
Laboratoire Bordelais de Recherche en Informatique,ura cnrs 1 304,Université Bordeaux I,351, cours de la Libération,33 405 Talence Cedex,France. Rapportde RechercheNuméro 1157-97Grain Sorting in the One-dimensional Sand Pile ModelJérôme Durand-Lose�labri, ura cnrs 1 304, Université Bordeaux I, 351, cours de la Libération, F-33 405 Talence Cedex,France. AbstractWe study the evolution of a one-dimensional pile, empty at �rst, which receives a grain in its �rststack at each iteration. The �nal position of grains is singular: grains are sorted according to their parity.They are sorted on trapezoidal areas alternating on both sides of a diagonal line of slope p2. This isexplained and proved by means of a local study. Each generated pile, encoded in height di�erences, is theconcatenation of four patterns: 22, 1313, 0202, and 11. The relative length of the �rst two patterns andthe last two patterns converges to p2. We make asymptotic expansions and prove that all the lengthsof the pile are increasing proportionally to the square root of the number of iterations.1 IntroductionWe consider an in�nite sequence of stacks. Each stack can hold any �nite number of grains, this number iscalled the height of the stack.The Sand pile model (spm) and Chip �ring games (cfg) are based on local interactions. Both modelsconserve the total number of grains. In spm, a grain goes to a neighbor stack if the height di�erence betweenstacks is more than a given threshold; whereas in cfg a stack gives a chip to each of its neighbors if itsnumber of chips is above a certain value [3, 4]. In the one-dimensional case, both models are one-dimensionalcellular automata and they are equivalent via some simple encoding.Both spm and cfg, like Petri nets [11], are used to model in parallel computing the �ows of informationin systems. spm is used to model gradian-driven dynamic load balancing. Grains model data or tasks,and stacks, a processor network [12]. The aim is to �nd a simple, fast, and relatively inexpensive localrearrangement which ensures that all processors have almost the same amount of work.spm is important for granular �ows in physics. It admits invariants, entropy like functions, and veri�esthe so-called �Self-organized criticality� and is related to the �1=f phenomenon� [2, 9, 10, 13].The sequential one-dimensional spm and the related cfg are studied in [6, 7, 8]. They have proved theuniqueness of the �nal pile whatever the order of the iterations as well as described the dynamics in varioussequential cases.The problem studied in this paper is the parallel evolution of a one-dimensional spm, empty at �rst,which receives a grain onto its �rst stack at each iteration. It can also be seen as sand dripping in a thinbut long hourglass.In section 2, we de�ne the spm and cfg models and recall that they are equivalent in dimension one. Wealso de�ne the dripping process studied.�jdurand@labri.u-bordeaux.fr, http://dept-info.labri.u-bordeaux.fr/�jdurand.1



In section 3, we prove that the generated piles, in height di�erences, are made of four patterns: 22, 1313,0202 and 11. The frontiers between patterns act like signals. The silhouette of each pile is made of two partsof di�erent slopes: 2 then 1.In section 4, grains are marked depending on their parity. Even and odd grains are arranged in a veryspecial way: they are located in trapezoidal areas alternating on both sides of a diagonal line of slope p2.We explain this by looking locally at the interactions between moving grains and signals.In section 5, we give asymptotic approximations of the di�erent parameters. We do this by making acontinuous approximation of the pile and use a di�erential resolution as in [1]. We prove that the lengthof the part of slope 1 is p2 times the length of the part of slope 2 and that the lengths of all the piles areincreasing proportionally to the square root of the number of iterations.2 De�nitionsThe one-dimensional sand pile is an in�nite sequence of stacks. Each stack can hold any �nite number ofgrains. We use the notation from [8], the di�erence is that our model is parallel.A pile is encoded by the sequence of the number of grains, or height, of the stacks. It is then denotedwith square brackets: � = [[ �0 �1 : : : �k ]]. We call slope the di�erence of height, �i��i�1, between twoconsecutive stacks. If more stacks are considered, the slope is the average slope.If a stack is higher by at least two grains than the next stack, then one grain �tumbles down.� This isdepicted by the movement of the grains a to f in Figure 1.The starting pile is empty. At each iteration, a grain falls onto stack number 1. Grains c to f in Figure1 are the newly arrived grains. The number of grains is �nite. Except for the grain added to the pile at eachiteration, the number of grains is constant. The number of grains is then equal to the iteration number.--- --- ---[[ 6 4 2 2 ]]hh 2 2 0 2 iic b a [[ 6 4 3 1 1 ]]hh 2 1 2 0 1 iid c b a [[ 6 5 2 2 1 ]]hh 1 3 0 1 1 iie dc b a [[ 7 4 3 2 1 ]]hh 3 1 1 1 1 iife dc b aFigure 1: Iterations 14 to 17.Since grains are only moved to smaller stacks, a direct induction proves that only decreasing sequencesare generated from the initial pile. A pile is now an element of NNdecreasing to zero. This ensures that theheight di�erence between any two consecutive stacks is always positive.De�nition 1 Let (n ) be the following threshold function: 8n 2Z, (n )=1 if 0 � n, otherwise 0. Let �be a pile. The dynamics of spm with dripping is driven by the following transition function F :F (�)0 = �0� ( �0 � �1 � 2 ) + 1 ;0 < i; F (�)i = �i� ( �i � �i+1 � 2 ) + ( �i�1 � �i � 2 ) :The negative terms correspond to the possibility of giving a grain to the next stack, while the positiveterm corresponds to the possibility of getting a grain from the previous stack. All the stacks are updated atthe same time, making this is a parallel process.De�nition 2 A pile can be encoded by the list of the height di�erences between stacks: for any pile �' (�) = hh (�0��1) (�1��2) (�2��3) : : : ii. With this encoding, the transition function becomes:�(x)0 = x0 � 2 (x0 � 2 ) + (xi+1 � 2 ) + 1 ;8i; 0 < i; �(x)i = xi + (xi�1 � 2 ) � 2 (xi � 2 ) + (xi+1 � 2 ) :2



We call the di�erence of height of one between a stack and the next one chip. De�nition 2 is equivalentto a stack having more than two chips and �ring one to both neighbors. This is the chip �ring game (cfg).In a one-dimensional lattice, spm and cfg are equivalent with this encoding.
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Figure 2: Iterations 0 to 50.Figure 2 illustrates the �rst 50 steps of this dynamic. The lengths and heights, as well as the slopes,exhibit some regularity. After some iterations, there are two straps of triangles drawn on the surface asdepicted in Figure 3 for iteration 100 to 150.3 Triangles and signalsPiles are encoded in height di�erences in Figure 4 (steps 1 to 120). Triangles appear with patterns 22, 1313,0202, and 11. Those patterns are stable. It should be noted that for the second and third patterns, digitsare alternating, like in a chessboard and the frontier between them is either 12 or 30.Let " be the empty word. The Kleene operator is denoted *; that is, (13)� is " or 13 or 1313 or 131313: : : . We use the theory of languages in the next proposition in order to get a synthetic expression.Proposition 1 The pile, encoded in height di�erences, is a word of the following language:2� ( " j 3 ) ( 1 3 )� ( " j 1 2 ) ( 0 2 )� ( " j 0 ) 1� :Proof. We prove proposition 1 by induction. It is true for the �rst 120 iterations, as can be seen in Figure4. Interaction, as expressed in de�nitions 1 and 2, only depends on the two closest neighbors. It is enoughto look locally at the interactions of the frontiers in Figure 4.Suppose that the nth pile is the concatenation of four parts with the patterns 22, 1313, 0202, and 11respectively. We call frontier the limit between two patterns and border the limits of the pile. We denote L(left), M (middle), and R (right) the positions of the frontiers between respectively; �rst and second, secondand third, third and fourth patterns. They are represented in Figure 4 where L and R behave like signalsmoving on both sides of M . Geometric de�nitions are given in Figure 5.First we investigate each signal alone, from left to right: L is going left (right) if it is equal to 2j1 (2j3)(lines 107 to 117); M is not moving (lines 96 to 102) and R is going left (right) if it is equal to 0j1 (2j1) (lines94 to 104). While the proposition is true, only the following encounters are possible, from left to right: on3
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Figure 3: Iterations 100 to 150.the left border, L bounces (lines 59 to 65); when L meets M , it bounces and M is moved one step to theright (lines 81 to 87); when R meets M , it bounces and M is moved one step to the left (lines 50 to 57).The order of the signals is kept and the only possible encounter with more than two frontiers is L-M -R.The meeting can be exactly synchronous (lines 40 to 44) or not (lines 62 to 67 and 103 to 109). In all casesthe order is kept and no other case arises. �The dynamics are very simple except when signal L or R reaches one of its limits; the rest are only lineardisplacements. When L reaches the left border, it only bounces back. When R reaches the right border, itbounces back and the total length is increased by one. When R comes back to the center, the total lengthhas been increased by one.In height di�erences, piles are the concatenation of four parts of patterns 22, 13, 02, and 11 respectively.The two �rst parts have a slope of 2 while the two last parts have a slope of 1. This explains the shape ofpiles (in heights) as depicted in Figure 5.4 Labeling grainsGrains are labeled according to the iteration during which they enter the pile. In Figure 6, at iteration 5000,all odd grains are spotted in black. Their localization is singular.The odd grains, like the even ones, are located on trapezoidal areas delimited by the axis, lines of slope 1and 2, and a diagonal line. These areas are alternating like in a chessboard. The diagonal separation seemsto be a straight line.There is also some kind of relation between the intersections of the line of slope 1 and 2 with the axisand the edges in the middle as depicted in Figure 6. We do not have any explanation nor proof for thisphenomenon yet. Nevertheless, if the diagonal separation is a line, because of such coincidences, its slopewould be: a=b = (b+ 2a)=(a+ b) which leads to b=a =p2. We prove in section 5 that indeed it is a straightline with slope p2. 4
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--� G -�D
6?2:G+"16?D+"2 1 11 2 L M R "1, "2 2 { -1, 0, 1 }Figure 5: Geometric de�nitions of G, D, L, and M .Theorem 1 Odd and even grains are always sorted in trapezoid areas delimited by a diagonal, lines of slope1 and 2, and the axes.With �gures 7 through 11, we prove that the grains are always on either side of the frontier, depending ontheir parity. In all these �gures, grains are either black or white depending on their parity. Grains for whichparity is unknown are drawn with a little circle. The grains which do not move any more are represented bytheir silhouette.Let us �rst consider that signal L is away from the left border. Even and odd grains come alternatly andgo down the pile one after the other as depicted in Figure 7. Grains behave like a wave of marbles on stairs.From this, a direct induction proves that the pattern 22 corresponds to an even-odd wave of grains. Let5
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2aFigure 6: Position of the odd grains (in black).2 2 2 2-----? �! 2 2 2 2----?- �! 2 2 2 2---?-- �! 2 2 2 2--?--- �! 2 2 2 2-?----Figure 7: Arrival of new grains.us consider that signal L is going right. As depicted in Figure 8, the wave is just going down with scarcegrains running in front of it.Going right, the signal L encounters the middle border M as depicted in Figure 9. The �rst grain crossesthe border and because of the height di�erence 1, the second gets locked. The third passes over the secondand restrains the fourth from passing, and so on.The phenomena of one grain getting locked and the next passing over it, one layer up, is the way thesignal L goes right as depicted in Figure 10. When L reaches the left border, it ends building a layer andgoes back to the middle on the new layer as depicted in Figure 10. In comparison to Figure 7, we know nowthat the grains that are running in front of the wave are all of the same parity. The �rst grain of the wave isof the same parity as the �rst grain of the previous wave, which is also the parity of the grains the runningscarce grains, so that the phenomena starts again and loops.We now consider signal R. When R is away from the middle M , it has no action whatsoever since theselection of grains is made before. Signal R only orders the grains on layers in the right part. When L orR meets M it only moves it and that does not change the dynamic of Figure 9. But, when all three signals6



- -- - -2 2Lj3 1 3 1 �! - -- - -2 2 2Lj3 1 3 �! - - -- - -2 2 2 2Lj3 1Figure 8: Signal L goes right.-- - -2j3 1j2 0L M �!- -- -2 2j3j0 2LM �! - -- - -2 2 2 2j0 �!- --2 2 2j1 2- �! --2 2j1 3j0--L M �!-2j1 3 1j2- -L MFigure 9: Signal L reaches the middle border alone.- -- --2 2 2 1 3 1Lj? �! -- --2 2 1 3 1 3Lj? �! - ---2 1 3 1 3 1Lj? �! ---1 3 1 3 1 3Lj? �! - ---3 1 3 1 3 1Lj? �! -- ---2 3 1 3 1 3Lj?Figure 10: Signal L goes left and reaches the left border.L, M , and R meet, things are di�erent as depicted in Figure 11. This time, the fate of odd and even grainsare switched. The changes in the destination of odd and even grains in Figure 6 are directly linked to thesynchronous encounter of L and R detailed in section 3.--2j3 1j2 0L M Rj- �! - --2 2j3j0j1LMR �! -- -2 2 2j1 1 �! --2 2j1j2j1LMR- �! -2j1 3j0 2L M Rj- -Figure 11: Signals L and R exactly synchronized.In Figure 6, the separation lines represent the silhouettes of piles at some iterations and the diagonalseparation is the trace of the middle border M .Since there are as even grains as odd grains, the two symmetric areas in Figure 6 have the same surface,7



that is, they correspond to the same number of grains.5 Asymptotic behaviorAll the results in this section can also be found in [5]. The proof of [5] is too long to �t here, we give ashorter one that we feel is more like an a posteriori veri�cation.Theorem 2 The diagonal separation is a line of slope p2.The value of G increases (decreases) by one for each round trip of L (R). The value of D decreases(increases) by one (two) for each loop of L (R). The round trip delay for a signal is twice the length of thepart it evolves in, up to a constant. Since every quantity can go to in�nity, when G and D are very big, theequations can be extended to continuity as in [1]:8>>><>>>: dG = dt2:G � dt2:D ;dD = � dt2:G + 2 dt2:D :These equations can be solved with the hypothesis D = p2 G which comes from the observations ofsection 4. It leads to: G:dG = �12 � 12p2� dt :With this hypothesis, the possible solutions are:G = sp2� 1p2 t+ c ;D = p2 G = r�p2� 1� t+ 2c :Where t is the time (or number of fallen grains or number of iterations) and c is a constant.From Figure 5, the number of fallen grains n is also the total area, that is, of the two triangles and ofthe rectangle. We get the following approximations:n � D22 + G:D +G2 � (2 +p2)G2 ;G �r n2 +p2 ;D � p2G �r np2 + 1 : (1)It should be noted that both triangles of Figure 5 have almost the same area, G2. This is coherent withthe surface observations of section 4. The rectangle is equally parted by the diagonal, and even and oddgrains are equally parted on both sides of the diagonal.8



6 ConclusionA more random distribution of odd and even grains might have been expected, on the contrary grains aresorted. This is important, because if even and odd grains, or tasks, are very di�erent, in a one-dimensionalprocessor array sequentially fed using a spm load balancing technique, disparities arise. When taken modulo3, 5, or more, there is no such segregated location as before, grains are more uniformly spread.The way grains spread as a wave and are �xed in the silhouette is very interesting. It gives a physicalmeaning to the signals. When L goes right it spreads grains. When it goes left, it makes a one over twoselection. Signal L is going right and left while the grains are always running to the right.The signal R is acting similarly. When it goes right it is spreading the grains on a new layer, opening it.When it goes left it �xes them. When grains and signals are going in opposite directions, since they havespeed one, signals only meet every other grain.These signals, from a physical point of view, are very interesting because they correspond to waves on apile of sand that can be seen when you dig at the bottom.We have proved that the pile is expanding in the square root of the number of fallen grains (or iterations).This is absolutely normal when one considers that the grains (linear) are �lling a surface (quadratic). Therelative length of the two parts is p2.To compare with the work in [1], on the one hand, they found a quadratic relaxation time for the cfgstarting with the pile ::: 0 0n 0 0 ::: and �nal pile ::: 0 0 1 1 :::1 10 ::: . But when considered as stacks of grains,they correspond to ::: n nn 0 0 ::: and ::: n n (n�1) (n�2) ::: 2 1 0 ::: respectively. This is a very di�erent casebecause of the in�uence of the left border which is high and feeds grains to the right part. On the otherhand, they also observed geometric patterns and signal propagations.AcknowledgementsThis work was partially supported by ECOS and the French Cooperation in Chile.This research was done while the author was in the Departamento de Ingeniería Matemática, Facultadde Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile.References[1] R. Anderson, L. Lovász, P. Shor, J. Spencer, E. Tardos, and S. Winograd. Disks, balls and walls:Analysis of a combinatorial game. American Mathematical Monthly, 96:481�493, 1989.[2] P. Bak, T. Tang, and K. Wiesenfeld. Self-organized criticality: An explanation of 1=f noise. PhysicalReview Letters, 59(4):381�384, 1987.[3] J. Bitar and E. Goles. Parallel chip �ring games on graphs. Theoretical Computer Science, 92:291�300,1992.[4] A. Björner, L. Lovász, and P.W. Shor. Chip-�ring games on graphs. European Journal of Combinatorics,12:283�291, 1991.[5] J. O. Durand-Lose. Automates Cellulaires, Automates à Partitions et Tas de Sable. PhD thesis, labri,1996. In French.[6] E. Goles and M. Kiwi. Sand-pile dynamics in one-dimensional bounded lattice. In Boccara, Goles,Martinez, and Picco, editors, Cellular Automata and Cooperative Systems, pages 211�225. Kluwer,1991.[7] E. Goles and M. Kiwi. Dynamics of sand-piles games on graphs. In latin'92, number 583 in LectureNotes in Computer Science, pages 219�230. Springer-Verlag, 1992.[8] E. Goles and M. Kiwi. Games on line graphs and sand piles. Theoretical Computer Science, 115:321�349,1993. 9
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