# Signal machines : localization of isolated accumulation

#### Jérôme Durand-Lose



Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, Orléans, FRANCE



6 mars 2011 — Journées Calculabilités — Paris

#### Signal machines and isolated accumulations

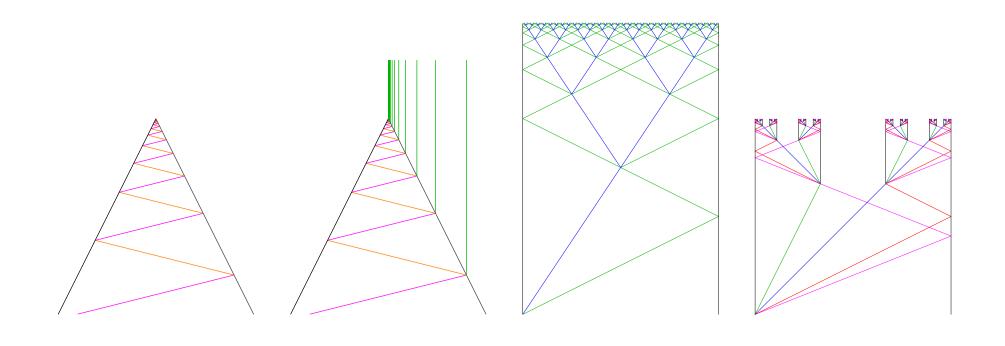
- 2 Necessary conditions on the coordinates of isolated accumulations
- 3 Manipulating *c.e.* and *d-c.e.* real numbers
- Accumulating at *c.e.* and *d-c.e.* real numbers

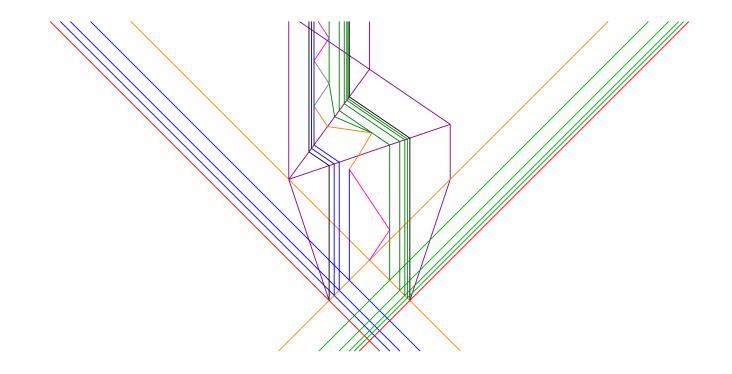
#### **5** Conclusion

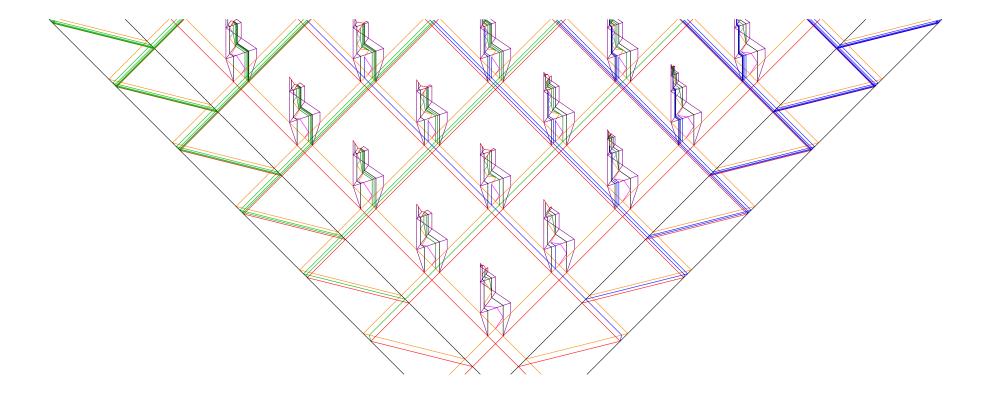
## Signal machines and isolated accumulations

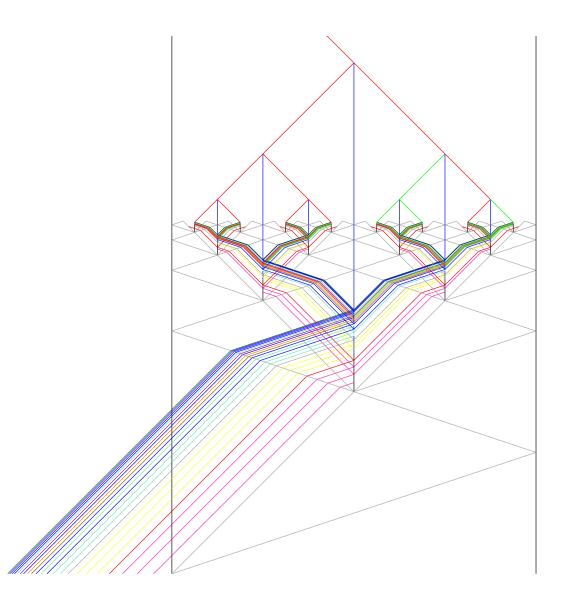
- 2 Necessary conditions on the coordinates of isolated accumulations
- 3 Manipulating *c.e.* and *d-c.e.* real numbers
- Accumulating at *c.e.* and *d-c.e.* real numbers

#### 5 Conclusion





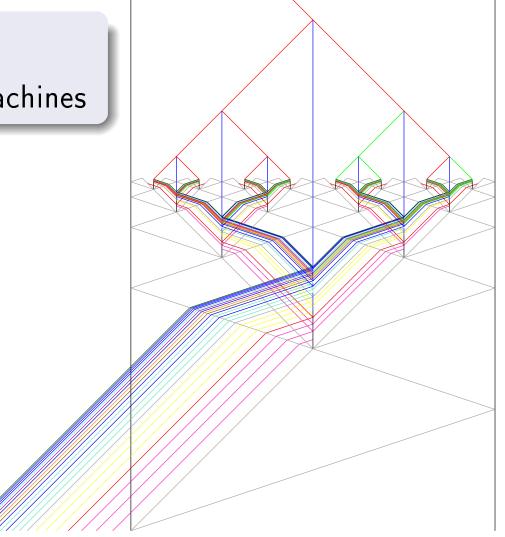




## "Nice regular drawings"

Lines: traces of signals

Space-time diagrams of signal machines



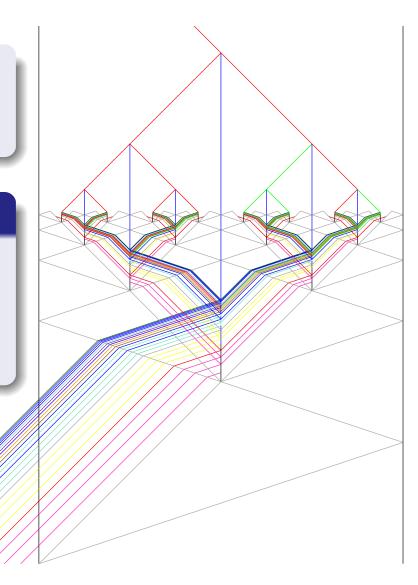
## "Nice regular drawings"

Lines: traces of signals

Space-time diagrams of signal machines

#### Defined by

- bottom: initial configuration
- lines: signals ~→ meta-signals
- $\bullet$  end-points: collisions  $\leadsto$  rules



## Example: find the middle

M

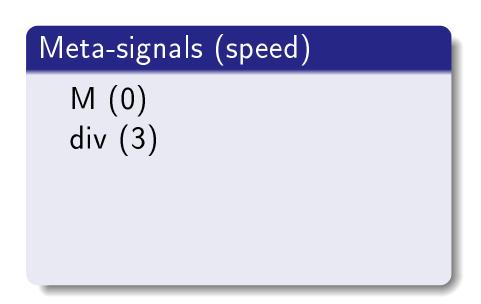
#### Meta-signals (speed)

M (0)

Μ

# Collision rules

Example: find the middle



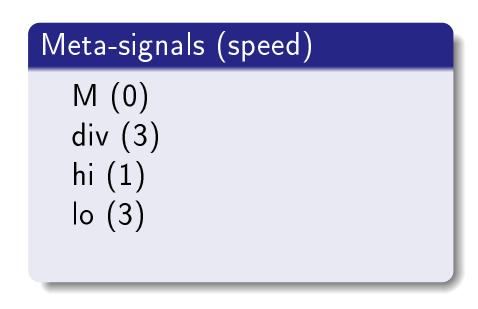
11/39

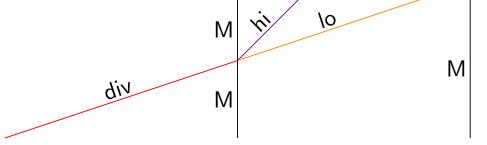
Collision rules



Μ

## Example: find the middle

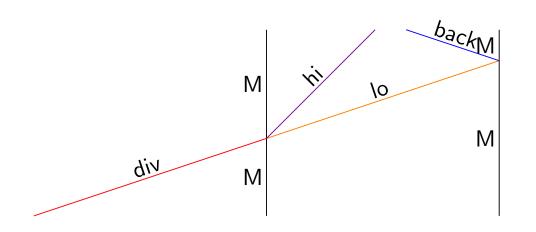




#### Collision rules

 $\{ \mbox{ div, M} \} \ \rightarrow \ \{ \mbox{ M, hi, lo} \ \}$ 

## Example: find the middle

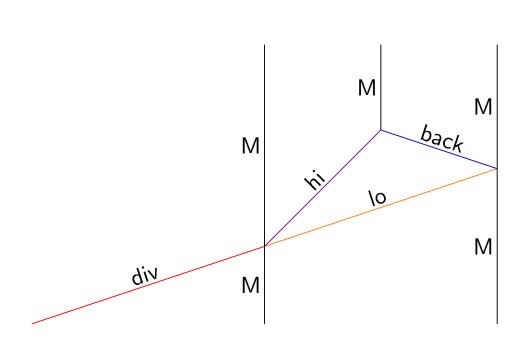


| Meta-signals (speed) |  |
|----------------------|--|
| M (0)                |  |
| div (3)              |  |
| hi (1)               |  |
| lo (3)               |  |
| back (-3)            |  |

#### Collision rules

$$\{ \hspace{0.1cm} \operatorname{div}, \hspace{0.1cm} \mathsf{M} \hspace{0.1cm} \} \hspace{0.1cm} 
ightarrow \hspace{0.1cm} \{ \hspace{0.1cm} \mathsf{M}, \hspace{0.1cm} \mathsf{hi}, \hspace{0.1cm} \mathsf{lo} \hspace{0.1cm} \} \hspace{0.1cm} \{ \hspace{0.1cm} \mathsf{back}, \hspace{0.1cm} \mathsf{M} \hspace{0.1cm} \} \hspace{0.1cm} \}$$

## Example: find the middle



## Meta-signals (speed) M (0) div (3) hi (1) lo (3) back (-3)

#### Collision rules

$$\left\{ \begin{array}{l} \operatorname{div,} M \end{array} \right\} \rightarrow \left\{ \begin{array}{l} \mathsf{M,} \operatorname{hi,} \operatorname{lo} \end{array} 
ight\} \\ \left\{ \begin{array}{l} \operatorname{lo,} M \end{array} \right\} \rightarrow \left\{ \begin{array}{l} \operatorname{back,} M \end{array} 
ight\} \\ \left\{ \begin{array}{l} \operatorname{hi,} \operatorname{back} \end{array} \right\} \rightarrow \left\{ \begin{array}{l} \mathsf{M} \end{array} 
ight\} 
ight\}$$

## Known results

#### Simulation Turing computations TM run $0 \rightarrow$ • [Durand-Lose, 2011] $q_i$ $0 |\overline{1}| 1|$ # 0 *q*<sub>2</sub> **#** →0 Set $\overline{1}$ $0 |\overline{1}| 1$ $(q_i, \texttt{\#})$ 1 $0\,\rightarrow\,$ Set $0 | \overline{1} | 1$ # 801 $q_3$ $\rightarrow 1$ # Ser $0 |\overline{1}|$ 1 # $1 \rightarrow$ $q_i$ $\overline{1}$ 0 1 # 0 1 Qj, $q_i$ # 0 1 1 # N. $q_i$ 1 0 1 # 0 0 $\frac{q_i}{1}$ P. $\overline{1}$ 0 1 #

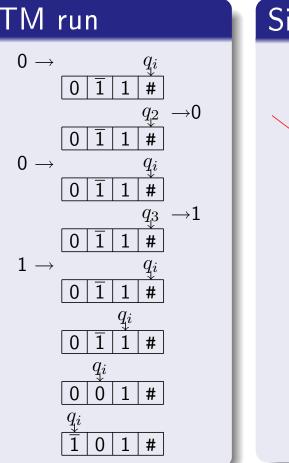
## Known results

#### Turing computations

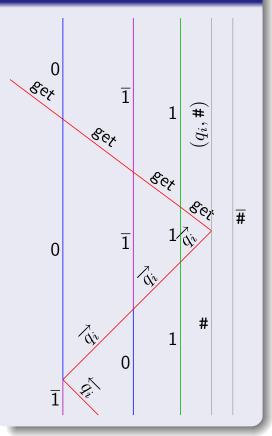
• [Durand-Lose, 2011]

#### Analog computations

- Computable analysis
   [Weihrauch, 2000]
   [Durand-Lose, 2010a]
- Blum, Shub and Smale model [Blum et al., 1989] [Durand-Lose, 2008]



#### Simulation



## Known results

#### Turing computations

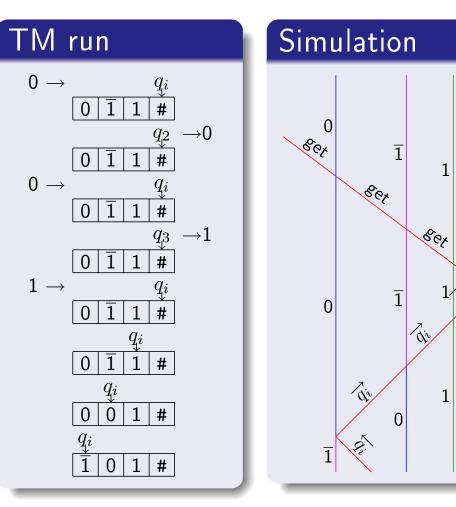
• [Durand-Lose, 2011]

#### Analog computations

- Computable analysis
   [Weihrauch, 2000]
   [Durand-Lose, 2010a]
- Blum, Shub and Smale model [Blum et al., 1989] [Durand-Lose, 2008]

#### "Black hole" implementation

• [Durand-Lose, 2009]



 $(q_i, \#)$ 

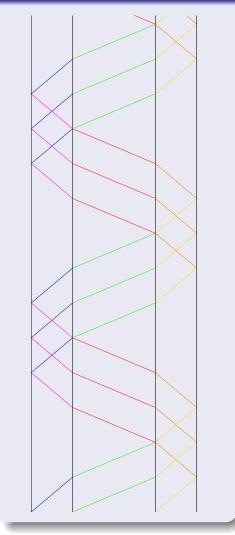
Ser

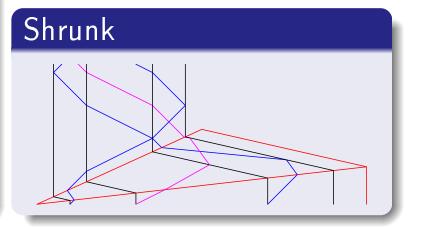
#

#

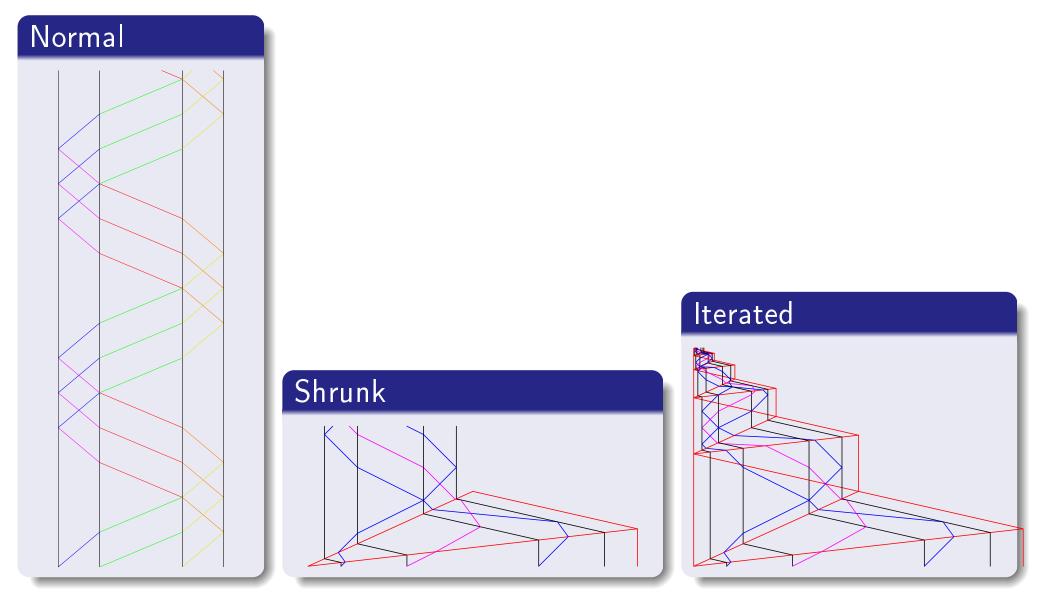
## Geometric primitives: accelerating and bounding time

#### Normal





## Geometric primitives: accelerating and bounding time



## Rational signal machines and isolated accumulations

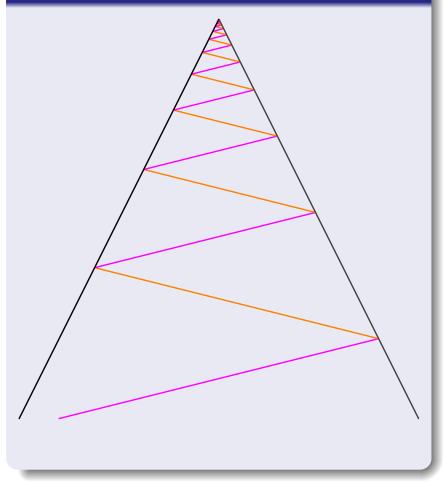
#### $\mathbb{Q}$ signal machine

- $\bullet$  all speed are in  $\mathbb Q$
- $\bullet\,$  all initial positions are in  $\mathbb Q$
- ullet  $\Rightarrow$  all location remains in  ${\mathbb Q}$

#### Space and time location

Easy to compute

#### Simplest accumulation



## Rational signal machines and isolated accumulations

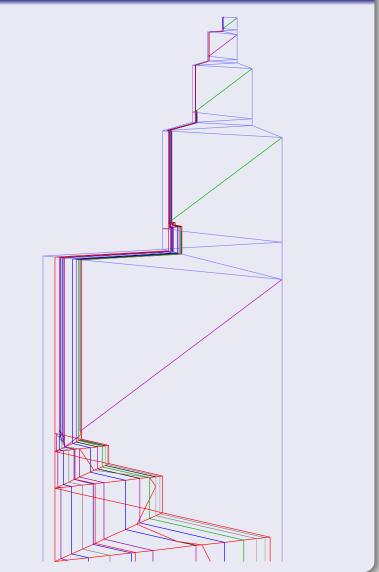
#### $\mathbb{Q}$ signal machine

- $\bullet$  all speed are in  $\mathbb Q$
- $\bullet\,$  all initial positions are in  $\mathbb Q$
- ullet  $\Rightarrow$  all location remains in  ${\mathbb Q}$

#### Space and time location

- Easy to compute
- Not so easy to guess

#### Accumulation?



## Rational signal machines and isolated accumulations

#### $\mathbb{Q}$ signal machine

- $\bullet$  all speed are in  $\mathbb Q$
- $\bullet\,$  all initial positions are in  $\mathbb Q$
- ullet  $\Rightarrow$  all location remains in  ${\mathbb Q}$

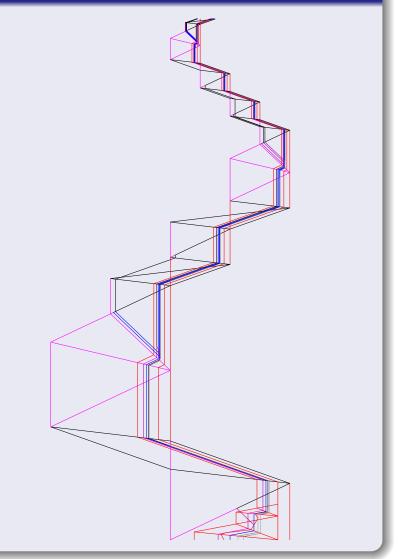
#### Space and time location

- Easy to compute
- Not so easy to guess

#### Forecasting any accumulation

Highly undecidable  $(\Sigma_2^0 \text{ in the arithmetic hierarchy})$ [Durand-Lose, 2006]

#### Accumulation?



#### 1 Signal machines and isolated accumulations

## 2 Necessary conditions on the coordinates of isolated accumulations

- 3 Manipulating *c.e.* and *d-c.e.* real numbers
- Accumulating at *c.e.* and *d-c.e.* real numbers

#### **5** Conclusion

Signal machines : localization of isolated accumulation Necessary conditions on the coordinates of isolated accumulations

## Temporal coordinate

#### $\mathbb{Q}$ -signal machine

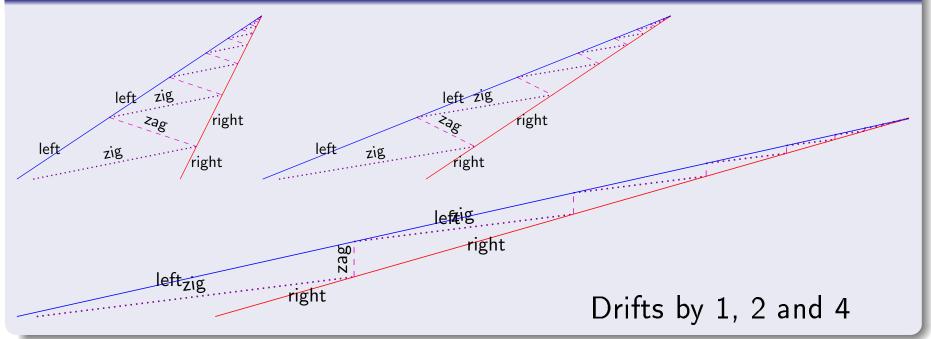
- Q on computers/Turing machine
  - exact representation
  - exact operations
- exact computations by TM (and implanted in Java)

#### Simulation near an isolated accumulation

- on each collision, print the date
- ~> increasing computable sequence of rational numbers
   (converges iff there is an accumulation)

## Spacial coordinate





#### With all speeds positive

- the left most coordinate is increasing (and computable) converges iff there is an accumulation
- correction by subtracting the date times the drift

#### c.e. real number

- limit of a convergent increasing computable sequence of rational numbers
- no bound on the convergence rate
- represents a *c.e.* set (of natural numbers)
- stable by positive integer multiplication but not by subtraction

#### *d-c.e.* real number

- difference of two *c.e.* real number
- form a field
- [Ambos-Spies et al., 2000] these are exactly the limits of a computable sequence of rational numbers that converges *weakly effectively*, *i.e.*,

$$\sum_{n \in N} |x_{n+1} - x_n| \text{ converges}$$

#### ① Signal machines and isolated accumulations

2 Necessary conditions on the coordinates of isolated accumulations

#### 3 Manipulating *c.e.* and *d-c.e.* real numbers

Accumulating at *c.e.* and *d-c.e.* real numbers

#### 5 Conclusion

## Encoding

#### For *d*-*c*.*e*. real numbers

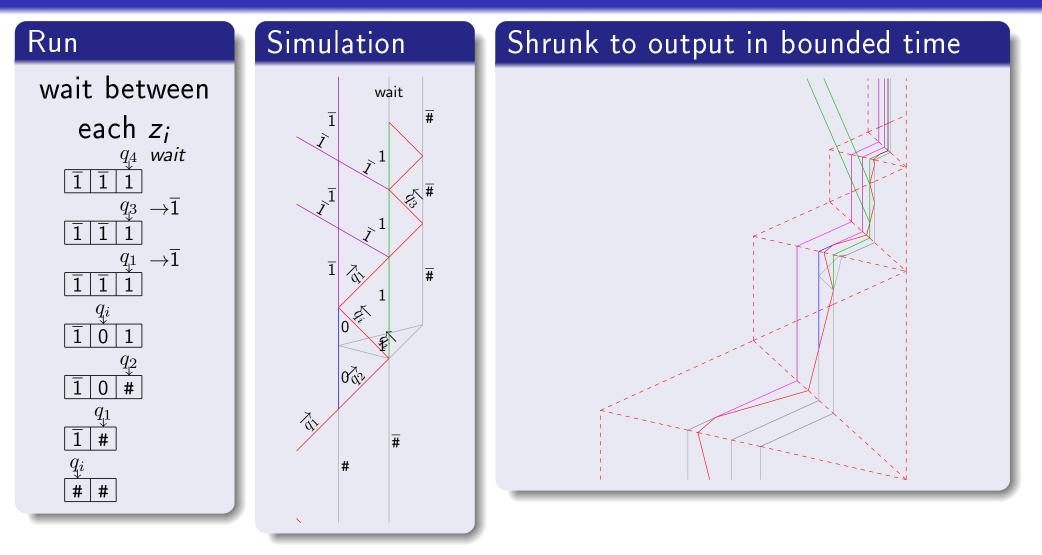
$$x = \sum_{i \in \mathbb{N}} \frac{z_i}{2^i} , z_i \in \mathbb{Z}$$
  
the sequence  $i \to z_i$  is computable and  
$$\sum_{i \in \mathbb{N}} \left| \frac{z_i}{2^i} \right| \text{ converges}$$

#### For *c.e.* real numbers

• identical but  $z_i \in \mathbb{N}$ 

•  $z_i$  in signed unary representation

## TM outputting the infinite sequence



Simulation and shrinking structure stop after each value

#### ① Signal machines and isolated accumulations

2 Necessary conditions on the coordinates of isolated accumulations

#### 3 Manipulating *c.e.* and *d-c.e.* real numbers

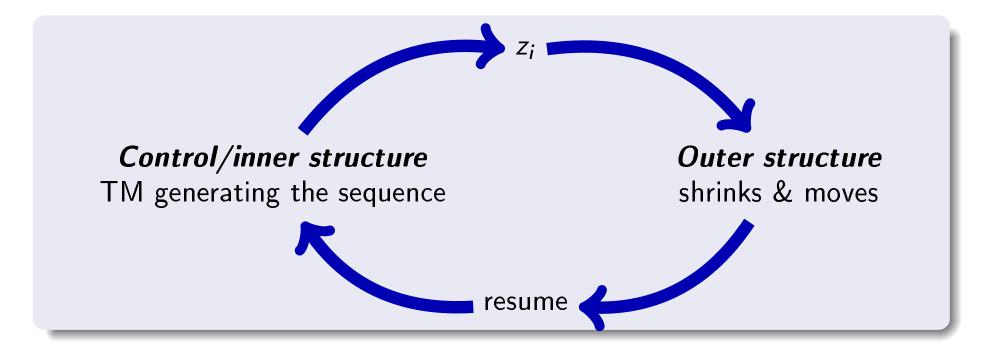
Accumulating at *c.e.* and *d-c.e.* real numbers

## 5 Conclusion

## Two-level scheme

#### Control/inner structure

• Provide the data for accumulating

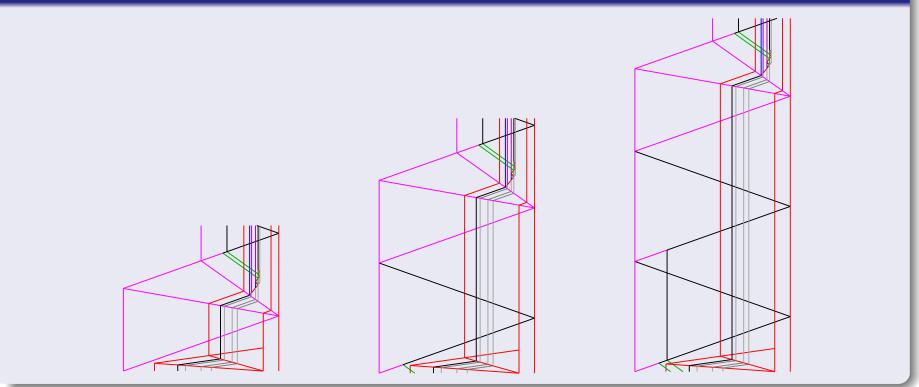


#### Outer structure

shrink and move the whole structure ~> accumulation

## Temporal coordinate

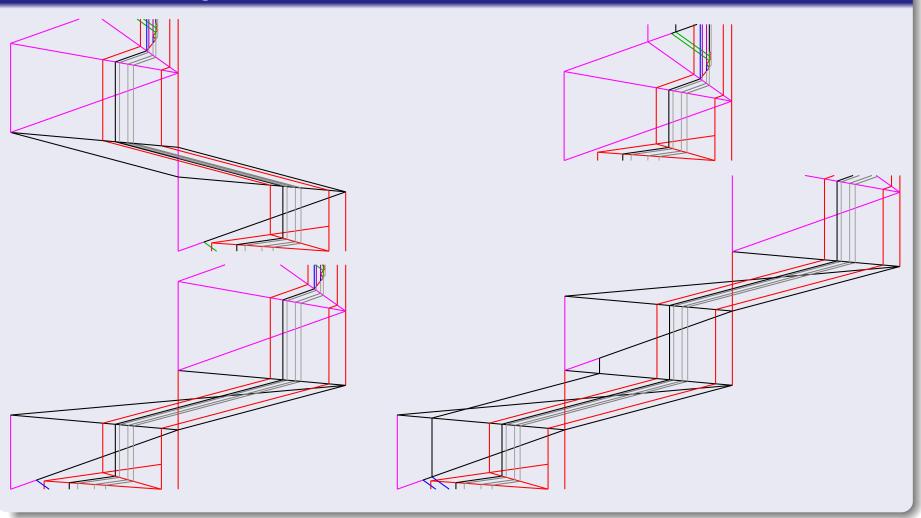
#### Wait the corresponding time



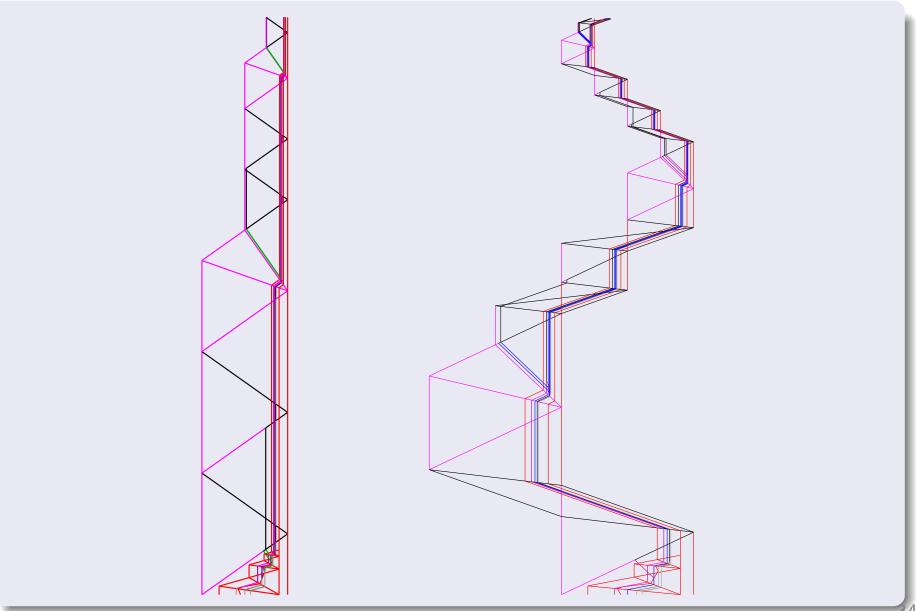
- Constant (up to scale) delay before outer structure action
- total delay is rational and should be previously subtracted

## Spatial coordinate

## Move left or right, more or less



## Examples



- 1 Signal machines and isolated accumulations
- 2 Necessary conditions on the coordinates of isolated accumulations
- 3 Manipulating *c.e.* and *d-c.e.* real numbers
- Accumulating at *c.e.* and *d-c.e.* real numbers

## **5** Conclusion

#### Conclusion

#### Results

- Isolated accumulations happen at *d*-*c.e.* spacial and *c.e.* temporal coordinates
- Accumulation at any *c.e.* temporal coordinate is possible
- Accumulation at any *d*-*c.e.* spacial coordinate is possible

#### Perspectives

- Uncorrelate space and time coordinate it is possible for *computable* coordinates [Durand-Lose, 2010b]
- Higher order isolated accumulations
- Non isolated accumulations

Ambos-Spies, K., Weihrauch, K., and Zheng, X. (2000). Weakly computable real numbers.

*J. Complexity*, 16(4):676–690.

Blum, L., Shub, M., and Smale, S. (1989).

On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines.

Bull. Amer. Math. Soc., 21(1):1-46.

#### Durand-Lose, J. (2006).

Forcasting black holes in abstract geometrical computation is highly unpredictable.

In Cai, J.-Y., Cooper, S. B., and Li, A., editors, *Theory and Applications of Models of Computations (TAMC '06)*, number 3959 in LNCS, pages 644–653. Springer.

#### **Durand-Lose**, J. (2008).

Abstract geometrical computation with accumulations: Beyond the Blum, Shub and Smale model.

In Beckmann, A., Dimitracopoulos, C., and Löwe, B., editors, *Logic and Theory of Algorithms, 4th Conf. Computability in Europe (CiE '08) (abstracts and extended abstracts of unpublished papers)*, pages 107–116. University of Athens.

#### Durand-Lose, J. (2009).

Abstract geometrical computation 3: Black holes for classical and analog computing.

Nat. Comput., 8(3):455-472.

#### Durand-Lose, J. (2010a).

Abstract geometrical computation 5: embedding computable analysis.

Nat. Comput.

Special issue on Unconv. Comp. '09.

#### Durand-Lose, J. (2010b).

The coordinates of isolated accumulations [includes] computable real numbers.

In Ferreira, F., Guerra, H., Mayordomo, E., and Rasga, J., editors, *Programs, Proofs, Processes, 6th Int. Conf. Computability in Europe (CiE '10) (abstracts and extended abstracts of unpublished papers)*, pages 158–167. CMATI, U. Azores.

#### Durand-Lose, J. (2011).

Abstract geometrical computation 4: small Turing universal signal machines.

Theoret. Comp. Sci., 412:57-67.

Weihrauch, K. (2000).

Introduction to computable analysis.

Texts in Theoretical computer science. Springer, Berlin.