About the Universality of the Billiard ball model

Jérome DURAND-L.OSE~

LaBRI, URA CNRS 1304,
Université Bordeaux I,
351, cours de la Libération,
F-33405 Tarenck Cedex,
FrANCE.

Abstract

Block cellular automata (BRCA) make local, parallel, synchronous and uniform updates of
infinite lattices. In the one-dimensional case, there exist BCA with 11 states which are universal
for computation. The Billiard ball model of Margolus is a reversible two-dimensional BCA which
is able to simulate any two-register automaton and is thus universal. This simulation is achieved
by embedding a logical circuitry with balls. The construction uses Fredkin gate and conservative

and reversible logics.

1 Introduction

Cellular automata (CA for short) are well known models of synchronous and uniform processes
over large arrays. They operate over infinite d-dimensional arrays of cells. Fach cell has a state
taken inside a finite set. At each iteration, each cell is updated according to a unique local function
and the states of the cells around it. Cellular automata can simulate any Turing machine and are
therefore universal for computation.

Reversibility is the ability to run backward an automaton. Reversible Turing machines were
the first reversible model to be proven universal s[1]. Reversibility of CA has been studied from
the sixties from a mathematical point of view, and from the seventies for a more practical trend:
saving energy.

In 1970, Burks [2] conjectured that there did not exist any universal reversible CA. This
conjecture was proven false in dimension two (and higher) in 1977 by Toffoli [12]. Tn 1992, Morita
[10] proved that there also exists universal reversible CA in dimension one. In 1990, Toffoli and
Margolus wrote a large survey about reversible CA [15].

Physical considerations about lattice gas lead Margolus [7] to introduce a new kind of CA,
block CA (BCA), together with a practical example: the Billiard ball model (BBM). They operate
over the same configurations as CA. The underlying lattice is partitioned into regularly displayed
rectangular blocks. For any given partition, the corresponding updating step is made by replacing
each block by its image according to a unique mapping from blocks to blocks. This replacement is
repeated for various partitions in order to let information spread over the configuration.

In [14], it is claimed that since any boolean function can be implemented within the BBM,
it is universal. But this implementation has two drawbacks. First, it needs constant inputs and
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produces garbage signals inside the configuration, and universality is not so obvious to achieve.
Second, zeroes are encoded by the lack of any signal and it is impossible to distinguish between
zero and no information. In this paper, we make a full construction of a simulation of any two-
counter automaton with conservative and reversible logic inside the BBM.

The paper is architectured as follows. Section 2 gathers the definition of block CA and re-
versibility. Tt is shown that one-dimensional BCA are able to simulate any Turing machine and
that there exists an universal one-dimensional BCA with only 11 states.

In section 3, we define the BBM and recall some basic constructions with conservative logic.
Another encoding, which we call dual, is made by encoding the value of a bit by the position of a
signal. Let us remark that this encoding is the “double-line trick” of von Neumann as mentioned
by Minsky [8, p. 69]. Both dual signals zero and one are tangible. Any function of the reversible
logic can be embedded in the BBM with this encoding without garbage nor constant signals.

In section 4, we built a simulation of any two counters automaton by the BBM and proved
rigorously that the BBM is universal.

2 Definitions

The elements of Z% are referred as cells. They take their value in a finite set of states Q. A
configuration is an element of QW.

2.1 Block cellular automata

Block cellular automata (block CA or BCA for short) perform parallel and uniform updates of
configurations. They use regular partitions of the underlying lattice Z% in blocks of size vy X vy X
.- X vg. A partition is identified by an origin o' € Z% as illustrated in Fig. 1.

Let V be the following subset of Z%:

V o= [0, = 1] x[0,09 — 1] x -+ x [0,05 — 1] .

It represents the underlying lattice of any block. The local block function £ is a mapping over QV:
t:QV - QV.

The updating step corresponding to a partition T.; is the synchronous replacement of all the
blocks by their images by a local block function t as depicted in Fig.1. The update is done by
making successive steps corresponding to a sequence of partitions. All the updating steps use the

same local block function ¢.

olooooooloosooolo
foe oo oloc e ool
olo o o o o ol]o o oo o ofO /I)
. cloccooclecsaoolo 2 ba 1 b1 1 T t(ho1) [ (b1 1)
02 oloooooofloooooo]o vy —_ o*
olo o o o o ol]o o oo o ofO - }
olo o o o o ol]o o oo o ofO /1)2 b b fb fb
0,0 1,0 F(boo) | 1(b1,0)
olo o oo o0 ofloooooolo vy
foe oo oloc e ool
(25 (25

Figure 1: Updating step of origin o'.

A BCA is totally defined by (d,Q,v,0,t) where v defines the size of the blocks and O = (0);

is the finite sequence of the origins o' of the used partitions. Replacements are successively made



over various partitions identified by their origins (0'); as in Fig. 1, but all those updating steps uses
the same size of blocks v and the same local function 1. More than one partition is needed in order
to let information spreads over the lattice.

The global function of a BCA G is the composition of all the updating steps:

G=TwmoTm 1 0T,

Definition 1 An automaton A is reversible if its global function is a bijection and its inverse is
itself the global function of some antomaton of the same kind, called the inverse and denoted A=,

Concerning BCA:

Lemma 2 A BCA is reversible if its local function t is reversible, and then, its inverse is:
Bl = (Q, v, O, t7! )

where O is the sequence of the origins in reverse order.

Since QY is finite, reversibility is decidable for BCA.

2.2 Universality

Definition 3 A Turing machine is defined by:

(27 Q7 57 S0)

where X is a finite set of symbols for the tape, () a finite set of states of the machine, § is the
transition function and sq is the initial state.

The function & yields the symbol to be written on the tape, the new state and the movement
of the head according to the state and the read symbol:

§d:QxY = QxYx{-1,1}U{sTor} .

An automaton is universal for computation if it is able to simulate any Turing machine or is
able to simulate an universal automaton. There exists universal CA [11] and universal reversible

CA [12, 10].
Proposition 4 There exists universal BCA.

Let M = (3,Q, 4, so) be a universal Turing machine with m states and n symbols distinct from
the states (m = [X], n = |Q] and ¥ NQ = 0).
Let B be the following one-dimensional BCA:

B = (QuXxu{sror}, (2), ((0),(1)), tm)

There are two partitions; their origins are (0) and (1). The states of B are either symbols,
states of M or sToP. The local transition is defined on Fig.2. The location of the head is encoded
by the presence of a M-state (€ @) in the same block.

The initial configuration and some iterations are depicted in Fig.3. Each iteration of B makes
two iterations of M. The end of the computation corresponds to the apparition of sTOP.

The built BCA has minimal dimension (1), minimal width (2) and minimal number of partitions
(2) to be universal. Tt has m+n 41 states. Margenstern and Rogozhin [6], proved that there exists
a universal Turing machine with 5 states and 5 symbols. So:



vabes, i _
WaeQ iy

I

g

if d(p,a) = (q,b,1) then

g

—
g
TN N ST NN TN N T

if 4(p,a) = (q,b,—1) then

g

STOP a

I

g

if d(p,a) = sTOP then

STOP a

Q

g

e e L e~

Figure 2: Local block function of B to simulate M.
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Figure 3: Simulation of a Turing machine by a BCA.

Theorem 5 There exists a universal BCA with 11 states which is geometrically minimal.

This number of state should be lowered.
In dimension 2, the Billiard ball model described in the next section is minimal geometrically,



has only two states and is reversible.

3 Billiard ball model

The Billiard ball model (BBM) is a two-dimensional reversible BCA.

3.1 Definition
The BBM is defined by:

BBM = ( {_ e}, (2,2), ((0,0), (1,1)), tumm )

There are only two states: void and a particle symbolized by a ball e. The local block function
trem is only partially given in Fig. 4; it should be completed by rotations and symmetries. It works
as follows:

- if there is only one ball, the ball moves to the opposite corner (case (iv));
- if there are two balls diagonally opposed, they move to the other diagonal (case (ii));
- in any other case, nothing changes.

(i) - (i) Pal— R (i) e — o
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Figure 4: Definition of tppy.

The number of e is preserved. From lemma 2, BBM is reversible. Up to one shift, BBM is its
own inverse.

Two levels of encoding of logical signals are used: the basic one of Toffoli and Margolus and the
dual one. They are defined in the next subsections.
3.2 Basic encoding

This subsection is inspired by the work of Toffoli and Margolus [14].
Figure b depicts an example of iterations of BBM. It can be seen that the two rules (i) and (iv)
of Fig. 4 are enough to create a signal: a moving ball.

To,o T 1 O To,o
—_— Py —_— —_—

Figure 5: Ball movement.

Single balls could be used as a signals. But it should also be possible to change their directions
and to make them interact with each other.
Let balls travel by pairs. If there is a motionless rectangle on their way, they bounce on it as

depicted in Fig.6. The key rule is number (i1) of Fig.4. When two pairs meet, they are delayed
and shifted aside.
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Figure 6: Reflection of a signal.

Signals are now encoded with two consecutive balls. They can move diagonally, in both direc-
tions, everywhere.
To build a delay, the path of a signal is enlarged as depicted in Fig. 7.

Figure 7: Delay.

Margolus and Toffoli [13] have a logical approach to computation. They encoded signal T with
one signal and 0 with no signal. They used the so-called conservative logic where all gates are
reversible and the number of ones (and zeroes) is preserved.

For example, the only conservative gate working with one bit is the identity and with two bits
is the permutation (and the identity). To get a gate with a minimal computing ability, one has to
consider a gate with three bits: the Fredkin gate. This gate works as follows: one bit goes through
unaffected and depending on its value, the two others just pass through or are permuted. This is
detailed in Fig. 8.
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Figure 8: Fredkin gate.

In 1982, Fredkin and Toffoli [5] proved that any logical function could be built out of Fredkin
gates. There are drawbacks: the function has to be embedded in another one working with more
bits, constant bits have to be fed, and unwanted bits are generated. This can not bhe avoided with
irreversible functions.

In 1990, Morita [9] proved that it is possible to built any conservative gate out of Fredkin gates.
The only signals needed are zero signals which are regenerated at the end.

Toffoli and Margolus [14] proved that it is possible to simulate a Fredkin gate on the BBM with
the basic encoding. Also BBM is simple, their construction is designed in two levels and takes a
large amount of space and time.



Since zeroes are implemented by the lack of any signal, from these two results comes:

Lemma 6 BBM is able to simulate any conservative logical function with basic signals without

feeding nor disposal problem.

3.3 Dual encoding

The preceding construction is interesting as long as one uses automata which works in a finite and
known time. But when this time is unknown, it is impossible to distinguish between the answer
(), i.e. no signal, and an unfinished computation. Additional features have to be designed to solve
this problem which is particularly annoying with Turing machines which may unpredictablely stop
at any time, even never.

To mind this, we use the dual encoding also known as the “double-line trick” of von Neumann
[8]. The implementation of signals is now done by doubling the signal as depicted in Fig.9.
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Figure 9: From basic encoding to dual encoding.

A signal is now always composed of two balls. Their position indicates the value of the bit. The

presence of any dual signal is explicit.
It is possible to build a Fredkin gate with the new encoding as depicted in Fig. 10. Delays are

needed, but are not indicated for clarity.
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Figure 10: Fredkin gate for dual signals.

It is still possible to compute any conservative function, but it is now possible to make an
autonomous not gate (Fig. 11). There is no risk of collision because there is only one real signal
inside any dual signal.

The reversible logic is the restriction of the logical functions to the bijective ones.

Tet f:4{0,1}" — {0,1}" be any reversible logic function encoded with dual signals. Tt can also
be viewed as a function f : {(0, 1), (1,0)}" — {(0, 1), (1,0)}" in the basic encoding. This function
fi is a partial but conservative definition of a function fy : {0, 1}2" — {0, 1}?". This function f,
can be completed into a conservative one. From Lem. 6 comes:
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Figure 11: A not gate with dual signals.

Lemma 7 BBM is able to simulate any reversible logical function with dual signals without any
feeding nor disposal.

4 Universality of the BBM

Minsky [8] introduces two-counter automata and proves that they are universal. To prove that
BBM is universal, it is enough to prove that it is able to simulate any two counters automaton.

A two counters automaton is a finite antomaton linked to two counters which can hold any
positive integer value. The automaton can perform the following operations on the counters: add
one, subtract one (zero if it is already zero), and test for nullity and branch.

In this section, we prove:

Lemma 8 BBM is able to simulate any two counters automaton.

The construction relies on the automaton on the one side, and on the counters on the other
side.

The main automaton can be simulated by a large logical unit to which some of its output is
injected back in order to store the current state. It yields orders with signals and then waits for
a notification of their executions. Tts state is only updated when a notification comes in. The
automaton is depicted in Fig. 12.

Constants
o Order
Main 20
State
automaton by I
e FEnd of execution

Disposal signals
Figure 12: Main automaton.
Constant inputs and disposal signals are needed because the function of the automaton can

be not invertible. The constant flow is infinite since no one can presume of the duration of the
computation.



Counters are handled by an infinite line of logical register units. The value of any given counter
is encoded in unary: » = 1. Boolean values are held in signals locked between register units.
These signals are updated by the units according to the orders received from the main automaton.

The units implement a reversible function. Thanks to Lem.7 they can be totally autonomous.
They do not bring any perturbation in the configuration.

An order o is encoded with two dual signals: o = (0, 01). Signal o is used to state that there
is an order, and oy to define it. The end of execution notification signal e is equal to 1 to notify
that an order was well carried out by the register, otherwise it is 0.

Counters are encoded in unary with dual signals: » = 170%. The two counters are denoted
A = agay... and B = bgby ... Theses signals are stocked in an infinite line. They are nested
between identical register units as depicted in figures 13 and 14.

Signals ag and by are only bounced back by the automaton. Since The dual signal ag (bg) is 0
only if a (b) is 0, the main automaton can test easily whether a (b)is 0. This allows the automaton
to test directly the nullity of any counter.

The difficult part is the administration of the registers. The register units are all identical and
communicate with the signals o, 1, r and e. Their function is depicted in Fig. 13. Tt should be
noted that even if it is not conservative, it is are reversible as it can be proved from the table.
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Figure 13: Register unit and its logical function.

The units work by modifying 1 and r according to their values and the order o. If there is an
order to execute (0g = 1), the values are modified only at the end of meaning part of the counter
(1=1 and r = 0). The modification is indicated by oy: 0 for subtraction and 1 for an addition.
To subtract one, the appropriate register unit sets 1 to 0 at the appropriate time; to add one, it
setsr to 1.

Signal e is 0 except when it brings a notification message (and then it is 1). Tt is set to 1 when
a unit carries out an order. There is never more than one active order (o, = (1,.)) or notification
signal (e; = 1) in a whole configuration.

The automaton and the units are connected as depicted in Fig. 14 where it appears that the
units only have a’s, then b’s, successively. Fach time, (I'",¥'") and (1°"*,r°"") are both either
(ag,apt1) or (br,briy) depending on the parity of the clock.

For the same reasons, depending on the parity of £, 0; only meets a’s or b’s, but it meets all of

them.

Let us decompose the execution of an order.

If the counter a (b) is null, the main automata knows it since ag (bg) is part of its inputs.
In this case, it can test and branch directly. If it wants to subtract one it just goes to the next
instruction. If it wants to add one, it sets ag (bg) to 1 and goes to the next instruction.

To make an operation op over a (b) the automaton sends a signal o = (1, op) synchronized
with ag (bg). Then it waits till it receives a e equal to 1 indicating that the operation was executed;
then it goes on to the next operation.
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Figure 14: Automaton, units and wiring for three successive iterations.

The order o is treated by the registers as follows. The signal o travels and meets successively
all the pairs (a;,a;41) which are equal to (1,1) till it reaches the end of the meaning part of the
counter, where (a;,a;11) is equal to (1,0). If op is 1 (addition) then the output value (a;,a;41)
is set to (1,1), otherwise, subtraction, it is set to (0,0). The signal o is set to (0,1) and moves
endlessly to the right. The signal e is set to 1 and moves backward to the main automaton and
indicates that the operation was carried out. The next operation can start.

The notification time is proportional to the value of a (b).

Going backward, the unit which performs the operation is defined by the meeting of the e which
is equal to 1 and the o which is equal to (0,1). The performed operation is defined by the value of
(ai,ai41)-

It should be noted that to build a n counters automaton, one just have to enlarge the distance
between the unit and add new trapped signals.

Theorem 9 BBM is universal.

The universality of BBM was totally proved using reversible techniques. For the units, re-
versibility was designed abstractly before it was implemented.
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