Signal recognition by finite automata
– work in progress –

Jérôme DURAND-LOSE
jerome.durand-lose@ens-lyon.fr

MC2 LIP
UMR CNRS - ÉNS Lyon - UCB Lyon - INRIA 5668
Outline

1. Pre-signal and approximation
2. Automata and signals
3. Exercises
4. Cardinality of the set of signals
5. Open questions
Pre-signals

Σ : finite alphabet

Pre-signal \(f : [0, 1] \rightarrow \Sigma \)

Represented by its graph

![Graph of Pre-signal](image)
\(\mathcal{E} \):-approximation

\[\tilde{\Sigma} = \Sigma \times (\mathcal{P}(\Sigma) \setminus \{\emptyset\}) \]

\[w_1 \ldots w_n \in \tilde{\Sigma} \quad f : [0, 1] \rightarrow \Sigma \]

\[w_1 \ldots w_n \ \varepsilon \text{-approximates } f \]

\[\iff \exists x_1, x_2, \ldots, x_{n+1} \]

\[\begin{cases} x_1 = 0 \\ x_i < x_{i+1} \\ x_{n+1} = 1 \end{cases} \]

\[w_i = \left(f(x_i), f\left(\lfloor x_i, x_{i+1}\rfloor\right) \right) \]

\[\left| f\left(\lfloor x_i, x_{i+1}\rfloor\right) \right| > 1 \Rightarrow |x_i - x_{i+1}| < \epsilon \]
ε-approximation

\[\frac{1}{n+1} \quad \frac{n}{n+1} \]

Diagram showing points labeled a, b, and c.
ε-approximation

\[
\frac{1}{n+1} \quad \frac{n}{n+1}
\]

\(x_1\) \(x_2\) \(x_3\) \(x_4\) \(x_5\) \(x_6\) \(x_7\) \(x_8\) \(x_9\) \(x_{10}\) \(x_{11}\) \(x_{12}\) \(x_{13}\)
\(\varepsilon \)-approximation

\[
\frac{1}{n+1} \quad \frac{n}{n+1}
\]

\[|x_1 - x_2| < \varepsilon \text{ and } |x_{12} - x_{13}| < \varepsilon \]

\[
w = (a, \{a, b\}) (b, \{a\}) (b, \{a\}) \ldots (b, \{a\}) (b, \{a, b\})
\]
Finite automaton for pre-signals

\[\mathcal{A} = \left(\tilde{\Sigma}, Q, \delta, I, F \right) \]

\(\mathcal{L}(\mathcal{A}) \) language (on \(\tilde{\Sigma} \)) recognized

\(f \) in \(\Sigma^{[0,1]} \)

\(\mathcal{A} \) signal-recognizes \(f \)

\(\iff \)

\(f \in \mathcal{S}(\mathcal{A}) \)

\(\iff \)

\(\forall \varepsilon > 0, \exists w \in \mathcal{L}(\mathcal{A}), w \varepsilon \)-approximates \(f \)
Equivalence and signals

\[f, g \text{ in } \Sigma^{[0,1]} \]

\[f \approx g \]

\[\iff \forall A, f \in S(A) \iff g \in S(A) \]

\[[f] \text{ is a signal} \]

\[\iff [f] \text{ is an equivalence class for } \approx \]

Open question Characterize these classes (links to scattered linear orders)
Example of an acceptance

\[f \in S(\mathcal{A}) \]

\[g \in S(\mathcal{A}) \iff \exists z_1, z_2, \ldots \]

\[[f] = S(\mathcal{A}) \]

\[
\begin{cases}
 z_1 = 0 \\
 z_i < z_{i+1} \\
 \lim_{i \to \infty} z_i = 1 \\
 g(x) = b \iff \exists i, x = z_i
\end{cases}
\]
Exercises

Find the signal languages for:

\[b, \{a\} \]

\[b, \{a, b\} \]

\[c, \{a\} \]

\[b, \{a, b\} \]

\[b, \{a\} \]

\[b, \{a, b\} \]

\[c, \{a\} \]

\[c, \{a, b, c\} \]

\[b, \{a, b\} \]

\[b, \{a\} \]
Exercises

Find the signal languages for:

- $b, \{a\}$
- $b, \{a, b\}$
- $b, \{a\}$
- $b, \{a, b\}$
- $c, \{a\}$
- $b, \{a, b\}$
- $b, \{a\}$
- $b, \{a\}$
- $c, \{a\}$
- $b, \{a, b\}$
- $c, \{a, b, c\}$
Exercises

Find the signal languages for:

- $b, \{a\}$
- $c, \{a\}$
- $b, \{a, b\}$
- ω
Exercises

Find the signal languages for:

- $b, \{a\}$
- $b, \{a,b\}$
- $c, \{a\}$
- $b, \{a,b\}$
- $b, \{a\}$
- $b, \{a,b\}$
- ω^2
- $c, \{a\}$
- $c, \{a,b,c\}$
- $b, \{a,b\}$
- $b, \{a\}$
- ω_2
Exercises

Find the signal languages for:

- $b, \{a\}$
- $b, \{a,b\}$
- $c, \{a\}$
- $b, \{a,b\}$
- ω

- $b, \{a\}$
- $b, \{a\}$
- $b, \{a\}$
- ζ

- $b, \{a\}$
- $b, \{a\}$
- $b, \{a\}$
- η

- $c, \{a\}$
- $c, \{a,b,c\}$
- ω^2
- $b, \{a,b\}$

Signal recognition by finite automata – p.9/13
Cardinality of the set of signals

Notation: \(\mathbb{U}_0 = \omega \) et \(\mathbb{U}_{i+1} = 2^{\mathbb{U}_i} \), \((\text{e.g. } |\mathbb{R}| = \mathbb{U}_1) \)

\[\left| \{ \mathcal{A} \text{ automate} \} \right| = \mathbb{U}_0 \]

\[\left| \{ \text{ signaux} \} \right| = ??? \]

\[\left| \sum^{[0,1]} \right| = \mathbb{U}_2 \]
Cardinality of the set of signals

Notation: $\mathbb{N}_0 = \omega$ et $\mathbb{N}_{i+1} = 2^{\mathbb{N}_i}$, (e.g. $|\mathbb{R}| = \mathbb{N}_1$)

$|\{ A \text{ automate } \}| = \mathbb{N}_0$

$|\{ \text{ signaux } \}| = \mathbb{N}_1$

$|\Sigma^{[0,1]}| = \mathbb{N}_2$

Almost no signal is characterized by an automaton

Open question Look at companion signals
Let $\{A_i\}_{i \in \mathbb{N}}$ be an enumeration of the automata

$$\varphi [f] \mapsto w \in \{0, 1\}^\omega$$

$$w_i = 1 \iff [f] \subseteq S(A_i)$$

φ is one-to-one because

$$[f] = \bigcap_{x_i=1} S(A_i) \cap \bigcap_{x_i=0} \overline{S(A_i)}$$
\[\mathbb{I}_1 \leq \left\{ \text{signaux} \right\} \]

\[
\begin{align*}
 w \in \{0, 1\}^\omega & \quad \mapsto \quad f \in \{0, 1, \#\}^{[0,1]} \\
 f \left(\frac{n-1}{n} \right) = w_i \\
 f \left(\left[\frac{n-1}{n}, \frac{n}{n+1} \right] \right) = \{\#\}
\end{align*}
\]

\[w \neq w' \Rightarrow \exists i_0, w_{i_0} \neq w'_{i_0} \]

Accepts \(\psi(w) \) but not \(\psi(w') \) thus \([\psi(w)] \neq [\psi(w')] \) \([\psi(.)] \) is one-to-one

Possible with two letters
Open questions

Classical operations on automata
 - Union OK
 - Concatenation... (I am missing an inclusion or a counterexample)
 - Star...

Closure
 - Complements... (conj. no)
 - Intersection...

Extra operations
 - ω, $-\omega$ and ζ-iterations (\Diamond and $\#$)

Identification of signal languages
 - Regular expressions
 - KLEENE like theorem