La perspective du signal:
des automates cellulaires aux machines à signaux

Jérôme Durand-Lose

Laboratoire d'Informatique Fondamentale d'Orléans,
Université d'Orléans, Orléans, FRANCE

Journée Graphes et Algorithmes 2008
1er juillet 2008 — LIFO, Orléans
1 Introduction

2 Implicit use of signals

3 Discrete signals

4 Signal Machines

5 Conclusion
1 Introduction

2 Implicit use of signals

3 Discrete signals

4 Signal Machines

5 Conclusion
Cellular Automata

Definition
- Q: finite set of states
- $f: Q^k \rightarrow Q$ local function

Dynamical system
Global function, $G : Q^\mathbb{Z} \rightarrow Q^\mathbb{Z}$

Orbit and space-time diagram
Value in $Q^{\mathbb{Z} \times \mathbb{N}}$
Image with big pixels

$Q = \{0, 1, 2, 3\}$

$f(x, y, z) = 3x + 2y + z + xy \mod 4$
Background and Signals

Background

(2-d) Pattern that may form a valid space-time diagram by bi-periodic repetition.

Signal

- Pattern that (legally) repeats 1-periodically on a background
- Pattern repeating 1-periodically and separating two backgrounds

Illustration by examples
1 Introduction

2 Implicit use of signals

3 Discrete signals

4 Signal Machines

5 Conclusion
Understanding the dynamics

FIG. 7. Rule 54. (a) Annihilation of the radiating particle. (b) The same as (a) with the mapping defined in Fig. 6. [Boccara et al., 1991, Fig. 7]

FIG. 7. The four different (out of 14 possible) interaction products for the $\alpha + \beta$ interaction. [Hordijk et al., 2001, Fig. 7]

Figure 5. Two collisions of filions, and five free filions supported by the FPS model; ST diagram applies if $\eta = 1$. [Siwak, 2001, Fig. 5]
Generating prime numbers

[Fischer, 1965, Fig. 2]
Implicit use of signals

Computing by simulating a Turing machine

Figure 4: The $k = 4, r = 2$ universal cellular automaton of table 4 simulated starting from a random initial state. The symbols 0, 1, ω, and + are represented by different colors.

[Lindgren and Nordahl, 1990, Fig. 4]
Firing Squad Synchronization

[Goto, 1966, Fig. 3+6]
1 Introduction

2 Implicit use of signals

3 Discrete signals

4 Signal Machines

5 Conclusion
Firing Squad Synchronization (again)

[Varshavsky et al., 1970, Fig 1 and 3]
Multiplication

- strongest digit
- weakest digit

end of the words

- i-th digit of the multiplier
- i-th carry over of the partial sum
- i-th digit of the multiplicand
- i-th digit of the multiplier

The last partial sum is the result

Figure 1: A human multiplication.

Figure 3: Computations done on one cell out of two, one unit of time out of two.

[Figure 4: Multiplying 11001 by 10110.]

[Mazoyer, 1996, Fig. 1, 3 and 4]
A whole programming system

Figure 8: Computing $(ab)^2$.

Figure 9: Setting up an infinite family of regular safe grids (the darkness of the grid indicates its rank).

Figure 18: Characterization of the sites $(n, f(n))$.

[Mazoyer, 1996, Fig. 8 and 19] and [Mazoyer and Terrier, 1999, Fig. 18]
Introduction

Implicit use of signals

Discrete signals

Signal Machines

Conclusion
Moving to the continuum

Forget about discreteness

⇝ continuous
Signal Machines

Time (\mathbb{N})
Space (\mathbb{Z})

Time (\mathbb{R}^+)
Space (\mathbb{R})

Vocabulary
- Signal (meta-signal)
- Collision (rule)
New kinds of *monsters*
Computability and undecidability [Durand-Lose, 2005]

Two-counter simulation
Turing-machine can also be simulated directly

Undecidable
- total erasing
- finite number of signal
- signal/collision apparition
Scaling down and bounding the duration
Computing inside bounded room
Accumulation forecasting is Σ^2_0-complete

[Durand-Lose, 2006b]
Link with the Black hole model [Durand-Lose, 2006a]

Principe

Two different timelike half-curves such that
- they have a point in common (used to set things and start)
- one is upward-infinite and fully contained in the casual past of a point of the other

Solving recursively enumerable problems

- **Accept**
 - Calcul
- **Refuse**
 - Calcul
- **Does not stop**
 - Calcul
Links with the Blum, Shub and Smale model

Classical BSS model

Variables hold real numbers in exact precision
- input / output
- test $0 < x$
- shift (to access other variables)
- compute a polynomial function

Linear BSS [Durand-Lose, 2007]

Restriction
- only linear function
- *i.e.* no inner multiplication
Encoding real numbers

- Common scale for all variables
- Sign test trivial
Encoding real numbers

scale + distance

- Common scale for all variables
- Sign test trivial
Encoding real numbers

- Common scale for all variables
- Sign test trivial
Copy and Addition
External multiplication

\[\text{line}_{n+1} \]

\[\text{accum} \]

\[\text{val} \]

\[\text{mul} \]

\[\text{mul}^+ \]

\[\text{mul}^+_a \]

\[\text{mul}^+_b \]

\[\text{mul}^+_c \]
Internal multiplication [Durand-Lose, 2008]

Computation

- Pre-treatment to ensure $0 < y < 1$
- Binary extension of y:
 \[y = y_0 \cdot y_1 y_2 y_3 \cdots \]
- Computation
 \[xy = \sum_{0 \leq i} y_i \left(\frac{x}{2^i} \right) \]

Principe

Computation on the margin
the margin is scaling down geometrically

Square rooting is also possible!
1. Introduction
2. Implicit use of signals
3. Discrete signals
4. Signal Machines
5. Conclusion
Conclusion

- Natural filiation with CA
- Continuous time
 - Zeno effect

Links with other models

- Black hole model
- Blum, Shub and Smale model

Future work

- Relate with CA
- Characterize the analog computing power