Chapter 1

Examples

1.1 GC1 is a garbage-collector

We prove by induction on a proof of $A \rightarrow_{GC1} B$ that $A \rightarrow_{GC1} B$ implies $(A, B) \in GC$.

Rule 1 We have $A = \circ(x).P$ and $B = \emptyset$. Hence, we have $A[\emptyset]$. By definition, $(A, \emptyset) \in GC$.

Rule 2 See rule 1.

Rule 3 Let us consider R, the smallest relation such that, for each P such that $P \leftrightarrow a$, if $(\nu a : N)(P[a(x)Q] \rightarrow^* R$ and $R \equiv (\nu a_1 : N_1, \ldots, a : N, a_n : N_n)(P'[a(x)Q]$ then $(R, (\nu a_1 : N_1, \ldots, a : N, a_n : N_n)P') \in \mathcal{R}$.

Let us suppose that R is a barbed simulation. Note first that if $(\nu a : N)(P[a(x)Q] \rightarrow^* R$ and $R \equiv (\nu a_1 : N_1, \ldots, a : N, a_n : N_n)(P'[a(x)Q]$, we have $P' \leftrightarrow a$.

Let us consider C, D such that CD. By definition of R, for some P', we have $C \equiv C'$ where $C' = (\nu a_1 : N_1, \ldots, a : N, a_n : N_n)(P'[a(x)Q]$ and D must be $(\nu a_1 : N_1, \ldots, a : N, a_n : N_n)P'$. Let us now suppose that $C \downarrow \zeta$. As bars are defined up-to structural congruence, we also have $C' \downarrow \zeta$. Then $\zeta \notin \{a_1, \ldots, a_n\}$ as these names are hidden by ν and we have either $P' \downarrow \zeta$ or $a(x) \downarrow \zeta$. As $a(x) \downarrow \zeta$ implies $\zeta = a$, which is absurd, we deduce that $P' \downarrow \zeta$. Since $\zeta \notin \{a_1, \ldots, a_n\}$, we also have $D \downarrow \zeta$.

Let us now consider E such that $C \rightarrow E$. As $P' \leftrightarrow a$ the transition from C to E cannot imply any communication on name a. Hence, we have $E \equiv (\nu b_1 : N_1, \ldots, a : N, b_m : N_m)(P''[a(x)Q]$ with $E'' \leftrightarrow a$. Hence, by definition, $(E, (\nu b_1 : N_1, \ldots, a : N, b_m : N_m)P'') \in \mathcal{R}$. From the same transition, we also have $D \leftrightarrow (\nu \ldots, a : N, b_m : N_m)P''$.

Hence R is a barbed simulation. Consequently, for $a, b, x P$ and Q such that rule (3), we have $((\nu a : N)(P[a(x)Q], (\nu a : N)P) \in \mathcal{R}$, hence $(\nu a : N)(P[a(x)Q] \ll (\nu a : N)P$. By definition of GC, we deduce that $((\nu a : N)(P[a(x)Q], (\nu a : N)P)$ is in GC. Which proves that only garbage-collectable terms are actually garbage-collected.

Rule 4 See Rule 3.

Rule 5 Let us suppose that $(\nu a : T)(P[Q] \rightarrow_{GC1} (\nu a : T)P$. By induction hypothesis, we have $((\nu a : T)(P[Q], (\nu a : T)P) \in GC$. Hence, by definition, we also have $((\nu a : T)(P[Q], (\nu a : T)P) \in GC$. Which proves the case.

We conclude by induction.
1.2 Typing the bounded memory manager

Let us write

\[
\begin{align*}
N_t &= [K_t, z_t], e_t
\end{align*}
\]

\[
\begin{align*}
N_c &= K_c, e_c, e_c
\end{align*}
\]

\[
\begin{align*}
N_r &= [N_r, z_r], e_r
\end{align*}
\]

\[
\begin{align*}
\Gamma(alloc) &= [N_r, z_a], e_a
\end{align*}
\]

Typing \(\Box\)

\[
\Gamma, l : N_t, r : N_r, c : N_c; \emptyset \vdash \Box : u_1 \quad \text{By T-Nil}
\]

\[
\Rightarrow \Gamma, l : N_t, r : N_r, c : N_c; \emptyset \vdash \Box : u_1 - z_t \quad \text{By T-Write}
\]

where \(u_1 - z_t \geq 0\)

Typing \(\Box\)\(\bowtie\)

\[
\Gamma, l : N_t, r : N_r, c : N_c; \emptyset \vdash \Box : \tau(c) : u_1 - z_t - e_t \quad \text{By T-Finalize2}
\]

where \(u_1 - z_t - e_t \geq 0\)

Typing \(\tau(c)\)

\[
\Gamma, l : N_t, r : N_r, c : N_c; \emptyset \vdash \tau(c) : u_2 - z_r \quad \text{By T-Write}
\]

where \(u_2 - z_r \geq 0\)

Typing \(\Box\)\(\bowtie\)\(\tau(c)\)

\[
\Gamma, l : N_t, r : N_r, c : N_c; c \vdash \Box \vdash \Box : u_1 - z_t - e_t \quad \text{See above}
\]

\[
\Gamma, l : N_t, r : N_r, c : N_c; \emptyset \vdash \tau(c) : u_2 - z_r \quad \text{See above}
\]

\[
\Rightarrow \Gamma, l : N_t, r : N_r, c : N_c; c \vdash \Box \vdash \Box : u_1 + u_2 - z_t - e_t - z_r \quad \text{By T-PAR}
\]

Typing \((\nu c : N_c)\)\(\ldots\)

\[
\Gamma, l : N_t, r : N_r, c : N_c; c \vdash (\nu c : N_c)((\Box)\bowtie \tau(c)) : u_1 + u_2 - z_t - z_r \quad \text{See above}
\]

\[
\Rightarrow \Gamma, l : N_t, r : N_r; \emptyset \vdash (\nu c : N_c)((\Box)\bowtie \tau(c)) : u_1 + u_2 - z_t - z_r \quad \text{By T-New}
\]

Typing \(l()\)\(\nu c : N_c)\)\(\ldots\)

\[
\Gamma, l : N_t, r : N_r; \emptyset \vdash (\nu c : N_c)((\Box)\bowtie \tau(c)) : u_1 + u_2 - z_t - z_r \quad \text{See above}
\]

\[
\Rightarrow \Gamma, l : N_t, r : N_r; \emptyset \vdash l()\nu c : N_c)\ldots : u_1 + u_2 - z_t - z_r \quad \text{By T-Read}
\]

Typing alloc\(r()\)\(\nu c : N_c)\)\(\ldots\)

\[
\Rightarrow \Gamma, l : N_t; \emptyset \vdash alloc(r())\nu c : N_c)\ldots : u_1 + u_2 - z_r + z_a \quad \text{By T-Read}
\]

Typing !alloc\(r()\)\(\nu c : N_c)\)\(\ldots\)

\[
\begin{align*}
\text{provided} & \quad u_1 + u_2 - z_r + z_a = 0
\end{align*}
\]

\[
\Rightarrow \Gamma, l : N_t; \Lambda \vdash !alloc(r())\nu c : N_c)\ldots : 1 \quad \text{By T-Repl}
\]

Typing \(\nu l : N_l)\)\(\ldots\)\(\Box)\ldots\)

\[
\Gamma, l : N_t; \Lambda \vdash !alloc(r())\nu c : N_c)\ldots : 0
\]

\[
\Gamma, l : N_l; \Lambda \vdash \Box : u_3 - z_l
\]

\[
\Rightarrow \Gamma; \Lambda \vdash (\nu l : N_l)\ldots : e_1 + n \cdot (u_3 - z_l) \quad \text{By T-New}
\]

First typing The first typing specifies that

\[
\begin{align*}
N_t &= [\nu l, -1], 1
\end{align*}
\]

\[
\begin{align*}
N_c &= -1
\end{align*}
\]

\[
\begin{align*}
\Gamma(alloc) &= [[N_c, 0], 0, 0], -
\end{align*}
\]
Hence $z_l = -1$, $e_l = 1$, $e_c = 1$, $z_a = 0$, $z_r = 0$. We then have $\Gamma; \Lambda \vdash (\nu l : N_l)! \cdots : 1 + n \cdot (u_1 + 1)$ with the following conditions:

\[
\begin{aligned}
&u_1 + 1 \geq 0 \\
u_1 \geq 0 \\
u_2 - z_r \geq 0 \\
u_1 + \nu_2 - z_r = 0 \\
u_3 - z_l \geq 0
\end{aligned}
\]

With $u_1 = u_2 = u_3 = 0$, we obtain $\Gamma; \Lambda \vdash (\nu l : N_l)! \cdots : n + 1$.

Second typing The second typing specifies that

\[
\begin{aligned}
N_l &= [+0], 1 \\
N_c &= [0], 1 \\
\Gamma(\text{alloc}) &= [[N_c, 0], 0, -1], .
\end{aligned}
\]

Hence $z_l = 0$, $e_l = 1$, $e_c = 1$, $z_a = -1$, $z_r = 0$. We then have $\Gamma; \Lambda \vdash (\nu l : N_l)! \cdots : 1 + n \cdot u_1$ with the following conditions:

\[
\begin{aligned}
&u_1 \geq 0 \\
u_1 - 1 \geq 0 \\
u_2 \geq 0 \\
u_1 + \nu_2 - 1 = 0 \\
u_3 - z_l \geq 0
\end{aligned}
\]

With $u_1 = 1$ and $u_2 = u_3 = 0$, we obtain $\Gamma; \Lambda \vdash (\nu l : N_l)! \cdots : 1$.

3
Chapter 2

Properties

2.1 Subject Reduction

\[
\begin{align*}
\text{T-Nil} & : \quad \Gamma; \Lambda \vdash 0 : t \\
\text{T-New} & : \quad \gamma : (K, e); \Lambda \vdash P : t_P \quad x \notin \Lambda \\
\text{T-Par} & : \quad \Gamma; \Lambda \vdash P : t_P \quad \Gamma; \Lambda \vdash Q : t_Q \quad \Gamma; \Lambda \vdash P \cup Q : t_P + t_Q \\
\text{T-Repl} & : \quad \Gamma; \emptyset \vdash P : 0 \\
\text{T-Sum} & : \quad \Gamma; \Lambda \vdash P : t_P \\
\text{T-Read} & : \quad \Gamma; \Lambda \vdash c(y) : Q : t_Q \\
\text{T-Write} & : \quad \Gamma; \Lambda \vdash c(y) : Q : t_Q + z \\
\end{align*}
\]

2.1.1 Lemmas

Lemma 1 (Substitution) If we have \(\Gamma, x : T; \Lambda \vdash P : U \) and \(\Gamma; \Lambda \vdash a : T \), then, if \(x \notin \Lambda \), then \(\Gamma; \Lambda \vdash \text{Subs}(P, x, a) : U \).

Proof by induction on a structure of a proof of \(\Gamma, x : T; \Lambda \vdash P : U \).

T-Nil Base case, trivial.

T-Par By inheritance.

T-New \((\nu y)P\) if \(x = y \), base case, trivial.

T-New \((\nu y)P\) if \(x \neq y \), by induction hypothesis.

T-Finalize1 \((\forall y)P\) if \(x \neq y \), directly by induction hypothesis.

T-Finalize1 \((\forall y)P\) if \(x = y \), we use the induction hypothesis, the type of \(y \) is unchanged. Since \(x \notin \Lambda \), no difficulty.

T-Finalize2 \((\forall y)P\) if \(x \neq y \), directly by induction hypothesis.

T-Finalize2 \((\forall y)P\) if \(x = y \), we use the induction hypothesis, the type of \(y \) is unchanged, no difficulty.

T-Read \(c(y)P \) if \(x \neq y \) and \(x \neq c \), directly by induction hypothesis.
T-Read \(c(y)P\) : if \(x = c\), we use the induction hypothesis, the type of \(c\) is unchanged, no difficulty.

T-Read \(c(y)P\) : \(x = y\) implies a double binding, which is in contradiction with the hypothesis.

T-Write By induction hypothesis, no difficulty.

T-Repl Directly by induction hypothesis.

T-Sum Directly by induction hypothesis.

Lemma 2 (Resource expansion) If \(\Gamma; \Lambda \vdash P : \text{Proc}(t)\) and \(u \geq t\) then \(\Gamma; \Lambda \vdash P : \text{Proc}(u)\).

By induction on the structure of a proof of \(\Gamma; \Lambda \vdash P : \text{Proc}(u)\).

T-Nil Base case, trivial.

T-ReadW Base case, trivial.

T-WriteW Base case, trivial.

T-Repl Base case, trivial.

T-Par Directly, by induction hypothesis.

T-New By induction hypothesis, without difficulty.

T-Finalize1 By induction hypothesis, without difficulty.

T-Finalize2 By induction hypothesis, without difficulty.

T-Read By induction hypothesis, without difficulty.

T-Write By induction hypothesis, without difficulty.

T-Sum By induction hypothesis, without difficulty.

Lemma 3 (Weakening) If \(\Gamma; \Lambda \vdash P : U\) and \(n \notin \text{fn}(P)\), then \(\Gamma, n : A; \Lambda \vdash P : U\).

By induction on the structure of a proof of \(\Gamma, n : A; \Lambda \vdash P : U\). Since only the names which appear in a process are used to type it, this is trivial.

Lemma 4 (Strengthening) If \(\Gamma, n : A; \Lambda \vdash P : U\) and \(n \notin \text{fn}(P)\), then \(\Gamma; \Lambda \vdash P : U\).

By induction on the structure of a proof of \(\Gamma; \Lambda \vdash P : U\). Since only the names which appear in a process are used to type it, this is trivial.

Lemma 5 (Strategies weakening) If \(\Gamma; \Lambda \vdash P : U\) and \(n \notin \text{bv}(P)\) then \(\Gamma; \Lambda, n \vdash P\).

By induction on the structure of a proof of \(\Gamma; \Lambda \vdash P : U\).

T-Nil Base case: since \(\text{bv}(P) = \emptyset\), there is nothing to prove.

T-New when \(P = (\nu x)Q\) with \(x = n\). Base case: since \(n \in \text{bv}(P)\), there is nothing to prove.

T-Finalize1 when \(P = (\lambda x)Q\) with \(x = n\). Base case: since \(n \in \Lambda\), there is nothing to prove.

T-Read when \(P = c(x)Q\) with \(x = n\). Base case: since \(n \in \text{bv}(P)\), there is nothing to prove.

T-Repl Base case, as \(\Lambda\) is not constrained.

T-Par Since \(\text{bv}(Q|R) = \text{bv}(Q) \cup \text{bv}(R)\), this is a direct consequence of the induction hypothesis.

T-New when \(P = (\nu x)Q\) with \(x \neq n\), this is a direct consequence of the induction hypothesis.

T-Finalize1 when \(P = (\lambda x)Q\) with \(x \neq n\), this is a direct consequence of the induction hypothesis.
T-Finalize2 when \(P = (\exists x)Q \) with \(x \neq n \), this is a direct consequence of the induction hypothesis.

T-Finalize2 when \(P = (\exists x)Q \) with \(x = n \). We then have \(\Gamma; \Lambda \vdash Q : t_Q \) and \(x \notin \Lambda \). Let us write \(\Gamma(x) = \omega, e \). By resource expansion, we also have \(\Gamma; \Lambda \vdash Q : t_Q + e \). Since \(t_Q + e \geq e \) and \(x \notin \Lambda \), we may use T-Finalize1 and conclude \(\Gamma; \Lambda, x \vdash (\exists x)Q : U \).

T-Read when \(P = c(x)Q \) with \(x \neq n \), this is a direct consequence of the induction hypothesis.

T-Write this is a direct consequence of the induction hypothesis.

T-WriteW this is a direct consequence of the induction hypothesis.

T-Sum this is a direct consequence of the induction hypothesis.

Lemma 6 (Strategies strengthening) If \(\Gamma; \Lambda, n \vdash P : U \) and \(n \notin \text{fv}(P) \) then \(\Gamma; \Lambda \vdash P : U \).

By induction on a proof of \(\Gamma; \Lambda \vdash P \).

T-Nil Base case, trivial.

T-Par Let us write \(P = Q|R \). Since \(\text{fv}(Q|R) = \text{fv}(Q) \cup \text{fv}(R) \), we have \(n \notin \text{fv}(P) \) and \(n \notin \text{fv}(Q) \). Thus, it is sufficient to apply the induction hypothesis to \(Q \) and \(R \).

T-New When \(P = (\nu x : T)Q \) with \(x \neq n \). Since \(\text{fv}((\nu x : T)Q) = \text{fv}(Q) \setminus \{x\} \), we have \(n \notin \text{fv}(Q) \). Thus, it is sufficient to apply the induction hypothesis to \(Q \).

T-New When \(P = (\nu x : T)Q \) with \(x = n \). Using T-New, we know that \(x \notin \text{fv}(P) \). Thus there is nothing to prove.

T-Finalize1 When \(P = (\exists x)Q \) with \(x \neq n \). Since \(n \notin \text{fv}(P) \), we also have \(n \notin \text{fv}(Q) \). Thus, it is sufficient to apply the induction hypothesis to \(Q \).

T-Finalize1 When \(P = (\exists x)Q \) with \(x = n \). We then have \(n \in \Lambda \), which proves the case.

T-Finalize2 When \(P = (\exists x)Q \) with \(x \neq n \). We then have \(n \notin \text{fv}(Q) \). Thus, it is sufficient to apply the induction hypothesis to \(Q \).

T-Finalize2 When \(P = (\exists x)Q \) with \(x = n \). We then have \(n \in \text{fv}(P) \). Thus, there is nothing to prove.

T-Read When \(P = c(x)Q \) with \(x \neq n \). We then have \(n \notin \text{fv}(Q) \). Thus, it is sufficient to apply the induction hypothesis to \(Q \).

T-Read When \(P = c(x)Q \) with \(x = n \). This cannot happen as it would imply \(n \notin \Lambda, n \).

T-Write When \(P = \overline{c}(x)Q \). As \(\text{fv}(P) = \text{fv}(Q) \cup \{c, x\} \), we also have \(n \notin \text{fv}(Q) \). Thus, it is sufficient to apply the induction hypothesis to \(Q \).

T-Repl Base case. Trivial.

T-Sum As T-PAR

2.1.2 Type of congruent terms

Lemma 7 (Type of congruent terms) If \(\Gamma; \Lambda \vdash A : T \) and \(A \equiv B \) then \(\Gamma; \Lambda \vdash B : T \).
S-EQUIV-REFL \[P \equiv P \]
S-EQUIV-SYM \[Q \equiv P \] \[P \equiv Q \]
S-EQUIV-TRANS \[P \equiv Q \] \[Q \equiv R \] \[P \equiv R \]
S-PAR-ASSOC \[P|(Q|R) \equiv (P|Q)|R \]
S-PAR-NIL \[P\{0\} \equiv P \]
S-SUM-COMM \[P + Q \equiv Q + P \]
S-SUM-NIL \[P + 0 \equiv P \]
S-PAR-ASSOC \[P \mid (Q \mid R) \equiv (P \mid Q) \mid R \]
S-PAR-NIL \[P \mid \emptyset \equiv P \]
S-SUM-COMM \[P \mid Q \equiv Q \mid P \]
S-SUM-NIL \[P \mid \emptyset \equiv P \]
S-STRUCT-PAR \[P \equiv Q \]
S-NEW-REN \[(\nu x : N)A \equiv (\nu y : N).\text{Subst}(P, x, y) \]
S-RCV-REN \[c(x).P \equiv c(y).\text{Subst}(P, x, y) \]
S-NEW-COMM \[(\nu x : N)(\nu y : U)A \equiv (\nu y : U)(\nu x : N)A \]
S-NEW-PAR \[(\nu x : N)(P|Q) \equiv P(\nu x : N)Q \]
S-FIN-PAR \[(\forall x : T)\{\forall x : T\} \equiv (\forall x : T)(P|Q) \]

By induction hypothesis on the structure of a proof of \(A \equiv B \) or \(B \equiv A \).

S-EQUIV-REFL

Base case. This is trivial.

S-EQUIV-TRANS

By induction hypothesis. This is trivial.

S-PAR-ASSOC

Let us write \(A = P|(Q|R) \) and \(B = (P|Q)|R \). We will then prove that if \(\Gamma; \Lambda \vdash A : T \) then \(\Gamma; \Lambda \vdash B : T \) and that if \(\Gamma; \Lambda \vdash B : T \) then \(\Gamma; \Lambda \vdash A : T \).

\[
\begin{align*}
\Gamma; \Lambda_P \vdash P & : t_P \\
\Gamma; \Lambda_Q \vdash Q & : t_Q \\
\Gamma; \Lambda_R \vdash R & : t_R
\end{align*}
\]

Typing \(A \)

Typing \(Q|R \)

\[
\begin{align*}
\Gamma; \Lambda_Q \vdash Q & : t_Q & \text{By hypothesis}
\end{align*}
\]

\[
\begin{align*}
\Gamma; \Lambda_R \vdash R & : t_R & \text{By hypothesis}
\end{align*}
\]

\[
\Rightarrow \Gamma; \Lambda_Q \cup \Lambda_R \vdash Q|R & : t_Q + t_R & \text{By T-Par if } \Lambda_Q \cap \Lambda_R = \emptyset
\]

Typing \(A \)

\[
\begin{align*}
\Gamma; \Lambda_P \vdash P & : t_P & \text{By hypothesis}
\end{align*}
\]

\[
\begin{align*}
\Gamma; \Lambda_Q \cup \Lambda_R \vdash Q|R & : t_Q + t_R & \text{See above if } \Lambda_P \cap (\Lambda_Q \cup \Lambda_R) = \emptyset
\end{align*}
\]

\[
\Rightarrow \Gamma; \Lambda_P \cup \Lambda_Q \cup \Lambda_R \vdash P|(Q|R) & : t_P + t_Q + t_R & \text{By T-Par}
\]

7
Typing B

$$
\begin{array}{ll}
\text{Typing } P|Q \\
\Gamma; \Lambda_P \vdash P : \quad t_P & \text{By hypothesis} \\
\Gamma; \Lambda_Q \vdash Q : \quad t_Q & \text{By hypothesis} \\
\Rightarrow \Gamma; \Lambda_P \cup \Lambda_Q \vdash P|Q : \quad t_P + t_Q & \text{By T-Par}
\end{array}
$$

Typing B

$$
\begin{array}{ll}
\Gamma; \Lambda_R \vdash R : \quad t_R & \text{By hypothesis} \\
\Gamma; \Lambda_P \cup \Lambda_Q \vdash P|Q : \quad t_P + t_Q & \text{See above} \\
\text{if } \quad \Lambda_R \cap (\Lambda_P \cup \Lambda_Q) = \emptyset \\
\Rightarrow \Gamma; \Lambda_R \cup \Lambda_P \cup \Lambda_Q \vdash (P|Q)|R : \quad t_P + t_Q + t_R & \text{By T-Par}
\end{array}
$$

We then have if $\Gamma; \Lambda \vdash A : T$ then $\Gamma; \Lambda \vdash B : T$. The other way is identical.

S-PAR-COMM

This is purely symmetrical. Usual proof.

S-PAR-NIL

Let us write $A = P|0$ and $B = P$.

Whenever P may be typed in $\Gamma; \Lambda$, we will write

$$
\Gamma; \Lambda_P \vdash P : \quad t_P
$$

Let us suppose that A may be typed with type t_A in $\Gamma; \Lambda$. By T-Nil and T-Par, necessarily, we have $\Lambda = \Lambda_P \cup \Lambda_0$ for some Λ_0 and P typeable in $\Gamma; \Lambda$. We then have the following typing:

$$
\Rightarrow \Gamma; \Lambda_0 \vdash 0 : \quad t_0 & \text{By T-Nil}
$$

$$
\Rightarrow \Gamma; \Lambda_0 \vdash 0 : \quad t_0 & \text{See above}
$$

$$
\text{if } \quad \Lambda_0 \cup \Lambda_0 = \emptyset \\
\Rightarrow \Gamma; \Lambda_P \cup \Lambda_0 \vdash P|0 : \quad t_P + t_0 & \text{By T-Par}
$$

Moreover, we have $t_A \geq t_P$. Hence, using the Useless Strategies lemma, we have $\Gamma; \Lambda_P \cup \Lambda_0 \vdash P : t_P$.

By Expansion lemma, as $t_A \geq t_P$, we also have $\Gamma; \Lambda_P \cup \Lambda_0 \vdash P : t_A$.

Conversely, let us now suppose P typeable with type t_P in $\Gamma; \Lambda$. From the same typing, with $\Lambda_0 = \emptyset$ and $t_0 = 0$, we conclude that A is typeable with type t_P.

The case is proved.

S-BANG

Let us write $A = !P$ and $B = !P|P$.

Let us write $\Gamma; \Lambda_P \vdash P : t_P$.

}\"
Typing A

<table>
<thead>
<tr>
<th>Typing $!P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma; \Lambda P \vdash P : t_P$</td>
</tr>
</tbody>
</table>

if $\Lambda_P = 0$

$\Rightarrow \Gamma; \Lambda \vdash !P : t \quad \text{T-Repl}$

Typing B

<table>
<thead>
<tr>
<th>Typing $!P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma; \Lambda P \vdash P : t_P$</td>
</tr>
</tbody>
</table>

if $\Lambda_P = 0$

$\Rightarrow \Gamma; \Lambda \vdash !P : t \quad \text{T-Repl}$

<table>
<thead>
<tr>
<th>Typing B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma; \Lambda \vdash !P : t \quad \text{See above}$</td>
</tr>
<tr>
<td>$\Gamma; \emptyset \vdash P : 0$</td>
</tr>
</tbody>
</table>

$\Rightarrow \vdash !P|P : t \quad \text{T-Par}$

Let us suppose A typeable in $\Gamma; \Lambda$ with type t. From T-Repl, we then have $\Lambda_P = \emptyset$ and $t_P = 0$. From the typing of B, we conclude that B is typeable in $\Gamma; \Lambda$ and may have any type, including t.

Let us now suppose B typeable in $\Gamma; \Lambda$ with type t. Similarly, we have $\Lambda_P = \emptyset$ and $t_P = 0$. From the typing of A, we see that A is typeable in $\Gamma; \Lambda$ and may have any type, including t.

The case is proved.

S-SUM-COMM

Trivial.

S-STRUCT-PAR

Let us write $A = P|R$ and $B = Q|R$ with $P \equiv Q$. As A is typeable and the only possible way of typing A is R-Par, we have $\Gamma; \Lambda_P \vdash P : t_P$ and $\Gamma; \Lambda_R \vdash P : t_R$ with $t_P + t_R = t$. By induction hypothesis, as $P \equiv Q$, we also have $\Gamma; \Lambda_P \vdash Q : t_P$. By R-Par, we conclude $\Gamma; \Lambda_P \cup \Lambda_R \vdash Q|R : t_R + t_P$. The case is proved.

Going from B to A is similar.

S-NEW-COMM

Trivial.

S-NEW-PAR

Let us write $A = (\nu x : T)(P|Q)$ and $B = P|(\nu x : T)Q$ where $T = \omega, e$.

From A to B – typing A Whenever $\Gamma; \Lambda \vdash A : t$, let us write $\Gamma = \Gamma_{PQ}, x : T$, $\Gamma_{PQ}; \Lambda_P \vdash P : t_P$, $\Gamma_{PQ}; \Lambda_Q \vdash Q : t_Q$
Typing $P|Q$

$\Gamma_{PQ}; \Lambda_P \vdash P : t_P$ \hspace{1cm} By hypothesis

$\Gamma_{PQ}; \Lambda_Q \vdash Q : t_Q$ \hspace{1cm} By hypothesis

$\Rightarrow \Gamma; \Lambda_P \cup \Lambda_Q \vdash P|Q : t_P + t_Q$ \hspace{1cm} By T-Par

where $\Lambda_P \cap \Lambda_Q = \emptyset$

Typing A

$\Gamma_{PQ}; \Lambda_P \cup \Lambda_Q \vdash P|Q : t_P + t_Q$ \hspace{1cm} See above

$\Rightarrow \Gamma; (\Lambda_P \cup \Lambda_Q) \setminus \{x\} \vdash A : t_P + t_Q + e$ \hspace{1cm} By T-New

where $x \in \Lambda_P \cup \Lambda_Q$

From A to B – typing B
As $x \in \Lambda_P \cup \Lambda_Q$ and $\Lambda_P \cap \Lambda_Q = \emptyset$, we deduce that either $x \in \Lambda_P \setminus \Lambda_Q$ or $x \in \Lambda_Q \setminus \Lambda_P$.

If we have $x \in \Lambda_P \setminus \Lambda_Q$, since $x \notin fv(P)$, by “Strategies strengthening”, we deduce that $\Gamma_{PQ}; \Lambda_P \setminus \{x\} \vdash P : t_P$. By Strategies weakening, we may also deduce $\Gamma_{PQ}; \Lambda_Q, x \vdash Q : t_Q$. We may then suppose without loss of generality that $x \in \Lambda_Q \setminus \Lambda_P$.

Typing $(\nu x : T)Q$

$\Gamma_{PQ}; \Lambda_Q \vdash Q : t_Q$ \hspace{1cm} By hypothesis

$\Rightarrow \Gamma; \Lambda_Q \setminus \{x\} \vdash (\nu x : T)Q : t_Q + e$ \hspace{1cm} By T-New

Typing P

$\Gamma_{PQ}; \Lambda_P \vdash P : t_P$ \hspace{1cm} By hypothesis

$\Rightarrow \Gamma; \Lambda_P \vdash P : t_P$ \hspace{1cm} Using lemma Weakening

Typing B

$\Gamma; \Lambda_P \vdash P : t_P$ \hspace{1cm} See above

$\Rightarrow \Gamma; (\Lambda_P \cup \Lambda_Q) \setminus \{x\} \vdash P : t_P + t_Q + e$ \hspace{1cm} By T-Par

Hence proving the case.

From B to A – typing B
Whenever $\Gamma; \Lambda \vdash A : t$, let us write $\Gamma; \Lambda_P \vdash P : t_P, \Gamma, x : T; \Lambda_Q \vdash Q : t_Q$.

10
Typing \((\nu x : T)Q\)
\[
\Gamma, x : T; \Lambda_Q \vdash Q : t_Q \quad \text{By hypothesis}
\]
\[
\Rightarrow \Gamma; \Lambda_Q \setminus \{x\} \vdash (\nu x : T)Q : t_Q \quad \text{By T-New}
\]
where \(x \in \Lambda_Q\)

Typing \(B\)
\[
\Gamma; \Lambda_P \vdash P : t_P \quad \text{By hypothesis}
\]
\[
\Gamma; \Lambda_Q \setminus \{x\} \vdash (\nu x : T)Q : t_Q \quad \text{See above}
\]
\[
\Rightarrow \Gamma; \Lambda_P \cup \Lambda_Q \setminus \{x\} \vdash B : t_P + t_Q \quad \text{By T-Par}
\]
where \(\Lambda_P \cap (\Lambda_Q \setminus \{x\}) = \emptyset\)

From \(B\) to \(A - \text{typing} A\) As previously, it is sufficient to prove the case where \(x \notin \Lambda_P\). We will suppose \(\Lambda_P \cap \Lambda_Q = \emptyset\)

Typing \(P\)
\[
\Gamma; \Lambda_P \vdash P : t_P \quad \text{By hypothesis}
\]
\[
\Rightarrow \Gamma; x : T; \Lambda_P \vdash P : t_P \quad \text{Using lemma Weakening}
\]

Typing \(P|Q\)
\[
\Gamma; x : T; \Lambda_P \vdash P : t_P \quad \text{See above}
\]
\[
\Gamma, x : T; \Lambda_Q \vdash Q : t_Q \quad \text{By hypothesis}
\]
\[
\Rightarrow \Gamma; x : T; \Lambda_P \cup \Lambda_Q \vdash P|Q : t_P + t_Q \quad \text{By T-Par}
\]
since \(\Lambda_P \cap \Lambda_Q = \emptyset\)

Typing \((\nu x : T)(P|Q)\)
\[
\Gamma; x : T; \Lambda_P \cup \Lambda_Q \vdash P|Q : t_P + t_Q \quad \text{See above}
\]
since \(x \in \Lambda_P \cup \Lambda_Q\)
\[
\Rightarrow \Gamma; \Lambda_P \cup \Lambda_Q \setminus \{x\} \vdash (\nu x : T)(P|Q) : t_P + t_Q + e \quad \text{By T-New}
\]

The case is proved.

S-Equiv-Refl

Let us suppose that our proof of \(A \equiv B\) ends with \(\text{S-eqv-refl}\). We then have a shorter proof of \(B \equiv A\). By induction hypothesis, since \(\Gamma; \Lambda \vdash A : T\) and \(B \equiv A\), we also have \(\Gamma; \Lambda \vdash B : T\). By invoking \(\text{S-eqv-refl}\), we conclude.

2.1.3 Subject Reduction

Theorem 1 (Subject Reduction) \(\text{Si } \Gamma; \Lambda \vdash A : T \text{ et } A \rightarrow B \text{ alors } \Gamma; \Lambda \vdash B : T\).

By induction on the structure of a proof of \(A \rightarrow B\).

R-Comm

Let us write \(A = \pi(b)P|a(x)Q\) with \(a \neq \circ\) and \(B = P|\mathrm{Subs}(Q,x,b)\).

We will use the following notations:
\[
\begin{align*}
\Gamma; \Lambda_P & \vdash P : t_P \\
\Gamma, x : (C_b, e_b); \Lambda_Q & \vdash Q : t_Q \\
\Gamma(a) & = [C_b, e_b, z_a, e_a] \\
\Gamma(b) & = C_b, e_b
\end{align*}
\]
Typing A

\[
\begin{array}{c|c|c}
\text{Typing } \pi(b)P \\
\hline
\Gamma; \Lambda_P & \vdash P : t_P & \text{By hypothesis} \\
\hline
\Gamma(a) = [C_b, e_b, z_a], e_a & \text{By hypothesis} \\
\Gamma(b) = C_b, e_b & \text{By hypothesis} \\
\Rightarrow \Gamma; \Lambda_P & \vdash \pi(b)P : t_Q - z & \text{By T-Write} \\
& \text{where } t_Q - z \geq 0 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{Typing } a(x)Q \\
\hline
\Gamma, x : C_b & \vdash Q : t_Q & \text{By hypothesis} \\
\hline
\Gamma(a) = [C_b, e_b, z_a], e_a & \text{By hypothesis} \\
\Rightarrow \Gamma; \Lambda_Q & \vdash a(x)Q : t_Q + z & \text{By T-Read} \\
& \text{where } x \notin \Lambda_Q \\
& \quad t_Q + z \geq 0 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{Typing } A \\
\hline
\Gamma; \Lambda_P & \vdash \pi(b)P : t_P + z & \text{See above} \\
\Gamma; \Lambda_Q & \vdash a(x)Q : t_Q - z & \text{See above} \\
\Rightarrow \Gamma; \Lambda_P \cup \Lambda_Q & \vdash A : t_P + t_Q & \text{By T-PAR} \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{Typing } A \\
\hline
\Gamma; \Lambda_P & \vdash \pi(b)P : t_P + z & \text{See above} \\
\Gamma; \Lambda_Q & \vdash a(x)Q : t_Q - z & \text{See above} \\
\Rightarrow \Gamma; \Lambda_P \cup \Lambda_Q & \vdash A : t_P + t_Q & \text{By T-PAR} \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{Typing } B \\
\hline
\Gamma, x : C_b; \Lambda_Q & \vdash Q : t_Q & \text{By hypothesis} \\
\hline
\Gamma(b) = C_b, e_b & \text{By hypothesis} \\
\Rightarrow \Gamma; \Lambda_Q & \vdash \text{Subs}(Q, x, b) : t_Q & \text{Using lemma Substitution} \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{Typing } B \\
\hline
\Gamma; \Lambda_P & \vdash P : t_P & \text{By hypothesis} \\
\hline
\Gamma; \Lambda_P & \vdash \text{Subs}(Q, x, b) : t_Q & \text{See above} \\
\text{since } \Lambda_P \cap \Lambda_Q = \emptyset & \text{See above} \\
\Rightarrow \Gamma; \Lambda_P \cup \Lambda_Q & \vdash B : t_P + t_Q & \text{By T-PAR} \\
\end{array}
\]

The case is proved.

\textbf{R-COMM-SUM}

The case is almost identical.

\textbf{R-PAR}

Let us write \(A = P|R \) and \(B = Q|R \) where \(P \rightarrow Q \). Let us also write

12
\[\Gamma; \Lambda_P \vdash P : t_P \]
\[\Gamma; \Lambda_R \vdash R : t_R \]

Typing A

<table>
<thead>
<tr>
<th>Typing (P</th>
<th>R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma; \Lambda_P)</td>
<td>(\vdash P : t_P) By hypothesis</td>
</tr>
<tr>
<td>(\Gamma; \Lambda_R)</td>
<td>(\vdash R : t_R) By hypothesis</td>
</tr>
<tr>
<td>(\Rightarrow \Gamma; \Lambda_P \cup \Lambda_R)</td>
<td>(\vdash P</td>
</tr>
</tbody>
</table>

where \(\Lambda_P \cap \Lambda_R = \emptyset\)

Typing B

| Typing \(Q\) |
|----------------|---|
| \(\Gamma; \Lambda_P\) | \(\vdash P : t_P\) By hypothesis |

since \(P \rightarrow Q\)

<table>
<thead>
<tr>
<th>Typing (Q</th>
<th>R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma; \Lambda_Q)</td>
<td>(\vdash Q : t_Q) See above</td>
</tr>
<tr>
<td>(\Gamma; \Lambda_R)</td>
<td>(\vdash R : t_R) By hypothesis</td>
</tr>
</tbody>
</table>

since \(\Lambda_P \cap \Lambda_R = \emptyset\)

| \(\Rightarrow \Gamma; \Lambda_P \cup \Lambda_R\) | \(\vdash Q|R : t_P + t_R\) By T-PAR |

The case is proved.

R-NEW

Directly by induction hypothesis.

R-EQUIV

Directly from the lemma.

R-AUTOCLEAN

Strengthening + Resource expansion + Useless strategies.

R-FINALIZE

Let us write \(A = (\nu x : T)(\forall x)P\) and \(B = \text{Subs}(P, x, \diamond)\).

\[\Gamma, x : T; \Lambda_P \vdash P : t_P \]
Typing A

\[
\begin{array}{c|c|c}
\hline
\text{Typing } (\forall x)P \\
\hline
\Gamma, x : T; \Lambda_P \vdash P : t_P & \text{By hypothesis} \\
\hline
(\Gamma, x : T)(x) = T & \text{By hypothesis} \\
\hline
\Gamma, x : T; \Lambda_P, x \vdash (\forall x)P : t_P - e & \text{By T-Finalize1} \\
\hline
\end{array}
\]

where \(t_P \geq e \)
\[x \notin \Lambda_P \]

Typing A

\[
\begin{array}{c|c|c}
\hline
\text{Typing } (\forall x)P \\
\hline
\Gamma, x : T; \Lambda_P, x \vdash (\forall x)P : t_P - e & \text{See above} \\
\hline
\Gamma; \Lambda_P \vdash (\forall x : T)(\forall x)P : t_P & \text{By T-New} \\
\hline
\end{array}
\]

where \[x \notin \Lambda_P \]

Typing B

\[
\begin{array}{c|c|c}
\hline
\text{Typing } B \\
\hline
\Gamma, x : T; \Lambda_P \vdash P : t_P & \text{By hypothesis} \\
\hline
\Gamma(\diamond) = T & \text{By hypothesis} \\
\hline
\Gamma(\diamond) = T & \text{By hypothesis} \\
\hline
\Rightarrow \Gamma; \Lambda_P \vdash Subs(P, x, \diamond) : t_P & \text{Using lemma Substitution} \\
\hline
\end{array}
\]

The case is proved.

R-FIN-PAR

Let us write $A = (\forall x)P|(\forall x)Q$ and $B = (\forall x)(P|Q)$

\[
\begin{align*}
\Gamma; \Lambda_P & \vdash P : t_P \\
\Gamma; \Lambda_Q & \vdash Q : t_Q \\
\Gamma(x) : K_x, c_x
\end{align*}
\]
Typing A – first strategy

<table>
<thead>
<tr>
<th>Typing ($\forall x)P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma; \Lambda_P \vdash$ $P : t_P$</td>
</tr>
<tr>
<td>$\Gamma(x) : K_x, e_x$</td>
</tr>
<tr>
<td>$\Rightarrow \Gamma; \Lambda_P, x \vdash (\forall x)P : t_P - e$</td>
</tr>
<tr>
<td>where $t_P \geq e$ $x \notin \Lambda_P$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typing ($\forall x)Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma; \Lambda_Q \vdash$ $Q : t_Q$</td>
</tr>
<tr>
<td>$\Gamma(x) : K_x, e_x$</td>
</tr>
<tr>
<td>$\Rightarrow \Gamma; \Lambda_Q \vdash (\forall x)Q : t_Q$</td>
</tr>
<tr>
<td>where $x \notin \Lambda_Q$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typing A</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma; \Lambda_P, x \vdash (\forall x)P : t_P - e$</td>
</tr>
<tr>
<td>$\Gamma; \Lambda_Q \vdash (\forall x)Q : t_Q$</td>
</tr>
<tr>
<td>$\Rightarrow \Gamma; \Lambda_P \cup \Lambda_Q, x \vdash (\forall x)P(\forall x)Q : t_P + t_Q - e$</td>
</tr>
<tr>
<td>where $(\Lambda_P, x) \cap \Lambda_Q = \emptyset$</td>
</tr>
</tbody>
</table>

Typing A – second strategy

<table>
<thead>
<tr>
<th>Typing ($\forall x)Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma; \Lambda_Q \vdash$ $Q : t_Q$</td>
</tr>
<tr>
<td>$\Gamma(x) : K_x, e_x$</td>
</tr>
<tr>
<td>$\Rightarrow \Gamma; \Lambda_Q, x \vdash (\forall x)Q : t_Q - e$</td>
</tr>
<tr>
<td>where $t_Q \geq e$ $x \notin \Lambda_Q$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typing ($\forall x)P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma; \Lambda_P \vdash$ $P : t_P$</td>
</tr>
<tr>
<td>$\Gamma(x) : K_x, e_x$</td>
</tr>
<tr>
<td>$\Rightarrow \Gamma; \Lambda_P \vdash (\forall x)P : t_P$</td>
</tr>
<tr>
<td>where $x \notin \Lambda_P$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typing A</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma; \Lambda_Q, x \vdash (\forall x)Q : t_Q - e$</td>
</tr>
<tr>
<td>$\Gamma; \Lambda_P \vdash (\forall x)P : t_P$</td>
</tr>
<tr>
<td>$\Rightarrow \Gamma; \Lambda_P \cup \Lambda_Q, x \vdash (\forall x)Q(\forall x)Q : t_P + t_Q - e$</td>
</tr>
<tr>
<td>where $(\Lambda_Q, x) \cap \Lambda_P = \emptyset$</td>
</tr>
</tbody>
</table>
Typing A – third strategy

<table>
<thead>
<tr>
<th>Typing ($\forall x)P$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma; \Lambda_P \vdash P : t_P$</td>
<td>By hypothesis</td>
<td></td>
</tr>
<tr>
<td>$\Gamma(x) : K_x, e_x$</td>
<td>By hypothesis</td>
<td></td>
</tr>
<tr>
<td>$\Rightarrow \Gamma; \Lambda_P \vdash (\forall x)P : t_P$</td>
<td>By T-Finalize2</td>
<td></td>
</tr>
<tr>
<td>where $x \notin \Lambda_P$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typing ($\forall x)Q$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma; \Lambda_Q \vdash Q : t_Q$</td>
<td>By hypothesis</td>
<td></td>
</tr>
<tr>
<td>$\Gamma(x) : K_x, e_x$</td>
<td>By hypothesis</td>
<td></td>
</tr>
<tr>
<td>$\Rightarrow \Gamma; \Lambda_Q \vdash (\forall x)Q : t_Q$</td>
<td>By T-Finalize2</td>
<td></td>
</tr>
<tr>
<td>where $x \notin \Lambda_Q$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typing A</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma; \Lambda_P \vdash (\forall x)P : t_P$</td>
<td>See above</td>
<td></td>
</tr>
<tr>
<td>$\Gamma; \Lambda_Q \vdash (\forall x)Q : t_Q$</td>
<td>See above</td>
<td></td>
</tr>
<tr>
<td>$\Rightarrow \Gamma; \Lambda_P \cup \Lambda_Q \vdash (\forall x)P</td>
<td>(\forall x)Q : t_P + t_Q$</td>
<td>By T-Par</td>
</tr>
<tr>
<td>where $\Lambda_P \cap \Lambda_Q = \emptyset$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Typing B to match the two first strategies

| Typing $P|Q$ | | |
|----------------|------------|------------|
| $\Gamma; \Lambda_P \vdash P : t_P$ | By hypothesis |
| $\Gamma; \Lambda_Q \vdash Q : t_Q$ | By hypothesis |
| $\Rightarrow \Gamma; \Lambda_P \cup \Lambda_Q \vdash P|Q : t_P + t_Q$ | By T-Par |
| since $\Lambda_P \cap \Lambda_Q = \emptyset$ |

<table>
<thead>
<tr>
<th>Typing B</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma(x) : K_x, e_x$</td>
<td>By hypothesis</td>
<td></td>
</tr>
<tr>
<td>since $t_P + t_Q \geq e$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x \notin \Lambda_P \cup \Lambda_Q$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Rightarrow \Gamma; (\Lambda_P \cup \Lambda_Q), x \vdash (\forall x)(P</td>
<td>Q) : t_P + t_Q - e$</td>
<td>By T-Finalize1</td>
</tr>
</tbody>
</table>
Typing B to match the third strategy

| | Typing $P|Q$ |
|----------------|-----------|
| $\Gamma; \Lambda_P \vdash$ | $P : t_P$ | By hypothesis |
| $\Gamma; \Lambda_Q \vdash$ | $Q : t_Q$ | By hypothesis |

$\Rightarrow \Gamma; \Lambda_P \cup \Lambda_Q \vdash \ P|Q : t_P + t_Q$

By T-PAR

<table>
<thead>
<tr>
<th></th>
<th>Typing B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma(x) :$</td>
<td>K_x, e_x</td>
</tr>
</tbody>
</table>

$\Rightarrow \Gamma; \Lambda_P \cup \Lambda_Q \vdash (\forall x)(P|Q) : t_P + t_Q$

By T-FINALIZE2

The case is proved.