Back to the list of the software developed in the MAPMO (in french) Français Español



SWASHES: Shallow Water Analytic Solutions for Hydraulic and Environmental Studies.

SWASHES is a library of Shallow Water Analytic Solutions for Hydraulic and Environmental Studies.
A significant number of analytic solutions to the Shallow Water equations is described in a unified formalism. They encompass a wide variety of flow conditions (supercritical, subcritical, shock, etc.), in 1 or 2 space dimensions, with or without rain and soil friction, for transitory flow or steady state.
The goal of this code is to help users of Shallow Water based models to easily find an adaptable benchmark library to validate numerical methods.

The SWASHES software can be downloaded on the website sourcesup.
This software is distributed under CeCILL-V2 (GPL compatible) free software license. So, you are authorized to use the Software, without any limitation as to its fields of application.
For any question, contact us at: (F. Darboux, O. Delestre, C. Laguerre, C. Lucas).

If you want to be informed of the main evolutions of SWASHES, please subscribe our newsletter by sending email to with subject subscribe.


Some examples (used in comparison with FullSWOF approximate solutions):

Transcritical flow with shock
Mac Donald's type solution with a smooth transition and a shock
Dam break on a dry domain without friction
Thacker's planar surface in a paraboloid
Mac Donald pseudo-2D supercritical solution
MacDonald pseudo-2d subcritical solution

For more details we refer to the documentation of the code.

You can also read the following articles:

SWASHES: a compilation of Shallow Water Analytic Solutions for Hydraulic and Environmental Studies,
  O. Delestre, C. Lucas, P.-A. Ksinant, F. Darboux, C. Laguerre, T. N. T. Vo, F. James, S. Cordier,
  International Journal for Numerical Methods in Fluids, 72(3): 269-300, 2013, doi:10.1002/fld.3741
  Errata: International Journal for Numerical Methods in Fluids, 74(3): 229-230, 2014, doi:10.1002/fld.3865
  - in equation (4), read A(W) = F'(W) = (0   1 \\ -u2+gh   2u),
  - in paragraph 4.1.1, the value of c_m is solution of - 8gh_r c_m2 (gh_l - c_m)2+(c_m2- gh_r)2(c_m2+gh_r)=0.,
  - in paragraphs 4.1.1, 4.1.2 and 4.1.3, in the expressions of h, u, alpha_1, alpha_2, x must be replaced by x-x0.

SWASHES: A library for benchmarking in hydraulics,
  O. Delestre, C. Lucas, P.-A. Ksinant, F. Darboux, C. Laguerre, F. James, S. Cordier,
  Advances in Hydroinformatics - SIMHYDRO 2012 - New Frontiers of Simulation, P. Gourbesville, J. Cunge, and G. Caignaert (Ed.), 233-243, 2014, doi:10.1007/978-981-4451-42-0_20

An analytical solution of the shallow water system coupled to the Exner equation,
  C. Berthon, S. Cordier, O. Delestre, M. H. Le,
  C. R. Acad. Sci. Paris, Ser. I 350(3-4):183-186, 2012, doi:10.1016/j.crma.2012.01.007

Finally, SWASHES has been cited in:

A non-hydrostatic model for water waves in nearshore region,
 Fang K., Sun J., Liu Z., Yin J.,
 Advances in Water Science, 26(1): 114-122, 2015, (in Chinese), doi: 10.14042/j.cnki.32.1309.2015.01.015

An analysis of dam-break flow on slope,
 Wang L., Pan C.,
 Journal of Hydrodynamics, Ser. B. 26(6):902-911, 2015, doi: 10.1016/S1001-6058(14)60099-8

Efficient GPU-Implementation of Adaptive Mesh Refinement for the Shallow-Water Equations,
 Sætra M. L., Brodtkorb A. R., Lie K.-A.,
 Journal of Scientific Computing, 63(1): 23-48, 2015, doi: 10.1007/s10915-014-9883-4

The MOOD method for the non-conservative shallow-water system,
 Clain S., Figueiredo J.,
 Submitted preprint 2014,

Shallow Water Simulations on Graphics Hardware,
 Sætra M. L.,
 PhD Thesis, Faculty of Mathematics and Natural Sciences, University of Oslo, ISSN 1501-7710, 2014,

Upwind Stabilized Finite Element Modelling of Non-hydrostatic Wave Breaking and Run-up,
 Bacigaluppi P., Ricchiuto M., Bonneton P.,
 Research Report #8536, Project-Team BACCHUS, 2014,

An Explicit Staggered Finite Volume Scheme for the Shallow Water Equations. Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects,
 Doyen D., Gunawan P. H.,
 Springer Proceedings in Mathematics & Statistics, 77: 227-235, 2014, doi: 10.1007/978-3-319-05684-5_21

A Simple Finite Volume Model for Dam Break Problems in Multiply Connected Open Channel Networks with General Cross-Sections,
 Yoshioka H., Unami K., Fujihara M.,
 Theoretical and Applied Mechanics Japan, 62: 131-140, 2014, doi: 10.11345/nctam.62.131

A finite element/volume method model of the depth-averaged horizontally 2D shallow water equations,
  Yoshioka H., Unami K., Fujihara M.,
  International Journal For Numerical Methods in Fluids, 75(1): 23-41, 2014, doi: 10.1002/fld.3882

A lattice Boltzmann-finite element model for two-dimensional fluid-structure interaction problems involving shallow waters,
 De Rosis A.,
 Advances in Water Resources, 65: 18-24, 2014, doi: 10.1016/j.advwatres.2014.01.003

Gerris tests,
 Popinet J.,

FullSWOF_Paral: Comparison of two parallelizations strategies (MPI and SkelGIS) on a software designed for hydrology applications,
 Cordier S., Coullon H., Delestre O., Laguerre C., Le M. H., Pierre D., Sadaka G,
 ESAIM Proceedings, 43: 59-79, 2013, doi:10.1051/proc/201343004

DassFow-Shallow, variational data assimilation for shallow-water models: Numerical schemes, user and developer Guides,
 Couderc F., Madec R., Monnier J., Vila J.-P.
 Research Report, University of Toulouse, CNRS, IMT, INSA, ANR, 2013

An adaptive moving finite volume scheme for modeling flood inundation over dry and complex topography,
 Zhou F., Chen G.X., Huang Y.F., Yang J.Z., Feng H.,
 Water Resources Research, 49(4): 1914-1928, 2013, doi: 10.1002/wrcr.20179

Efficient well-balanced hydrostatic upwind schemes for shallow-water equations,
 Berthon C., Foucher F.,
 Journal of Computational Physics, 231(15): 4993-5015, 2012, doi: 10.1016/

Solving Shallow Water flows in 2D with FreeFem++ on structured mesh,
 Sadaka G.,
 Research report, LAMFA, 2012,

A faster numerical scheme for a coupled system modeling soil erosion and sediment transport,
 Le M.-H., Cordier S., Lucas C., Cerdan O.,
 Water Resources Research, 51(2): 987-1005, 2015, doi: 10.1002/2014WR015690

Stabilized spectral element approximation of the Saint Venant system using the entropy viscosity technique,
 Pasquetti R., Guermond J.L., Popov B.
 International Conference on Spectral and High Order Method (ICOSAHOM 2014), Salt Lake City, June 23-27, 8 p., 2014,

Consistent Weighted Average Flux of Well-balanced TVD-RK discontinuous Galerkin Method for Shallow Water Flows,
 Pongsanguansin T., Maleewong M., Mekchay K.
 Modelling and Simulation in Engineering. In Press. 23 p., 2015,

A discontinuous Galerkin method for modeling flow in networks of channels,
 Neupane P., Dawson C.
 Advances in Water Resources, 79: 61-79, 2015, doi 10.1016/j.advwatres.2015.02.012

Second Order Discontinuous Galerkin scheme for compound natural channels with movable bed. Applications for the computation of rating curves,
 Minatti L., De Cicco P. N., Solari L.
 Advances in Water Resources, In Press, 2015, doi 10.1016/j.advwatres.2015.06.007

Solution of two-dimensional Shallow Water Equations by a localized Radial Basis Function collocation method,
 Bustamante C. A. , Power H., Nieto C., Florez W. F.
 1st Pan-American Congress on Computational Mechanics. International Association for Computational Mechanics. Buenos Aires, April 27-29, 2015,

A highly efficient shallow water model based on a selective lumping algorithm,
 Yoshioka H., Unami K., Fujihara M.
 Annual meeting of the Japanese Society of Irrigation, Drainage and Reclamation Engineering., 4-15: 398-399, 2013, (in Japanese),

Friction slope formulae for the two-dimensional shallow water model,
 Yoshioka H., Unami K., Fujihara M.
 Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 70(4): I_55-I_60, 2014, (in Japanese), doi 10.2208/jscejhe.70.I_55

ANUGA Software: Open Source Hydrodynamic / Hydraulic Modelling Project,
 Australian National University and Geoscience Australia

Impact de la résolution et de la précision de la topographie sur la modélisation de la dynamique d'invasion d'une crue en plaine inondable,
 Nguyen T. D.
 PhD thesis. Univ. Toulouse, France, 2012, (in French)

Benchmarks of the Basilisk software,
 Kirstetter G.