Applications de l’automatique au contrôle en boucle fermée d'une couche limite épaisse

C. Braud, T. Shaqarin, S. Coudert, M. Stanislas

Univ Lille Nord de France F-59000 Lille1, CNRS², EC Lille³
Laboratoire de Mécanique de Lille (UMR 8107)
Boulevard Paul Langevin,
59655 Villeneuve d'Ascq Cédex,
France.
Model in the Wind tunnel

- Smooth contraction (ratio 0.75)
- Articulated flat plate: adverse pressure gradient
- Articulated flap: separation
Actuators: first manual optimization

- **54 configurations** for passive devices:
 - co- or counter- rotating, 3H, 4 ΔX_{VG}, up to 4 λ and 2 L
- **44 configurations** for active devices:
 - $\beta = 45^\circ$, $\alpha=45^\circ$ or 135°, co- or counter- rotating, 2Φ, 2 ΔX_{VG}, up to 4 λ, L, 6VRs

On going PhD (C. Cuvier)
Actuators configuration for open and closed loop

22 co-rotating synchronous jets blowing upstream, \(\phi = 6\text{mm}, \lambda/\phi = 13.6 \) and \(\Delta X_{VG}/\phi = 47 \)
Control set-up

\[u(t) = DC(t) \]

\[y(t) = x(t) = E(t) - E_0 \]

System diagram:
- Input: \(u(t) \)
- Actuators
- Controlled flow (\(Re, \frac{dCp}{ds} \))
- Sensors
- Output: \(y(t) \)
Control objectif
Open-loop:
First order response to a step function

Actuators ON:

\[\frac{dy}{dt} = -y(t) + \frac{H}{\tau} u(t - t_d)\]
\[y(t) = x(t)\]

State space representation:

Actuators OFF:

Actuators ON: \[x(t) = H(1 - e^{-\frac{t-t_d}{\tau}})\]
Actuators OFF: \[x(t) = H e^{-\frac{t-t_d}{\tau}}\]
Open-loop results: $U_\infty = 5\text{m/s}$

$\tau = 0.5\text{s}$

$t_c = 0.1 \pm 0.1\text{s}$
Open-loop results: \(U_\infty = 5 - 8 - 10 \text{ m/s} \)

\[\frac{X_{ss}}{X_{th}} \text{ [Volt]} \]

\[\text{DC} \]

\[H/x_{th}=2.09 (\sigma - 0.18) \]

\[\frac{t_{ca}}{\tau_a} \]

\[\tau_a=0.8-0.05 \ U_\infty \]
The feedback closed loop:

\[
\frac{du}{dt} = K_p \frac{de}{dt} \quad \text{with} \quad e(t) = r - y(t)
\]

\[
TF = \frac{K_p G(s)}{1 + K_p G(s)} \quad \text{with} \quad K_p = 1
\]
Reactivity:

\[
\int_0^{t_{CL}} Q_{mCL} \, dt = \frac{\int_0^{t_{CL}} DC \, t \, dt}{0.6 t_{OL}} = 0.8
\]

Gain 20%:
Robustness: keep $y(t)=r$ with $r = 1.15 \times \text{th}(5 \text{ m/s})$
Conclusions

- Model:
 Ramp: APG-TBL pressure gradient \((\text{Re}_\theta = 11000, \frac{dCp}{ds}=0.06, \delta = 20\text{cm}) \)

 Flap: separation (2D over 70%)

- Open-loop tests (SISO):
 - Sensor/Output: hot-film probe/E-Eo
 - Actuators/Input: pulsed jets/DC
 - First order linear system: \(\tau = -0.05 U_\infty + 0.8 \) and \(\frac{H}{x_{th}} = 2 \pm 0.2 \)

- Closed-loop tests:
 - Proportionnal law
 - improvement of reactivity
 - Robustness to be improved