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Sand dripping in one-dimensional Sand Pile Model is first studied. Pat-
terns and signals appear. Their behaviors and interactions are explained
and asymptotic approximations are made. The total collapsing time of a
single stack of sand is linear in function of the number of grains.
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1 Introduction

A one-dimensional sand pile consists of an infinite sequence of stacks. Fach stack holds a
finite number of grains. Sand Piles Model (SPM) and Chip Firing Games (CFG) are dynamic
systems based on local balancing. The total number of grains never changes. They are both
used to model flows in systems, like load-balancing in a processor network in computer
science [6,7] and granular flows in physics [5]. In SPM, if a stack has at least 2 more grains
than the next stack, then a grain “tumbles down” from the first stack to the second. In CFG,
a stack gives a chip to each of its neighbors if it has enough chips to do so.

Goles and Kiwi [2,4] studied one-dimensional SPM and the related CFG. They detailed the
dynamics and proved the convergence for various sequential cases. The problem studied here
is the parallel evolution of a single non-empty stack, as illustrated by Fig. 2.
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This note is organized as follows. Definitions, notations and the equivalence of SPM and CFG
are given in Sect. 2. In Sect. 3, we show that the dynamics are divided in two phases. During
the first phase, the original stack has more grains than any other and always gives a grain
to the second one. During the second phase, the pile stabilizes.

In Sect. 3, we study the first phase by considering an empty configuration which receives a
grain in its first stack at each iteration. It can also be thought of as water dripping from a
tap or sand in an hourglass. Each configuration, encoded in height differences, is partitioned
in four portions of different patterns: 22, 1313, 0202 and 11. The frontiers between them act
like signals.

In Sect. 4, we give the shapes of the configurations and make asymptotic approximations.
The shape increases proportionally to the square root of the number of iterations. It is made
of 2 sections of slopes 1 and 2 and relative length /2.

We go back to the original problem in Sect.5. The focus is laid on the second phase: the
stabilization after the height of first stack reaches the height of the second. New signals
appear. The parallel collapsing time of a unique stack is linear in function of the number
of grains. Compared to the sequential case, the speedup is proportional to the number of
non-empty (active) stacks.

2 Definitions

We use the notation of Goles and Kiwi [4]. The only difference is that our model is parallel.
The one-dimensional sand pile is modeled by a sequence of stacks. Fach stack holds a finite
number of grains. This number is called the height of the stack. Configurations are denoted
with square brackets, i.e. v = [[vo1y ... 11 ]]. We call the difference between 2 stacks (or its
average if more stacks are considered) slope. If a stack has at least 2 more grains than the
next one, then 1 grain tumbles down. This is illustrated by the movement of the grains a, b
and cin Fig. 1. The number of grains in the pile is finite and constant.
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Fig. 1. Fxample of iterations.
Definition 1 Let [(n) be the following threshold function: ¥n € Z, l(n) =1 if 0 < n,

otherwise (. Let v be a configuration. The SPM dynamics are driven by the following transition
function F :



F(I/)O = I/o*l](l/oflﬁ 72) )
0<i, Fv)y =vi—Wvi —vign —2)+ 050 —v5 —2) .

The negatives terms correspond to the possibility of giving a grain to the next stack, while
the positive terms correspond to the possibility of receiving one. All of the stacks are updated
at the same time, in parallel.

In the initial configuration all the grains are in the first stack (number 0). Since grains only
move to smaller stacks, a direct induction shows that only non-increasing sequences are
generated from the initial configuration. This ensures that height differences are all positive.

Any configuration can also be encoded by the list of its height differences # = {( (vo—11) (11 —12) (r2—13) -
With this encoding, the dynamics become:

O(r)o = w0 — 20( 20 — 2) + (21 —2)
\V/i7 0<7:7 @(T)7 = r; + [[(.”177;1 *2) *QD(.???;*Q) + D(.”I?7j+1 *2)

We call these differences of grains chips. The above rule can be stated as: if a site has more
than 2 chips, it “fires” 1 chip to both of its neighbors. This is the chip firing game (CFG).
SPM and CFG are equivalent in a one-dimensional lattice.

2.1 Studied problem

We study the parallel collapsing of a stack of N grains located at the original stack (number
0), i.e. the evolution from [[N]]. Goles and Kiwi [4] have shown that the final configuration
(or fixed point) is straightforwardly defined from the initial configuration, independently
from the updating (parallel, sequential or mixed). The final configuration is a triangle with
all slopes equals to 1 except, maybe for a unique 0. The sequential collapsing time is of order
N?/2_ Figure 2 shows the parallel evolution in the case N = 40. We distinguish two phases.
Before iteration 30, each time a grain falls onto the second stack (number 1). After, the pile
balances and reaches stability.

During this first phase, stacks 1,2,3, ... have a special behavior: starting from nothing, they
are balancing while a grain falls onto stack 1 every time. The new grain, like the other
falling grains, arrives at the end of the iteration. Section 3 and 4 are devoted to this problem:
p® = [[0]] and the following dynamics: p'*" = [[(F(u")o+1) F(u')1 F(u')a F(u')s...]]. The
lower part of Fig.2 shows the first steps of this dynamics. The lengths and heights, as well
as the slopes, exhibit regularity.
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Fig. 2. Collapsing with N = 40.

3 Triangles and signals

Stacks 1,2,3, ... are encoded by height difference on Fig. 3 (steps 1 to 120). Triangles appear
with patterns 22, 1313, 0202 and 11. These patterns are stable. It should be noted that for
the second and third patterns, digits are alternating, like in a chesshoard. Fach configura-
tion seems to be the concatenation of four portions with the following patterns: 22, 1313,
0202 and 11 respectively. We call the limit between 2 patterns and border the limits of the
configurations frontier. We denote I (left), M (middle) and R (right) the frontiers between,
respectively, first and second, second and third, third and fourth patterns. Geometric def-
initions are given in Fig.4. In Fig.3, I and R behave like signals moving on both sides of

M.

Proposition 2 All configurations are of the form:
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Fig. 3. Representation with height differences.

PROOF. We prove the proposition by induction. It is true for the first 120 iterations as it
can be seen on Fig. 3. Interaction only depends on the 2 closest neighbors. Thus it is enough
to look locally at the interactions of the frontiers on Fig. 3. Let us first investigate each signal
alone, from left to right: I is going to the left (right) if it is equal to 2|1 (2|3) (lines 107 to
117); M is not moving (lines 96 to 102); and R is going to the left (right) if it is equal to
0|1 (2|1) (lines 94 to 104). While the proposition is true, only the following encounters are

possible, from left to right: on the left border, I, bounces (lines 59 to 65); when L meets M,
I, bounces and M is moved 1 step to the right (lines 81 to 87); when R meets M, R hounces
and M is moved 1 step to the left (lines 50 to 57). The order is kept, and the only possible
encounter with more than 2 frontiers is I-M-R. The meeting can be exactly synchronous
(lines 40 to 44) or not (lines 62 to 67 and 103 to 109). In all cases the order is respected and
no other case arises. 0O

The dynamics of the signals, I, and R, are plain and simple, except when one of the signals
reaches one of its limits. When I reaches the left border, it bounces back. When I, or R
reaches M, M is pushed one step and the signal propagates back. When R reaches the right
border, it bounces back and pushes the border outwards in one position; the total length
is increased by 1. When R comes back to the center, we known that the total length was
incremented by 1.
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Fig. 4. Geometric definitions of G, D, T, H, I, and M.

4 Asymptotic behavior

Partitions are made of two sections. The left section, amounting for patterns 22 and 1313, is
of slope 2. The right section, amounting for patterns 0202 and 11, is of slope 1. We denote
(G and D the lengths of these sections. In this Section, we investigate the evolution of the

ratio D/G.

Let GG and Dy be the values of G and D at the time of the k' return of R to the middle
border M. Between 2 returns of R, the total length is increased by 1. The right section D
is increased by 1 on each return of R and decreased by 1 on each return of L. It is the
opposite for the left section (G. Let ~; be the number of returns of . to M between the
E" and k41" veturn of R to M. The following relations hold: G4y = G — 1 + 75 and
Divi =D +1 —v 4+ 1.

Lemma 3 Fach time that R goes back to the center, either (G}, or Dy is incremented by 1
and the other is not changed and Gy < Dy <2Gpyq and 1 < < 2.

PROOF. If D, < Gy then there is at most 1 return of L to M (0 <~ < 1), only the right
section 1) increases. If 2 < Dy then there are more than 2 returns of I, (2 < ;) and only
the left section (7 increases. In both cases, the inequalities are changed in a finite number of
iterations.

If Gy < Dy < 2Gy, then there are 1 or 2 returns of I to M (1< v, <2) and Gy and Dy only
vary by 1. In the next collision, nothing more than equality can happen (Gry1 < Dy <
2Gr41). In the case of equality, G, and Dy can only go back to inequality as explained above.
It can be seen geometrically in Fig.3 that the inequality is verified. The Lemma follows by



induction. 0O

Theorem 4 The ratio DG converges to \/2.

PROOF. The proof is only sketched; all details can be found in [3]. Let us consider 2

integers p and ¢ such that the following relation is true:

D 1
<P Do opt oy (1)
q e q

with the following hypothesis over the integers p and ¢: 1 < ¢* < p? < G < Dy, and
(26> + ¢)/2G, < 1. Since 1 < D, /G, < 2, such p and q exist. Since Dy and (), tends to
infinity, with & large enough p and ¢ are arbitrarily large.

The round trip delay for a signal is twice the length of its corresponding section (plus 1
if the signals are not synchronized in the center). Let A; be the time for R to go back
g times to the center. From Lemma3, D, < D,y < Dy + g for 0 < 12 < g, so that:
2Dy < Ay < g(2(Dy+q) +1).

Equally, Gy < Gy < G+ g for 0 <1 < g. Let a be the number of times that . reaches
the center during ¢ loops of R, the following statement holds: 2¢D./(2(Gy 4+ ¢q) + 1) <
ANJR(GE+q)+ 1) <a<AJ2GL+T1 < q(2(Dy 4+ q)+1)/2G, + 1. Enlarging these bounds,
we found that: p—1 < o < p43. After g loops of R: Gy, = Gi+a—qand Dy, = Dy—a+2q
(the last +¢ comes from the right border).

Relation (1) can also be written: pGy < gDy < (p41)Gy. With the new values: (p—1)Gry, <
q(Dr— a+2q) = gDy, And for the right section: gDy, = g(Dr— a+2¢) < (p+1)Gryy +
2¢* +2q+1 — p*. To get the previous two equations, we use the hypothesis made over p and
g in (1). Gathering both bounds, we get:

1 D 2
p < k+g < p+ _
q Grtq q

(2)

This means that the ratio does not change by more than 2/q. We investigate the evolution of
the inverseratio: Dy, /Grrg— Di/Gr = (2g—a—(a—q) D /Gr) /(G + (o — q)). Since pand ¢
(thus a) are much smaller than Gy, and Dy and Gy are positive: sgn (Dyyy/Gryg — Di/Gr) =
sgn (2g — o — (a — q) Dy /GL). Since (), only increases, 0 < o — ¢ and 2¢* — (p + 4)? <
q(2g — o — Dp/Gr(a—q)) < 2¢* — (p—2)%. Remember that 2 < ¢ < p < 2¢ (from Lemma 3
and (1)). Let A =2g—a—(a—q)Gy/Di. Tf (p+4) /g < V2then 0 < 2> (p+4)2,0 < 1/g < A
and Dy, /Gy, is increasing. If /2 < (p—2)/q then 2¢> — (p+4)? <0, A< —1/g < 0 and D /G,
is decreasing. Finally, the ratio does not change by more than 2/q. Tt goes toward /2 if it
is more than 4/q away from it, in this case: 1/¢Gr(1 + o — q/Gr) < |Dpry/Grrqg — Di/Gi|-
Since (G is at most linearly increasing (in k) and ¢ and « are bounded, the sum of above



terms diverges. This ensures that the ratio goes back to somewhere less than 4/q away from

V2. From this, after some time, D/}, does not differ from V2 by more than 6/q.

When n tends to infinity, so do k, Gy and Dy (for geometric reasons), so do the possible p
and ¢ for (1) and 1/¢ tends towards zero. The ratio D; /Gy converges to V2. Since D), —= oo
when k increases and G (D) differs by at most 1 from the next Gy (Dy). O

Let H and T be, respectively, the mazimum height (height of the first stack) and the total
length (number of non-empty stacks) of the configuration. Theorem 4 and the fact that all
quantities go to infinity allow us to relate them to the number of fallen grains n which is
also the total area of Fig. 4, i.e., of the 2 triangles and of the rectangle:

2
noA DTJFG.DJFG2 ~ (24V2)G?

n n
G =~ Da~V2GE =~
242 v V241 (3)
2142
0o~ Jeava)e . T a(4vDGe ~ 212,

It should be noted that both triangles of Fig. 4 have almost the same area, G2. The first phase
of the original problem ends when the difference of the heights of the first and second stacks
is less than 2. Let T.(N) be the number of iterations before the phase changes, N —T.(N) ~

\/(2+\/§)TC(N). Since VN < N, N =~ T.(N) thus:

Theorem 5 The duration of the first phase is

TN) = N~ J2+VIN + oVW)

5 Second phase of the collapsing

We consider that the I signal is away from the left border (original stack). The beginning
of the configuration is 22... The evolution is like in the first diagram of Fig. 5. Three new
signals appear, from left to right: a new left signal I/ pushing right a new middle frontier
M’ and a signal I (end of first phase) going to the right. The last two diagrams of Fig.5
show what happens when [, is present at the beginning of the stabilizing phase. The signal
[ is destroyed, the end signal £ does not appear and neither does the static border B.

The local updating function is symmetric: changing = by —x, it remains the same. We use
this property to restrain the cases because I/ and R, and M’ and M, behave symmetrically.
Fach time, only one case is considered.
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5.1  Asymptotic Time

We summarize the interactions of the second phase in Fig. 8. Special cases studied above are
not indicated and can always be considered as gains of time.

First phase f t } }
—I— M —~R— T
Beginning of the second phase — f f f f f f
/=M FE— <+IL—- M ++R— T
Apparition of the static border f f f } t t t
I =M B M —~R— T
Disappearance of the static border f t t t t
/= M M —R— T
Disappearance of the middle frontiers f T T
I/ — +—R— T

Fig. 8. Steps of the collapsing.

The static border B is not important to the dynamics, it only helps one of the 2 borders,
M’ or M, to advance faster. Border M’ (M) is only pushed to the right (left) by I/ (R). To
approximate, we neglect the fact that M is going towards M’ (M’ is faster because I has a
shorter way to come and go). Let dg be the distance that M’ has to cross to reach M. Tt is up-
bounded by My, the position of M plus 1 (1. might move M hefore disappearing). M’ moves
1 stack to the right each time ' comes back. To reach My, it needs ZK% 2.0 = Mo(My+1).

From (3), My =/ N/(2+ \/5) + o(m) At most N/(2 + \/5) + o( N) iterations are needed.

Signals I/ and R need at most 2/ N iterations to join. Together with the time of the first
phase given in Theorem 5 becomes:

Theorem 6 The collapse time of a unique stack in the one-dimensional SPM, Tpm(/\o, is
linear in the number of grains. It is bounded by: N 4+ o0(N) < Toae(N) < N(14+1/(24V2)) +
o(N).

Let us recall the last result of [4, Part 3|: Q(N) < T (N) < O(n3/2). We have found that
the time is linearly bounded from above. Tt cannot be less since O(n'/2) stacks (processors)
are used to make exactly the same things as in sequential (parallel speedup limit).

6 Conclusion

The parallel collapsing time of a single stack in one-dimensional SPM is linear in function
of the number of grains N. In the sequential case, Goles and Kiwi [4] have shown that the
stabilization time was of order N2, ITn comparison, the speedup is v/N which is the number
of nonempty stacks. This is a real parallel process.

The dynamics are decomposed in two phases: dripping then stabilizing. During the dripping
process, configurations are made of two different sections of slopes 2 and 1. The ratio of their
relative lengths tends to v/2. During the second phase, there are three sections of slopes 1, 2
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and 1. We found asymptotic approximation for the different parameters of the configurations.
The signal encoding techniques developed here can be used to study dynamic systems as in

1]

If the original stack is in the middle of the pile, then the dripping is symmetrical on both
side. During the second phase, left signals . meet, bringing some disturbances, but all in all
the process is still in linear time.

With respect to the CFG, we have a different result than Anderson et al. in [1]. This comes
first because they do not bound the number of grains which can tumble from a stack to the
next one; in our study, it is at most 1. The other reason is that their starting configuration

is[... NNNOOO ...] while ours is [N 00O ...] as already stated by Goles and Kiwi [4].

We believe that the time bound for the total collapsing time of any finite configuration is
also bounded by the number of grains.

Thanks

I am very grateful to the anonymous referees who helped us to correct our english and to
find the final title.
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