Iterative eigenvalue methods

- **Eigenvalue problem**:
 \[\mathcal{F}(\Delta t)u_j = \sigma_j u_j, \quad (n \times n), \quad n > 10^6 \]

- **Construct a very small subspace** (compared to the size of the initial problem) from snapshots:
 \[\mathcal{K} = \text{span} [u_0, \mathcal{F}(\Delta t)u_0, \mathcal{F}(2\Delta t)u_0, \cdots, \mathcal{F}((m-1)\Delta t)u_0] \]

- **Solve small eigenvalue problem**
 - Orthonormalize (e.g. Arnoldi) \(V = [V_1, \cdots, V_m] \)
 - Project operator \(\mathcal{F}(\Delta t) \approx VHVT \)
 - Solve small eigenvalue problem \(HS = S\Sigma \quad (m \times m) \quad m < 1000 \)
Modal Stability

- Asymptotic behavior:

\[e^{At} u_j = \sigma_j u_j \]

\[| \sigma_1 | > 1 \quad \text{globally unstable} \]
\[| \sigma_1 | \leq 1 \quad \text{globally stable} \]

- \(u_j \) global eigenmodes,
- Determine growth/decay as \(t \to \infty \).
Equations and numerics

- **Time-stepper technique**: Never store matrices and use only velocity fields seen as matrix-vector product.

 \[u_0 \xrightarrow{\text{DNS}} u(\Delta t) = e^{A\Delta t}u_0 \]

- **Numerics**:
 - Nek 5000: Massively parallel Spectral elements code (DNS and LDNS)
 - Selective Frequency Damping: Base Flow computation (implemented into Nek 5000)
 - Timestepper Arnoldi: Matrix-free eigenvalue computation (coupled with Nek 5000 LDNS)
Three-dimensional Base Flow

- **SFD**:
 - Selective Frequency Damping (Akervik et al. 2006)
 - Solution of the steady Navier-Stokes equations.

- **Characteristic features**:
 - Central plan (xz-plane) is a symmetry plane,
 - Horse-shoe vortex,
 - Recirculation bubble.

Figure: Base Flow - $h/d = 1 - Re = 1000 - iso-U = 0$ and Q-criterion.
Global Spectrum

- 20 first global eigenmodes
 - Slightly supercritical case
 - Anti-symmetric vortex street modes
 - Symmetric modes

First anti-symmetric Eigenfunction real part of $u'(x, y, z)$.

Cylindrical roughness - EigenSpectrum - $h/d = 1$ - Re=1000.
Global Spectrum

- 20 first global eigenmodes
 - Slightly supercritical case
 - Anti-symmetric vortex street modes
 - Symmetric modes

Cylindrical roughness - EigenSpectrum - h/d = 1 - Re=1000.

First symmetric Eigenfunction real part of $u'(x, y, z)$.
Comparison with von Doenhoff-Braslow diagram

- Two cases have been considered so far: \(d/h = 1 \) and \(d/h = 2 \);
- For \(d/h = 1 \): \(Re^c_h(AS) = 950 \) and \(Re^c_h(S) = 1064 \);
- For \(d/h = 2 \): \(Re^c_h(AS) = 757 \) and \(Re^c_h(S) = 804 \);

Comparison between the von Doenhoff-Braslow diagram and stability results

- Stability predictions are consistent with experimental results.
- Potentially various dynamics following the Reynolds number.
Limits of the modal approach

- Global stability analysis only gives the upper threshold Re_C for transition,
- Lower threshold Re_G depends on the nature of the bifurcation:
 - if supercritical: $Re_G = Re_C$,
 - if subcritical: $Re_G < Re_C$.
- For $Re \in [Re_G, Re_C]$, the flow might undergo transition because of transient growth only.
Limits of the modal approach

- Linearized DNS initialized with random white noise,
- Energy gain: \(G \approx 10^3 \) for transients
- How large would be \(G_{\text{max}} \) if the LDNS is initialized with the optimal linear perturbation?
- What about the optimal perturbation as initial condition for DNS? Would it be sufficient to trigger transition?
Discussion

- **Previous study**: Mechanism responsible for transition is non-modal transient growth (Arnal, AIAA, 2011)

- **Present study**:
 - 3D linear stability: threshold for transition in reasonable agreements with experimental observations;
 - $Re_h < Re_h^c(AS)$: flow globally stable;
 - $Re_h^c(AS) < Re_h < Re_h^c(S)$: flow globally unstable for anti-symmetric perturbation;
 - $Re_h > Re_h^c(S)$: flow globally unstable for all perturbation.
 - But ... DNS shows a symmetrical development of the perturbation (Hairpin coherent structure)
 - The mechanism (modal vs. non-modal) is not yet clearly identified though nor understood,
Outlooks

- **Future work:**
 - Investigation of the dynamics for other aspect ratios,
 - Transient growth analysis and DNS for several transitional Reynolds numbers,
 - Influence of the rugosity shape (cylindrical, hemispherical, ...) on the dynamics,
 - Investigation of the non-modal/non-linear coupling of modes,
 - Design of Reduced Order Models for closed-loop control.