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Abstract. This paper deals with simulation and reversibility in the con-
text of Cellular Automata (CA). We recall the definitions of CA and of
the Block (BCA) and Partitioned (PCA) sub-classes. We note that PCA
simulate CA. A simulation of reversible CA (R-CA) with reversible PCA
is built contradicting the intuition of known undecidability results. We
build a 1-R-CA which is intrinsically universal, i.e., able to simulate any
1-R-CA. These results extend to any dimension.
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1 Introduction

Cellular Automata (CA) model parallel computing as well as physical phenom-
ena. They operate over regular infinite discrete lattices of finite dimension (Zd).
Points are called cells and take a value from a finite set of state (Q). A CA iter-
ation is the replacement of every state according to the states of the neighboring
cells and a unique local function. This replacement is a local, uniform, parallel
and synchronous update.

Reversibility is used for backtracking a phenomenon to its origin as well
as for preserving information and energy. The posibilities of reversible CA (R-
CA) have been investigated from the 60s: the equivalence between bijectivity
and injectivity by Moore [1962], Myhill [1963]; in the 70s: the equivalence of
reversibility and bijectivity by Hedlund [1969] and Richardson [1972] and the
decidability of reversibility in dimension 1 by Amoroso and Patt [1972]; to its
undecidability in higher dimension by Kari [1990, 1994].

The computing power of R-CA as well as their simulation powers was par-
ticularly investigated in Toffoli and Margolus [1990]. Bennett [1973] proved that
reversible Turing machines can simulate any Turing Machine. In 1977, Toffoli
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[1977] proved that R-CA of dimension d +1 are able to simulate any d-CA and
thus are computationally universal in dimension 2 and higher. To built universal
R-CA, (in dimension 2) Partitioned CA and (in dimension 1) Block CA were
independently defined as special CA for which reversibility was decidable.

As defined by Morita [1992, 1995], the states of Partitioned CA (PCA) are
partitioned according to the neighborhood and only the corresponding pieces of
states are available to any cell. Sub-states are gathered to form one state to be
updated. The local function operates over the finite set of states Q rather that
over two sets of different cardinality. Thus it can be bijective and this directly
defines the reversibility.

? and Toffoli and Margolus [1987] define Block CA (BCA) to built the
Billiard Ball Model (BBM), a computation universal 2-R-CA. For BCA, the un-
derlying lattice —not the states— is partitioned into identical blocks regularly
displayed. A transition is the replacement of all the blocks of a partition by their
images by a unique local transition function. Again, since the local function
operates over one finite set, it can be bijective. Originally, BCA were named:
“Partitioning CA”. Morita defined independently Partitioned CA. To avoid con-
fusion in this article, we refer to Partitioning CA as Block CA (BCA) following
Kari [1996] that names Block Permutations bijective transitions.

A configuration is finite if all but a finite number of cells are in a define state.
In 95, Morita [1995] proved with PCA that any CA can be simulated by R-CA
over finite configurations. This is enough for computing since it only treats finite
information. But for physical modeling and as mathematical abstractions, there
is no reason to restrict to such configurations. Moreover, finite configurations
are a strict subset of recursive configurations (recursive mapping from Zd to Q)
which are far from covering all configurations.

Trivially, BCA and PCA are CA. Although BCA and PCA are sub-classes
of CA, they are able to simulate any CA. It was proved in Durand-Lose [1995,
1996] that R-BCA can simulate R-CA (in any dimension with extra states). This
was a 1990 conjecture by Toffoli and Margolus [1990] which was independently
proved (for dimension 1 and 2 only) in Kari [1996]. One of the results in the
present paper is that R-PCA can also simulate R-CA.

The main result of this paper is the existence of an intrinsic universal R-CA:
i.e. an R-CA capable of simulating all R-CA of the same dimension. This is one
step ahead of the results in Durand-Lose [1995], where BBM is proven to be
intrinsically universal for 2-R-CA, i.e., able to simulate any 2-R-CA. The results
and methods developed in Durand-Lose [1995] extend to higher dimensions, but
do not hold for dimension 1. Our extension for dimension 1 is done differently,
using PCA and an explicit R-PCA code which was not the case before. The
intrinsic universality of U is proven from the existence of simulations between
R-CA and R-PCA and then on R-PCA. It extends to higher dimensions.

In the intrinsically universal 1-R-PCA is constructed in layers: sub-states
are organized in 10 layers for identification, delimitation, table, signals, value,
and translation of data. The dynamic is totally driven by signals which exchange
values, test for equality, update when it should be done and move data around.
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It is a signal like approach to computation with a posteriori tests to ensure
reversibility.

In Sect. 2, we define the three CA models and show the decidability of re-
versibility for PCA and BCA. In Sect. 3, we build simulations of CA with PCA,
BCA with PCA and R-CA with R-PCA. In Sect. 4, we built the intrinsically
universal 1-R-CA.

2 Definitions

Cellular automata (CA) define mappings over d-dimensional infinite arrays over

a finite set of states Q. The set of configurations is c = QZd .
Let [[a, b]] denotes the integers from a to b included. Let +, mod, div and

. denote respectively the coordinate-wise ordering, addition, modulo, Euclidean
division and multiplication over Zd i.e.: ∀x, y ∈ Zd, ∀k ∈ [[1, d]], (x+y)k = xk+yk,
(xmod y)k = xk mod yk, (xdiv y)k = xk div yk and (x.y)k = xk yk. For any
configuration c and subset E of Zd, c|E is the restriction of c to E. For any

x ∈ Zd, σx is the shift by x (∀c ∈ c,∀i ∈ Zd, (σx(c))i = ci+x). Periodicity is to
be understood as on every direction.

A Cellular Automaton of dimension d (d-CA) is defined by (Q,N , f). The
neighborhood N is a finite subset of Zd. The local function f : QN → Q maps the
states of a neighborhood into one state. A configuration is a mapping from Zd

onto Q. The sets of all configurations is denoted C (= QZd). The global function
G : C → C maps configurations into themselves as follows:

∀c ∈ C, ∀x ∈ Zd, G(c)x = f
(
(cx+ν)ν∈N

)
.

The new state of a cell depends only on the neighbor states as depicted by
Fig. 1(a).

A Partitioned Cellular Automaton of dimension d (d-PCA) is defined by:
(Q,N , Φ). The set of states is a sets product indexed by the neighborhood:
Q =

∏
ν∈N Q

(ν). The ν component of a state q is noted q(ν). The local function
f is defined with function Φ : Q→ Q as follows:

∀c ∈ C, ∀x ∈ Zd, G(c)x = Φ

(∏

ν∈N
c
(ν)
x+ν

)
.

The local function works only with what remains and what is received. Only
partial information is accessible to a cell, even about its own state as depicted
by Fig. 1(b).

A Block Cellular Automaton of dimension d (d-BCA) is defined by:
(Q, v, n, (o(j))1≤j≤n, t). The size v is an element of Zd such that ∀k ∈ [[1, d]],

0 < vk. All o(j) are coordinates modulo v: o(j) ∈ Zd and ∀k ∈ [[1, d]], 0 ≤ o
(j)
k <

vk. Block V is the subset [[0, v1 − 1]] × [[0, v2 − 1]] × · · · × [[0, vd − 1]] of Zd. The
local transition t is a function over QV .
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The block transition T is the following mapping over C: for any c ∈ C and i ∈
Zd, let a = idiv v, and b = imod v, so that i = a.v+ b, then T(c)i = t(c|a.v+V )b.
In other words, the block containing i in the regular partition with blocks of
size v originated from 0 is updated according to t. The same happens for all
the blocks of this partition. The block transition of origin o, To is σo ◦ T ◦ σ−o.
It is the original one with the partition shifted by o. The global function is the
composition of the transitions of origins o(j): G = To(n) ◦To(n−1) ◦ · · · ◦To(1) . This
is illustrated on the right part of Fig. 1 with 2 partitions and v = (3). Since
partitions come in a cycle, we assimilate n+1 with 1, and 0 with n from now on.

A new state of a cell depends only on the neighbor states accessed by blocks
as depicted by Fig. 1(c).

To see that BCA are indeed CA, consider the blocks of the first partition to be
cells. At this scale, the global function commutes with any shift and is continuous
for the product topology, according to a theorem of Richardson [1972], it is a
CA. A constructive proof can be found in Durand-Lose [1995].

f f f f

(a) Cellular automata

G Φ Φ Φ Φ

(b) Partitioned CA

G
t t t t

t t t

(c) Block CA

Fig. 1. Schematic CA, PCA and BCA updatings.

2.1 Reversibility

A CA (resp. PCA, BCA) is reversible if and only if its global function G is
bijective and G−1 is the global function of some CA (PCA, BCA). Let R-CA
(R-BCA, R-PCA) denote the class of reversible CA (PCA, BCA). The main
decidability result is:

Theorem 1. The reversibility of CA is decidable in dimension 1 Amoroso and
Patt [1972] but it is undecidable for higher dimension Kari [1990, 1994].

Whereas for PCA and BCA, the following lemmas hold in any dimension.

Lemma 1 (Morita). A PCA is reversible iff its local function Φ is a permuta-
tion (which is decidable).

Proof If Φ is a permutation, then the inverse PCA is
(∏

ν∈−N Q
(−ν),−N , Φ−1

)

where−N = {−ν|ν ∈ N}, Φ is undone and pieces of states send back. Otherwise,
since Φ works on a finite set, it is not one-to-one and it is easy to construct 2
configurations which have the same image.

Decidability comes from the finiteness of the domain of Φ. q.e.d.

4



Lemma 2 (Margolus). A BCA is reversible iff its local transition t is a per-
mutation (which is decidable).

Proof If the local transition t is a permutation, by construction, any transition
is reversible. The global transition as a composition of transitions, is reversible.
Otherwise, t is not one-to-one, then neither is any transition, and neither is the
global transition.

Decidability comes from the finiteness of the domain of t. q.e.d.

As far as reversibility is concerned, BCA and PCA fundamentally differ from
CA. It is known that bijectivity for CA is equivalent to reversibility [Hedlund,
1969, Richardson, 1972] and that there exists CA that are surjective but not
reversible. By a local inspection, it is easy to prove that for any surjective BCA
or PCA the local transition must be a permutation.

3 Simulations

An automaton A simulates another B in linear time τ if there exist two functions
α and β such that ∀c ∈ CB, ∀t ∈ N, GtB(c)=β ◦GτtA ◦α (c). If τ=1, the simulation
is real time.

Since PCA and BCA (resp. R-PCA and R-BCA) are CA (resp. R-CA), they
can obviously be simulated in real time by CA (resp. R-CA). In Durand-Lose
[1995], it is proved that CA (R-CA) can be simulated in real time by BCA
(R-BCA). We built the missing simulations.

Proposition 1. Any d-CA can be simulated by a d-PCA in real time.

Proof The idea is to duplicate the states in every part. Let A=(Q,N , f) be any
d-CA. It is simulated by the following d-PCA: P=

(
QN ,N , Φ

)
, with:

∀µ ∈ N , Φ
(∏

ν∈N
s(ν)
ν

)
(µ)

= f

((
s(ν)
ν

)
ν∈N

)
.

Any configuration c of CA is naturally mapped in d of CP with ∀x ∈ Zd,∀ν ∈
N , d(ν)

x =cx. Information is duplicated, resources are wasted. q.e.d.

Since Φ only maps onto the diagonal of QN , the simulating PCA is never
reversible. Nevertheless, it is possible to simulate R-CA with R-PCA with the
following result:

Lemma 3. Any d-R-BCA can be simulated by a d-R-PCA in linear time n.

Proof The idea is to let one cell represent one block. This is a change of scale. Let

B=(QB, v, n, (o
(j))1≤j≤n, t) be any d-BCA. Let P =

(∏
ν∈N Q

(ν)
P ,N , Φ

)
where

N={−1, 0, 1}d, i.e., coordinates which differ by at most one in any direction.
The block of coordinates x (at block scale) of the jth partition is bjx. The block
bj0 holds the cell of coordinates 0. The sets of states are defined by:

∀ν ∈ N , Q(ν)
P =

⋃

1≤j≤n

(
{j} ×Q( bj−1

0 ∩ bj−ν)
B

)
.
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It is the intersection of the block that holds the cell of coordinates 0 for a
partitions and of the one of the next partition holding the cell 0 translated by
ν.v. Any intersection may be empty. Blocks are partitioned in function of the
next partition so that every part is sent to the corresponding cells to form whole
blocks of the next partition. Identically, each cell retrieves a full block, uses the
local transition and sends the corresponding parts to the neighbors for the next
transition. The local function is defined by:

∀µ ∈ N , ∀c ∈ C, Φ
(∏

ν∈N
x

(ν)
x+ν

)
(µ)

= Φ
(
k, bk0

)(µ)
=
(
k + 1, t

(
bk0
)
|bk+1
−µ

)
.

The first coordinates identify the current transition. They must match, oth-
erwise Φ is not yet defined. Configurations are encoded by setting the first com-
ponents to 1 and by putting states in the corresponding intersections between
the last and the first partitions. On the first iteration of P, each cell gets one
entire block of the first partition and make the first transition. Then every pieces
are sent to the corresponding cells with 2 in the first component. Each iteration
of P makes a successive transition of B. After n iterations of P, one iteration of
B is made and the first component is 1 again.

This construction preserves reversibility: the partial definition of the PCA
local function Φ is one-to-one if the local transition t of the BCA is reversible.
q.e.d.

It is proven in Durand-Lose [1995] that any R-CA can be simulated by a R-
BCA in real time. From above Lemma and the transitivity of simulation comes:

Theorem 2. Any d-R-CA can be simulated by a d-R-PCA in linear time.

With the construction in Durand-Lose [1995], 2d+1-1 partitions are needed
and the number of B-states is quadratic. In dimension 2 and above, the size v
is not bounded by any computable function (from the decidability results 1 and
2). Therefore, neither is the number of P-states.

4 Intrinsic Universality of 1-R-PCA

We built the following 1-R-PCA: U=(1, QU, {−1, 0, 1}, ΦU). The states and the
local function ΦU are defined on Figs. 4 and 10. To avoid using {−1, 0, 1}, we
denote l, c and r the left, center and right part. We prove that:

Theorem 3. U is intrinsically universal, i.e., able to simulate any 1-R-PCA.

For any 1-R-PCA P=(Q,N , Φ). With classical techniques of cells grouping,
P can be simulated in real time with a 1-R-PCA with neighborhood {l, c, r}.
From now on, we suppose that N = {l, c, r}.

Macroscopic Level. Let Bx be the xth element of Q modulo |Q|. We encode a
configuration and the table of Φ in a configuration of U with the P-cell architec-
ture of Figs. 2 and 6. The initial configuration given on Fig. 2 extends infinitely
on both sides.
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Index

Table

Value

Mode

. . .

Bx−2

Bx−2

Φ(Bx−)

Vx−2

CAP

Bx−1

Bx−1

Φ(Bx−)

Vx−1

CAP

Bx
Bx

Φ(Bx)

Vx
CAP

Bx+1

Bx+1

Φ(Bx+)

Vx+1

CAP

Bx+2

Bx+2

Φ(Bx+)

Vx+2

CAP

. . .

Fig. 2. Initial configuration.

From PCA definition, all P-cells first exchange their l and r parts. The state is
denoted Vx before the exchange and Wx after. The inner loop of the simulation
is: shift the layers holding By and Φ(By) to the left, compare Wx to By and
if they are equal, replace Wx by Φ(By). The table is fully scanned when the
index Bx is equal to the By of the table, and then P-cells are updated and one
P-iteration is done. The dynamics of the loop is given in Fig. 3.

Bx
Bx

Φ(Bx)

Vx
CAP

−→

Bx
Bx

Φ(Bx)

[Ψ ]Wx

sma

Bx
By

Φ(By)

Wx

sma

By 6= Wx−→

Bx
By+1

Φ(By+)

Wx

sma

Bx
By

Φ(By)

Wx

sma

By = Wx−→

Bx
By+1

Φ(By+)

Φ(Wx)

CAP

Bx
By

Φ(By)

Φ(Wx)

CAP

By 6=Bx

Φ(By) 6= Φ(Wx)−→

Bx
By+1

Φ(By+)

Φ(Wx)

CAP

[Ψ ] means that the l and r parts are exchanged with adjacent cells.

Fig. 3. Update of P-cells.

States, Layers and Initial Configuration at Microscopic Level. U-cells
are organized in 10 layers as detailed in Fig. 4. Layer i holds an index to store
where the reading of the table started. Architecture layer a holds delimiters for
P-cells ( [ and ]) and for l, c and r parts ($). Layers b and f hold one entry of
the table By and its image Φ(By). Signals are found on layer s. The value of the
P-cell (Vx or Wx) is stocked on layer v. Layers l1 to l4 work like conveyorbelts
to transfer data. The values in layers i and a never change.

Layer Name States Use
l c r

1 i 0 1 P-cell identification Bx

2 a [ $ ] Architecture: limits of cells and parts

3 b 0 1 Table entry By

4 f 0 1 Image of the table entry By, Φ(By)

5 s Σ Σ Σ Control signals detailed on Fig. 5

6 v 0 1 Value of the P-cell (Vx or Wx)

7–10 l1–l4 0 1 0 1 Shift the table of Φ and exchange values (W l
x & W r

x )

Fig. 4. The 10 layers and corresponding sub-states.

We use capital (B , Φ(B), W ) to address the macroscopic level (P-cells) and
small letters (i , b, f , v ) for microscopic level (U-cells). All P-cells are binary
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encoded. For the exchange, the codes of l and r parts must have the same length
(0’s are added if necessary).

Signals are 26 symbols of this police as described on Fig. 5. Small (sma)
and capital (CAP) letters behave similarly. The sma or CAP mode distinguishes
between before and after the replacement. During the simulation, signals are
turn from CAP to sma when parts are exchanged and from sma to CAP when the
value is replaced by its image. The number of states of U is 213.273 < 228.

sma CAP Use

a -h A -H Loop which tests if [ Wx =By — Wx =Φ(By) ]

k K Write [ Φ(By) — By ] over Wx

m , n M , N Shift of the table: By and Φ(By)

s , t S , T Exchange of Parts W l
x and W r

x

Fig. 5. Signals use.

The encoding of P-cells is given on Fig. 6. It takes care of the particular
positions of the l and r parts from the beginning. Since V l

x is exchanged with
V r
x+1 (V r

x with V l
x−1), we want Br

x (B l
x) above it. When Φ(Wx) replaces Wx, we

want the l and r parts to be directly on the corresponding sides.

i Blx Bcx Brx
a [ $ $ ]

b Blx Bcx Brx
f Φ(Bx)r Φ(Bx)c Φ(Bx)l

s [ —S —T ]

v V rx V cx V lx
l1-l4 4 layers for displacements

i Blx Bcx Brx
a [ $ $ ]

b Blx Bcx Brx
f Φ(Bx)r Φ(Bx)c Φ(Bx)l

s a

v V lx−1 V cx V rx+1

l1-l4 4 layers for displacements

⇐⇒

Bx
Bx

Φ(Bx)

Wx

sma

Fig. 6. Encoding of P-cell at coordinate x, before and after the exchange.

The Microscopic Algorithm is defined by space-time diagrams driven by
signals. The corresponding rules are indicated on Fig. 10. The algorithm starts
in CAP mode with [ |S |T ] signals in the rightmost cell. Signals in the different
P-cells are always exactly synchronized.

First, the l and r parts of the P-cell are exchanged and the mode is switched
to sma as depicted on Fig. 7. The initial value of the P-Cell is Vx. The bits of V l

x

and V r
x+1 are swapped on the layer l1 by signals S and T on they way from ].

On crossing ], the flows are transferred on l2 (for technical reasons explained
below). Signals S and T turn back at $ and on their way back, they retrieve
the bits from l2 and put them back on their destination slot. Synchronization is
very important. Signals S and T finally get back together as h at ], switch mode
and go back to the left end of the P-cell. This is implemented with 11 rules of
Fig. 10.

Let us describe in details the inner loop. Value Wx and table entry By are
in place, bit below bit, to be compared. Signal a crosses the whole P-cell to
compare them. If they differ, a marker b is put on the first different bit, and
a turns to b . On the way back, b marks d the last bit which differs and gets
the marker b back as illustrated on the first column of Fig. 8. If Wx and By
are equal, the signal reaches ] as a , turns to k , writes Φ(By) over Wx on the
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#

[

$ $

]

E

S

S

T

T

h

[

$ $

]

E

S

S

T

T

h

[

$ $

]

E

S

S

T

T

h

Data on their right places

Data on l

1

Data on l

2

Fig. 7. Exchanging V l
x and V r

x+1.

way back and switch mode. This special behavior takes as much time as the
regular one, keeping the synchronization. Equality is tested on the way back for
reversibility: going backward in time, U must make the correct change at the
adequate time, so it needs this test and it must change back Φ(Wx) into Wx.

To know that the table was completely scanned, signal must test whether Bx
and By are equal. On the second crossing, signal d (or e) gets back the previous
marker (if any) and turn to g and marks g the first different bit between Bx and
By, as illustrated by Fig. 8. If they differ, g comes back and gets the marker.
If there are equal, before returning e exchanges the l and r parts and switches
mode and return as h .

#

[

$ $

]

m n

a

b

b

b

d

c

d

d

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

#

[

$ $

]

m n

a

k

E

#

[

$ $

]

d

m

n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

d

d

g

f

g

g

h

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

#

[

$ $

]

d

m

n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

d

d

g

e

g

g

h

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Part where v

c

= b

c

�

�

�

Where v

c

6= b

c

Part where v

c

= f

c

Part where i

c

= b

c

�

�

�

Where i

c

6= b

c

Fig. 8. Inner loop: test for replacement and for the end of P-iteration.

On returning to [, h splits into m and n (right half of Fig. 8). These signals
manage the shift of the table by one P-cell rightward using layers l1 to l4 as
illustrated by Fig. 9. Signal m sets By−1 and Φ(By−) on movement by swapping
then on layers l1 and l3. On passing ], bits go down a layer so as not to interfere
with the moving ones of the next P-cell. On its way back, n sets By−1 and
Φ(By−) on their final places by swapping them from layers l2 and l4. Signals
m and n gather and form a which starts the loop again. This corresponds to the
last 12 rules of Fig. 10.
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#

[

$ $

]

h

m

m

m

m

n

n

n

n

a

[

$ $

]

h

m

m

m

m

n

n

n

n

a

[

$ $

]

h

m

m

m

m

n

n

n

n

a

Data on their right places
Data on l

1

and l

3

Data on l

2

and l
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Fig. 9. Shifting the table.

If the mode is CAP , it is exactly the same except that the equality tested
is Wx with Φ(By) instead of By, and By is written over Wx instead of Φ(By).
Since P is reversible, each value of Φ(By) appears once and only once in the
table. After being copied Φ(By), it is never met again in the table as an image.

Local Function of U. The necessary definitions of ΦU are given in Fig. 10.
Since they are one-to-one, ΦU can be completed bijectively. The values of the
layers that hold 0 and 1 are not indicated. These values are tested as require-
ment for rules and are not modified otherwise noted in the last column. These
modifications are either swaps or of v c, but in such case, the previous value is
held somewhere else as indicated by a condition. For CAP signals, the differences
are only for the lines with an ‘∗’: the test made is v c = f c, instead of v c = bc,
and bc, instead of f c, is copied over v c.

Rule (i) of Fig. 10 starts the replacement process: writing Φ(Wx) over Wx

(exchanging pieces of states with neighbor cells). Rules (ii) and (iii) start the
shifting of the table. Rules (iv) and (v) start the exchange of the l and r parts.
Rules (vi) and (vii) switch the mode. The first corresponds to the end of the
P-iteration, the second to the replacement of Wx by Φ(Wx). Rule (viii) is the
end of the inner loop.

All rules are combined with the following: for the last 4 layers l1 to l4, the l
and r parts are swapped so that l (r) parts move at speed 1 to the right (left).
For all rules with ] : layers l1 and l2 (l3 and l4) are swapped. This is technical
for the flows of the table shift not to collide in the middle of Fig. 9 where 2 flows
are traveling together.

Simulation Time. Let a be the width of a P-cell and b the width of the
exchanged parts (0≤2b≤a and dlog |Q|e≤a≤2dlog |Q|e+2). The inner loop needs
4(a−1) iterations for the tests and 2a for the shift of the table. It is done for every
P-state, i.e., |Q| times. To make a P-iteration, values are exchanged between
neighboring cells, this needs 2b+1 iterations. All together, the simulation is in
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Fig. 10. Table of ΦU.

linear time and bounded by 12 |Q| log(|Q|) + o(|Q| log(|Q|)). This is fine for R-
PCA. For R-BCA simulation, it have to be multiplied by 2d+1−1, here 3 and
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Q is larger. For R-CA, |Q| of the simulating R-BCA can be very big. With

the construction of Durand-Lose [1995], it is (|Q|2 + |Q|)(4 max(rA,rA−1 ))d where
rA (rA−1) is the radius of A (A−1), i.e., the maximum absolute value of any
component of any ν in the neighborhood. Nevertheless, the simulation is still in
linear time.

5 Conclusion

The inverse R-PCA is simulated by changing [ |S |T ] by [ |s |t ] in the initial
configuration. When U runs with the code of an unreversible PCA, the Φ is not
one-to-one so there are two states A and B such that A 6= B and Φ(A) = Φ(B ).
When A is encountered before B then A will be replaced by Φ(B ) and in CAP

it is then replaced by B and remains so until the end of the P-iteration. This is
wrong.

The construction can be extended to greater dimension. The table and test
are done in the first direction and sub-states exchanged in the other directions
must be added.

Basic programming schemes can be embedded in R-PCA when conceived
reversible. We have implemented with reversible local rules a global dynamic of
move, test and replace which needs backward tests. The R-PCA is programmed:
we make loops, tests and branches to subroutines.

The power of computations of d-CA, d-BCA and d-PCA over infinite configu-
rations are the same. We have proved that the d-R-CA, d-R-BCA and d-R-PCA
classes are also equivalent which is an important result since reversibility is de-
cidable for BCA and PCA while it is not for CA.

In Durand-Lose [1995], it was proved the existence of intrinsically universal
R-CA of dimension 2 and above. The construction was made using the R-CA
simulation by R-BCA and then by constructing a simulation of any R-BCA
with the Billiard Ball Model of Margolus ?Toffoli and Margolus [1987]. We have
proved using R-PCA and their ‘source code’ (i.e. local function) that this result
still holds in dimension 1. Since any R-CA can be simulated by a R-PCA (Th. 2)
and U is able to simulate any R-PCA (Th. 3) and U is a R-CA:

Theorem 4. There exist 1-R-CA able to simulate any 1-R-CA in linear time.

There exist simulations of any Turing machines with R-CA Morita [1992] so
that all partial recursive functions can be computed by R-PCA, so U is compu-
tation universal. The existence of a intrinsically universal R-PCA is proven here
with the use of the source code of the R-PCA. So there should be some S-m-n
theorem for R-PCA to prove that they form an acceptable programming system
as proved for CA by Martin ?.

It is unknown whether the class of d-CA is strictly more powerful than the
class of d-R-CA on infinite configurations. Nevertheless, if a 1-R-CA can simulate
a nonreversible CA, then by transitivity, U is also able to do it, so that if U can
not, none can.
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