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Abstract. Partitioning automata (PA) are defined. They are equivalent
to cellular antomata (CA). Reversible sub-classes are also equivalent.
A simple, reversible and universal partitioning antomaton is described.
Finally, it is shown that there are reversible PA and CA that are able to
simulate any reversible PA or CA on any confignration.

1 Introduction

The main interest of reversibility in computation 1s backtracking a phenomenon
to its source and in relation with physics, isoentropic phenomena modelization
and saving energy, and had have various interests in relation to physics as ex-
plained by Toffoli and Margolus in [15]. Tt is well known that, given any d-
dimensional cellular automata (CA), it can be simulated by one (d-+1)-dimensio-
nal CA which is reversible [12]. Tt is still an open problem if it can be simulated
by a reversible CA of the same dimension. For example, Morita showed in [7]
that this is true in dimension one but only over finite configurations.

In the present paper, some definitions and basic results about partitioning
automata (PA) and mutual simulations with cellular automata are shown hefore
an example of a reversible and universal PA is detailed. Then the main result
is deduced: for any d, with 2 < d, there exists d-dimensional reversible PA and
CA able to simulate any d-dimensional reversible PA or CA over both finite and
infinite configurations.

Partitioning automata were first introduced by Margolus and Toffoli’s in the
middle of the 80’s as models of lattice gases and other reversible physical phe-
nomena [14]. Tike cellular automata, they work on an infinite lattice. A node is
a point of the lattice and has a value in a finite set of states. A tileis a h x v
rectangle of nodes. Like CA| the global function of a PA is defined by a local
rule called elementary transition funciion from and to the set of tiles (for CA,
a neighborhood is mapped into a cell). The plane is cut into different regular
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partitions of tiles (a partition is fully determined by h, » and its origin). An
elementary transition is the parallel replacement of all the tiles of a given parti-
tion by their images by the elementary transition function. The global transition
function is the sequential composition of various elementary transitions. A PA
is reversible iff 1ts global function is invertible and is the global function of some
PA. Tt is equivalent to bijectivity of the elementary transition function which is
decidable (Lemma 8).

Cellular automata (CA) are the most famous model of parallel phenomena
and architectures. They have been widely studied for decades and there 1s a lot
of results ahout them [16]. After a brief definition of CA, both simulations be-
tween CA and PA and between reversible CA and reversible PA are constructed.
Thus, as far as computation is concerned the class of PA (resp. reversible PA)
is equivalent to the one of CA (resp. reversible CA) and the class of PA is com-
putational universal (able to simulate any Turing machine). The fact that CA
and PA can simulate each other was already mentioned by Toffoli and Margolus
in [14]. Here, full constructive demonstrations that care about conservation of
reversibility are given.

In the second part, an example of a simple and reversible PA is given. Mar-
golus and Toffoli described a more simple one (with only two states and two
(2,2)-tiling) and showed hoth reversibility and universality in [14,4]. The one
presented here has the interest of not having virtual 0 signals and somehow needs
less space. This PA, noted P,, has four states, for the ether, 0 and 1 signals and
to built the architecture (signals routing and gates). Tt is able to simulate any
boolean circuit. Fredkin and Toffoli studied a binary logic/functionality called
conservative logic where all functions are reversible and keep the number of 1
[13,2]. K. Morita demonstrated in [6] that it can do any finite reversible com-
puting without constant inputs or drop-off. P, can simulate any circuit of this
logic. Using results of this logic and some constructions, it is shown that P, is
able to simulate any reversible PA.

Finally, gathering the result of both parts, it is concluded that there exist
reversible CA and PA able to simulate any reversible PA or CA. Tt is explained
how to turn this universal PA into one that can simulate any other one but is
not reversible any more. Those results can be extended to higher dimensions.

2 Definitions

Partitioning automata (PA) work over a 2-dimensional infinite lattice £ (= Z7).
The points of L are called nodes. Fach node has a value in a finite set of states
Q. A configuration is a lattice with a value in each node. C (= QF) is the set of
configurations.

Definition 1. Tet z, y be two non-zero natural numbers and o and 3 be two
integers. The tile t, 5 € @"*" of coordinates (, ), size (h,v) and origin (z,y)
of a configuration ¢ € C is the following rectangle part of ¢:

tap = C|(m—|—c«.h, y+pv) + [0,h—1]x[0,0—1] -



Definition 2. The partition of size (h,v) and origin (2,y) is the partition of
£ with the tiles of size (h,v) and origin (2,y) . Tt is rectangular and regular as
shown in Fig 1.
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Fig. 1. (6,4) partition of origin (,y) .

Definition 3. The FElemeniary Transition Funciion (e.t.f.) e is a function from
and to the set of tiles (e : Qhxv Qh’x“).

For a given PA| all partitions have the same size. (h,v) is a constant of the
PA called 1ts size.

Definition 4. An Flementary Transition (e.t.) T is, for a given partition, the
simultaneous parallel replacement of all its tiles by their images by e as in Fig. 2.

An elementary transition 7 , is fully determined by its origin (z,y) .

o2 t1 2 e(to2) | e(ti 2)
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Fig. 2. 7, , : elementary transition of origin (z,y) .

Definition 5. A partitioning automaton is defined by:
P:{ Q7 (h77))7 n, ((T77U7) )1§7§§n7 € } -

Several partitions are used in order to let information spread from tile to tile.
Their origins are (2;, i )1<i<n -



Definition 6. The updating function of a PA, the global transition G, maps
configurations into configurations. Tt is the sequential composition of all the
parallel elementary transitions associated with each of the partitions.

g :C=C = 7;/‘7;,,.1/7:, O Swn 1 yn—1 OO Tz

Definition 7. A PA P is reversible iff its global function G is invertible and G
is the global function of a PA| the inverse PA. Reversible PA are noted R-PA.

Lemma 8. A PA is reversible iff its elementary transition funciion is inveriible.

Proof. By definition, if the PA P is reversible, G is invertible. If G 1s invertible
then, since G =T, . 0Te, yo 10---0Ts, 41, Toy y, Mmust be injective. Because
of the construction of T, the elementary transition function e must be injective
and as i1t works over a finite set, it is bijective.

Conversely, if e is bijective, let T/ be the e.t. of origin (21,yr) and e.t.f.

1,41

e T gy 18 the inverse of T, 4, . Tn the same way, all the e.t. are invertible.
As a consequence, the global transition G is invertible and:
-1 _ g ! /
g o 7;‘17.1/1 © 7;‘2,.1/2 ©...0 7;‘7;,,1/7;, .
P is reversible and its inverse is:
—1 —1
P 1 =19, (hv),n, ((Zng1-i,Ynt1-i) Ji<i<n, €' } . O

The inverse PA only differs by the use of ¢! instead of e and the opposite
order of the partitions. In the above proof, it was also shown that injectivity,
surjectivity and reversibility are equivalent for PA.

Definition 9. For any two functions f : F — F and ¢ : G — (G . g simulates f
(in real time) iff there exists two encoding functions a: FF — G and 8: G — F,
recursive, space and time inexpensive compared to f and g, such that: 7 =
Bog” o« for all non-zero natural n. g can be used instead of f for iterating the
global function.

The simulation is strong iff f and g are invertibleand Vz € Z, f* = [og?oa.

' = B or in other words f also

Tt is uniform iff o and 3 are bijective and o~
simulates g. An automaton simulates another iff its global function simulates

the global function of the other.

3 Relations to Cellular Automata

Cellular automata (CA) work on the same kind of lattice I (= 12). The points of
I, are called cells and they take their values in a finite set of states (). The neigh-
borhood is defined by a finite set of relative coordinates N = {z1, za, ..., 25}
(Vi,z; € L). Making an iteration is changing the value of each cell according to
the states of its neighbors and a local function f: Q" — @ .

Definition 10. A CA is defined by: A = (Q, N, f).C = Q" is the set
of configurations. Tet ¢ be a configuration. The global function, F' : C — C' is
defined by:

F)x)y=Ff(ecle+a), cle+x), ..., c(x+a,)) .



A CA is reversible iff) 1ts global function F' is invertible and its inverse is the
global function of some CA. Moore and Myhill proved that for CA injectivity is
equivalent to reversibility in [9,5]. Kari showed in [3] that as opposed to PA it
is not decidable. Reversible CA are noted R-CA.

3.1 Simulating PA with CA

Theorem 11. Any PA can be uniformly simulated by a CA whose cells are
cartesian products of nodes.!

Proof. Tet P = {Q,(h,v),n,((;,yi))1<i<n,e} be any PA. The first partition
of £ is identified with I.. The cells are the tiles of the first partition and their
values belong to Q = Q"*” . This encoding helps to get rid of the origins of
the partitions because the intersections of the partitions correspond to the same
portion of every tile/cell. The origins are ‘encoded’ in the local function f.

The neighborhood is N = [—n, n] x [-n, n], where n is the number of parti-
tions of P. The local function f : Q(?"‘H)2 — (@ 1s defined as follows:

The cells in [—n,n] X [-n, n] correspond to the tiles [-n,n] x [—n, n] of the
first partition. The e.t.f. e can operate over them, making the first e.t. . In the
images of the tiles, 2n x 2n tiles of the second partition can be found, the nodes
of the updated cell are in the middle. The second e.t. can be made over these
tiles.

In two steps, the images of the tiles [-n+1,n—1] x [-n+1,n — 1] after two
e.t. are generated. Fach step this process 1s iterated, one more e.t. i1s made and
the width of the ‘window’ is reduced by one.

In n steps, there are only left 2 x 2 tiles with the nodes of the updated cell in
the middle. The values of these nodes are their images by the global transition
of P. The nodes corresponding to the updated cells are taken as the image by f
of the whole neighborhood. Different cuttings are shown in Fig. 3.

With this simple encoding and this function f, there is a natural identification
between A and P. O

This 1s a strong, uniform, and real time simulation. The size of the tiles
defines the number of states of the CA while the number of neighbors depends
only on the number of partitions. The computation power of PA is at most equal
to the one of the CA.

3.2 Simulating CA with PA

Theorem 12. Any CA can be simulated by a PA.

Proof. Tet A = (Q, N, f) be a CA. The radius r is the maximum ahsolute
coordinate of the vectors of the neighborhood N. Tt represents half the size of
the ‘windows’ required to gather information to update a cell. The tile is four

! Richardson proved in [10] that CA are equivalent to continuons, shift commuting
functions over QF . This gives a direct, non-constructive proof of the Theorem.
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(2n 4+ 1) x (2n + 1) tiles of the first partition (cells [-n,n] x [—-n,n]).
- - 2n X 2n tiles of the second partition.

(2n — 1) X (2n — 1) tiles of the first partition (cells [-n + 1,n — 1] X [-n + 1,n — 1]).
— —  (2n — 2) x (2n — 2) tiles of the third partition.

(2n — 3) X (2n — 3) tiles of the first partition (cells [-n + 2,n — 2] X [-n + 2,n — 2]).

Fig. 8. first and second cuttings.

time bigger, i.e., h = v = 4r . The number of cells in the windows is s = 1672 .
Let

P={QuUQ@? (4r, 4r), 4, ((0,0), (2r,0), (0,27), (2r, 27) ), e } .

The value of a node represents either the actual value of a cell or its actual and
next values. @ is used to encode the configurations and Q2 to keep information
during the update.

Fach (47, 4r) tile is cut in four parts (as shown in Fig. 4) named M (middle),
V' (vertical), H (horizontal) and C' (corners). A tile is now noted (M, H,V, () .

Fig. 4. partition of the tiles.



The values of the tiles are in Q*" (Q = QUQ?). There are two special cases
of 2r x 2r sub-tiles, the ones with only @ values (¢ @ = Q‘”?) and the ones
with only Q? values (€ A = (QQ)‘”?).

Each time, if the current values of the cells are held in the tile, since all the
neighbors of the middle cells (in M) are in the tile, their next values can he
computed. The function v computes the next values of the cells in M according
to the current ones and sets them as second values of the nodes of M.

For each partition, the next values of the middle cells are added (Q — Q?).
After four elementary transitions, all next values are computed, the actual are
discarded and replaced by the next. The e.t.f. ¢ is defined in Fig. 5 where 7y 13
the second projection (mo(x1, 22) = ) of all nodes of a tile.

if (M,H,V,CYe@ x@ xOxO
U XAXxOxXE
UBO X x@xAxA
then e(M,H,V,C)= (v(M,H,V,C),H,V,C)
else if (M,HV,C)e@ xAxAxA
then e(M,H,V,C)=m(v(M,H,V,C), HV,C)
else e(A)=A

Fig. 5. elementary transition function for CA simulation.

Altogether, each tile goes first from @ x @ x @ x @ to Ax @ x @ x @ . Then,
by changing partition, it goes to @ x A x @ x O . It finally reaches @ x A x A x A
before being completed to A x A x A x A and projected to @ x @ x @ x O .

Let a be the natural injection of @ in Q@ U Q% . A CA configuration is
naturally coded in a PA configuration for simulation. O

In the first case, only information is added. The second case clearly adds
non-injective rules. The simulating PA P cannot be reversible. The simulation
is neither strong nor uniform. The class of PA and CA are equivalent.

3.3 Simulating Reversible CA

Theorem 13. Any reversible CA can be strongly ssmulated by a reversible PA.

Proof. T.et A be a reversible CA. In the previous construction, the first case only
generates injective rules. The definition of the second case is changed in order
to generate injective rules. Then it will be possible to bijectively complete the
set, or rules.

The inverse of a reversible PA is very simple to built as described in the proof
of lemma 8, when simulating strongly a CA A, the simulation of the inverse
of the CA A, A™" is somehow built. A~" is used to bijectively erase the first
coordinates.



Let # be large enough for the neighborhoods of both A and A~'. The next
values are still built in four steps (action of A). But the current values are now
erased in four steps (reverse-action of A7").

Erasing depends on A~ . The predicate P(M, H,V, ) is true iff M € A and
the old values in the middle correspond to what they should be according to
A~ and the next values encoded in the whole tile.

There are 7 partitions: (0,0), (2r,0), (0, 2r), (27, 2r), (0, 0), (27, 0) and (0, 2r).
During the first four elementary transitions, the tiles go from @ x @ x @ x @
to A x Ax Ax A by adding information in second coordinates and directly to
O x Ax Ax A . Tn the last four ones, only information redundant (for A=) is
deleted. A= is applied in reverse. The algorithm is detailed in Fig. 6.

if (MJHV,(Ye@xOxOx6
U XAXOxXxE
U xOxAxA
then e(M,H,V,C)= (v(M,H,V,C),H,V,C)
if Py(M,H,V,C),H,V,C) and (M,H,V,C)e@x Ax Ax A
then e(M,H,V,C) = (m(~v(M,H,V,C)), H,V,C)
else if P(M,HV,C) and (M,H,V,C)e AxAxAx@
UAXOXxExA
UAXEO xOxE
then e(M,H,V,C) = (m(M),H,V,C)

else ... { completed bijectively }

Fig. 6. elementary transition function for R-CA simulation by R-PA.

Because of the discriminating use of P all produced rules are injective. Com-
pleting bijectively 1s not a problem. 0

The classes of reversible PA and CA are equivalent. In each simulation of

CA, the configuration of the PA goes from (¢) to (¢, F(e)) to (F(e)) .

4 A Reversible and Universal PA

Let P, = (Qu, (2,2), 2, ((0,0), (1,1)), ey ) .

The set of states is @, = {_,0,1,e} . is the ether, space where signals go
through in straight line. 0 and 1 are binary signals and ‘e’ is used to make gates
and set paths. The e are neither created, nor moved, nor withdrawn. They stay
fixed.

The size of the tiles is (2,2) . There are two partitions of origins are (0,0)
and (1,1) . The partial definitions of e, given in Fig.7 is to be completed by
symmetries and rotations. e, 1s only partially stated because there is no need
to describe more to prove universality. Since e, is injective, it is possible to
complete 1t in an invertible way.
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Fig. 7. partial elementary transition function e, (o, § € {0,1}).

The construction is based on having 0 and 1 signals and ‘bumpers’ to guide
them. The three rules with one bumper (changing direction) are use to avoid
back-propagation of signals. The center rule is a simple implementation of a NOT
gate.

Signals are encoded by their binary values 0 and 1. They are traveling diag-
onally. Their positions in the tiles of the first partition give their directions. In
the next figures, the first partition is the one with the thin lines. 0 and 1 have
the same behavior. Figure 8 shows signal propagation and deviation.

0
Too T 0 Too v M
—_— 0 —_— —_— M
v
0
1 1 «
To,o 1 T N 1 To,o \w
oo e ole —_— oo —_— oo -

Fig. 8. movement and bouncing.

Figure 9 1s a direct application of the rule NOT. Tt is the more simple gate,
it has only 2 bumpers. Tt can easily be integrated to any logical function.

Figure 10 shows oriented deviations, i.e., going backward, a signal will not
go to the direction it came from.

The time for a signal to go through a path is equal to half the length of
the path (one step per partition iteration). To obtain a delay the signal travels
through a longer path as in Fig. 11 (only the path of the signal is indicated).



Fig. 9. NOT gate.
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Fig. 10. unreversible direction change.

All of this is not enough to make computations. The two rules of Fig. 12 are
added to e, in order to built Fredkin gate, basis of conservative logic. These
definitions are not to be completed by rotation and symmetry.

The gate function and implementation are given in Fig. 13. The defined part
remains injective and e, can be completed bijectively. e, 1s now assumed totally
and bijectively defined. P, is reversible.

The principles of conservative logic are to use only reversible gates that keeps
the numbers of 1 and to forbid duplication of signals in the ether. Tt was intro-
duced and studied by Fredkin and Toffoli in [2,4,13]. Tt can be construct out of
a single type of logical gate: the Fredkin gate, described in Fig. 13.

Provided constant inputs and garbage outputs are added AND, OR, NOT, arti-
ficial signal duplications, memory. .. can be built. P, can compute any ‘infinite’
boolean function and is thus universal like the one described by Serizawa in [11]
or Morita in [8].

5 Universality of P,

5.1 Simulating Reversible PA

Theorem 14. P, is able to strongly simulate any reversible PA.

\‘.Z' :\:
R
\

Fig. 11. simple delay.



Fig.12. added rules to built the Fredkin gate.
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Fig. 13. Fredkin gate and tracing of its implementation (o, 8 € {0,1}).

Proof. Tet P = {Q,(h,v),n,((%;,yi)1<i<n,e} be a reversible PA. According
to Temma 8, e is reversible. K. Morita showed in [6] that a the circuit g that
encodes e can be built in conservative logic with neither constant inputs nor
garbage outputs (Tn fact there are 0 constant inputs but here they are recycled
since the circuit is to he used periodically). Note that each state is encoded on
|@Q| binary signals and only the one corresponding to the value should be 1 (the
others should be 0) to be in conservative logic.

The input (output) tile of this circuit is divided in four blocks corresponding
to the intersection with the tiles of the previous (next) partition. The last parti-

tion is the previous of the first and wvice-versa. The tiles are parted as described
in Fig. 14.

i i RD; g (1D, 4

i i RIT; 4y |117, 44

—— Previous partition (i — 1). Next partition (i + 1).
Actual partition ().

Fig. 14. partition intersection.

Different circuits must be made for each partition because the intersections
can differ. Each circuit represents the action of the elementary local function e
over one tile of one partition. Tt gets its inputs from the corresponding outputs
of the circuits of the previous tilling and send its outputs to the corresponding
inputs of the next circuits. The circuit in Fig. 15 as basis of architecture.

Figure 16 shows circuits and wiring for a two partitions reversible PA. The
thick lines are used for wiring from the first to the second tiling and the thin
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Fig.15. circnit of the i*" partition.

ones for the second to the first. Any number of partitions could be added in this
cycle between the last and the first one.

Yy
141 | 141 |
Y YYVYY

YYvy ) 4

| 123 | U2

Fig. 16. wiring for reversible PA simulation.

A configuration is encoded at the entry of the circuit of the first tiling, in the
thin boxes. O

5.2 Simulating Reversible CA

Since the BBM model developed by Toffoli and Margolus in [14,4] is also able to
simulate Fredkin gates and all kinds of movements, it also verifies the following
result:

Corollary 15. P, is able to strongly simulate any reversible CA.



Proof. This is a simple application of the Theorem 13 that say that any reversible
CA can be strongly simulated by a reversible PA and above Theorem 14 that say
that P, can strongly simulate any reversible PA (strong simulation is a transitive
relation). O

5.3 Non Reversible all Simulator PA

Signal creators and absorbers are created by adding a new symbol x and the
rules in Fig. 17. Injectivity is lost adding the absorption rules.

0 0 0
— — —
* * |0 * * * |0 *
1 1 1
— — —
* * 1 * * * 1 *
(Generation Absorption

Fig.17. added rules for e,,.

If a signal comes in front of the star, it i1s doubled and if i1t comes laterally, it
is destroyed. Putting a star on the side of every garbage lines destroys unwanted
signals.

Theorem 16. Any CA can be simulated by the PA P, .

A path from one a side of a star to the front as in Fig. 18 is enough to make
a clock (or signals every k unit of time). The length of the path will be the
time between signals. Those clocks just have to be put at the needing entries to
provide ongoing endless lines of constants.

\"' \
N

Fig. 18. clock.

The BBM model can also be embedded with a new symbol for creating and
erasing signals.



6 Conclusion

Since there are uniform simulations between PA and CA (theorems 11 and 13),
the following theorems hold are directly deduced from Corollary 15 and Theo-
rem 16 respectively:

Theorem 17. There is a reversible CA that is able to simulate strongly any
reversible PA and any reversible CA.

Theorem 18. There is a unreversible CA able to simulate any PA and any CA.

With the construction of Sect. 3 and the BBM model, these CA have respec-
tively 16 ({_,}*) and 81 ({_, e, %}*) states. Both use Moore’s neighborhood (8
closest, cells).

These results can easily be translated to d-dimensional PA and CA with
2 < d. Only the results of sections 2 and 3 (reversibility of PA and all simulations
between CA and PA and between R-CA and R-CA) and their demonstrations
are still valid in dimension 1.

Corollary 19. There are reversible PA and CA of dimension d + 1 able to
simulate any PA or CA of dimension d.

Proof. Toffoli proved in [12] that a CA of dimension d can be simulated by one
reversible of dimension d 4+ 1. Since there are CA and PA of dimension d+1 able
to simulate any reversible of the same dimension. 0

Partitioning automata are models of massively parallel architectures as pow-
erful as cellular automata. They are quite simple to design and handle.

Tt is proved that there are PA (P,, BBM model) that are reversible and able
to simulate any reversible PA or CA and one (P, ) that is not reversible but
able to simulate any PA or CA. There are also CA that verify those properties.

Now the problem is: what about the other PA and CA of the same dimension?
One thing is sure, if any reversible can simulate any PA or CA then P, and the
BBM also can by transitivity.

Constants can be set such that P, make a single transition of any PA or CA|
but what happens with unbounded iteration?
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