Machine Learning: A change of paradigm in Flow Control?

Laurent CORDIER
Laurent.Cordier@univ-poitiers.fr

PPRIME Institute
Poitiers, France
1. Phenomenological approaches
 - Pros:
 - Physically based
 - Work experimentally
 - Cons:
 - Restricted to one type of flow physics

2. Model-based control
 (a) Based on identification: ARMAX, ERA, OKID
 - Pros:
 - Pure data driven
 - Work experimentally
 - Cons:
 - Restricted to one type of flow physics (linearized behaviour)
 (b) Based on first principle equations and (optionally) data
 - Pros:
 - Rigorous approach
 - Cons:
 - Purely numerical
 - Too fragile to work in most of the real configurations
1 – Model-based control
Riccati-based stabilization
Riccati-based stabilization

\[V_{c} \]

\[J_{\text{perf}} \]

\[x \]

\[y \]
Riccati-based stabilization

![Graph showing Riccati-based stabilization](image)

- **x** vs. **y**
- **Vc** vs. **t**
- **Jperf** vs. **t**

GDR CDD, Nantes, November 19, 2015 – p.5/29
Riccati-based stabilization

V_c vs t

J_{perf} vs t
2 – Machine Learning
Arthur Samuel (1959)

Field of study that gives computers the ability to learn without being explicitly programmed.

Tom Mitchell (1998) – Well-posed Learning Problem:

A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

Applications:

Database mining, Games, Autonomous helicopter, handwriting recognition, Natural Language Processing,...
1. **Supervised Learning**
 Learn a mapping from inputs x to outputs y given a labeled set $\mathcal{D}_{SL} = \{x_i, y_i\}_{i=1}^N$.
 - Classification or pattern recognition
 - Regression

2. **Unsupervised Learning**
 Given only inputs $\mathcal{D}_{UL} = \{x_i\}_{i=1}^N$, discover “interesting patterns”
 - Clustering
 - Dimensionality Reduction: PCA

3. **Reinforcement Learning**
 How to take actions in an environment so as to maximize a cumulative reward.
3 – Genetic Programming Control
Genetic programming basics

Step 1:
1st generation with random nonlinear control laws

\[b^1_m = K^1_m(s), \ m = 1, \ldots, 100 \]

Steps 2...n:
Biologically inspired optimization of the control laws based on the 'fitness grades'

\[J [b = K(s)] \]

Optimization process

\[b^1_1 = K^1_1 \rightarrow J^1_1 \]
\[\cdot \]
\[\cdot \]
\[\cdot \]
\[b^1_i = K^1_i \rightarrow J^1_i \]
\[\cdot \]
\[\cdot \]
\[\cdot \]
\[b^1_n = K^1_n \rightarrow J^1_n \]

Crossover

Recopy

Mutation

\[b^2_1 = K^2_1 \rightarrow J^2_1 \]
\[\cdot \]
\[\cdot \]
\[\cdot \]
\[b^2_i = K^2_i \rightarrow J^2_i \]
\[\cdot \]
\[\cdot \]
\[\cdot \]
\[b^2_n = K^2_n \rightarrow J^2_n \]

Genetic programming: operations

REPLICATION

![Replication Diagram](image1)

CROSS-OVER

![Crossover Diagram](image2)

MUTATION

![Mutation Diagram](image3)
Genetic programming (GP) for closed-loop flow control

V. Parezanovic1,
L. Cordier1, B. R. Noack1, J.-P. Bonnet1,
T. Duriez2, M. Segond3, M. Abel3, S. L. Brunton4

1 Institut PPRIME, CNRS, Poitiers, FRANCE
2 CONICET, Buenos Aires, ARGENTINA
3 Ambrosys GmbH, Potsdam, GERMANY
4 University of Washington, Seattle, USA

Project support:
ANR Chair of Excellence "Closed-loop control of turbulent shear flows using reduced-order models (TUCOROM)"
Experimental setup

TUCOROM demonstrator for control of the mixing layer

- **Wind tunnel**: long test section, independently driven streams, velocity range [0:12m/s]
Machine Learning Control design

Mixing layer plant

Control law $b = K(s)$

LEARNING PHASE (Genetic Programming)

$J_1 < J_2 < \ldots < J_n$
Machine learning control design

Mixing layer plant

Control law \(b = K(s) \)

Heaviside function

INDEPENDENT REAL-TIME CONTROLLER

Learning module is disconnected...

\[J_1 < J_2 < \cdots < J_n \]
MLC results (I) – Frequency selection

Max W (x=200mm)
(mixing layer thickness)

Max K (x=200mm)
(mixing layer fluctuation energy)
4 – Cluster Reduced-Order Model
CROM
Cluster-based reduced-order modeling
Liouville equation based method

Navier-Stokes equation
\[\frac{\partial u}{\partial t} + (u \cdot \nabla) u = -\frac{1}{\rho} \nabla p + \nu \Delta u \]

POD expansion
\[u(x, t) = \sum_{i=0}^{N} a_i(t) u_i(x) \]

Galerkin projection
\[(u_k, \mathcal{R}[u])_\Omega = 0 \]

\[\frac{da}{dt} = f(a) \]

POD Galerkin model

Liouville equation
\[\frac{\partial p(a, t)}{\partial t} + \nabla_a (f(a)p(a, t)) = 0 \]

Galerkin expansion
\[p(a, t) = \sum_{k=1}^{K} \rho_k(t) \Psi_k(a) \]

Ulam-Galerkin method
\[(\Psi_j, \mathcal{R}[p])_\Omega = 0 \]

\[\frac{dp}{dt} = \mathbf{P} \rho \]

Markov model for CROM

State space
\[u(x, t) \]

State space
\[p(a, t) \]
CROM approach

How can one identify physical mechanisms in an unsupervised manner based on given data?

Data → Discretised state space (cluster analysis) → Construct cluster Transition matrix → Markov model

Discrete snapshots of a limit cycle

Time-resolved velocity snapshots
\(u^m = u(x, t_m) \)

Cluster analysis (k-means) (Steinhaus 1956, MacQueen 1967)

\[V = \sum_{k=1}^{K} \sum_{u^m \in c_k} ||c_k - u^m||^2 \rightarrow \text{Minimum} \]

Discrete-time Markov model (Time-homogeneous, memoryless)

\[p^l = p^l p^0 \quad \text{with} \quad P_{jk} = \frac{n_{jk}}{n_k} \]

Refined analysis: Cluster sociology Entropy
Clustering of mixing layer data

K-means applied to POD coefficient vectors for K=10, M=2000 snapshots

- Compression of all snapshots into a few modes
- Uncertainty due to cluster size
CROM of a mixing layer

Cluster transition matrix

Simplified cluster transitions

Markov chain: Weighted directed graph
5 – Reinforcement Learning
Agent interacts with environment to gain knowledge

- Explores and receives rewards
- Actions change the state of the environment
- Choose actions to maximize long-term reward
Markov Decision Process

- S: State space (finite); $s_k \in S$
- A: Action space (finite); $a_k \in A$
- Transition probability $p(s_{k+1}|s_k, a_k)$
- r: Reward function
- $\gamma \in [0, 1[$: Discount factor
- Π: Policy
 - Deterministic: $a = \Pi(s)$
 - Stochastic: $p_{\Pi}(a|s) = \Pi(a|s)$

Objective:

Find a policy π^* that maximizes the expected long-term reward

$$V^\Pi(s) = \mathbb{E} \left[\sum_{k=0}^{+\infty} \gamma^k r_{k+1} | s_0 = s, \Pi \right]$$

$$r_{k+1} = r_{k+1}(s_k, a_k, s_{k+1})$$
Hash functions (2)
Left: \(a(t) \). Right: \(C_d(t) \) under three different control policies: 0-command (black), best known command (“ora”), and present approach.
Questions ???