
About the Universality of the Billiard ball modelJérôme DURAND-LOSE�labri, ura cnrs 1 304,Université Bordeaux I,351, cours de la Libération,F-33 405 Talence Cedex,France.AbstractBlock cellular automata (BCA) make local, parallel, synchronous and uniform updates ofin�nite lattices. In the one-dimensional case, there exist BCA with 11 states which are universalfor computation. The Billiard ball model of Margolus is a reversible two-dimensional BCA whichis able to simulate any two-register automaton and is thus universal. This simulation is achievedby embedding a logical circuitry with balls. The construction uses Fredkin gate and conservativeand reversible logics.1 IntroductionCellular automata (CA for short) are well known models of synchronous and uniform processesover large arrays. They operate over in�nite d-dimensional arrays of cells. Each cell has a statetaken inside a �nite set. At each iteration, each cell is updated according to a unique local functionand the states of the cells around it. Cellular automata can simulate any Turing machine and aretherefore universal for computation.Reversibility is the ability to run backward an automaton. Reversible Turing machines werethe �rst reversible model to be proven universal s[1]. Reversibility of CA has been studied fromthe sixties from a mathematical point of view, and from the seventies for a more practical trend:saving energy.In 1970, Burks [2] conjectured that there did not exist any universal reversible CA. Thisconjecture was proven false in dimension two (and higher) in 1977 by To�oli [12]. In 1992, Morita[10] proved that there also exists universal reversible CA in dimension one. In 1990, To�oli andMargolus wrote a large survey about reversible CA [15].Physical considerations about lattice gas lead Margolus [7] to introduce a new kind of CA,block CA (BCA), together with a practical example: the Billiard ball model (BBM). They operateover the same con�gurations as CA. The underlying lattice is partitioned into regularly displayedrectangular blocks. For any given partition, the corresponding updating step is made by replacingeach block by its image according to a unique mapping from blocks to blocks. This replacement isrepeated for various partitions in order to let information spread over the con�guration.In [14], it is claimed that since any boolean function can be implemented within the BBM,it is universal. But this implementation has two drawbacks. First, it needs constant inputs and�jdurand@labri.u-bordeaux.fr, http://dept-info.labri.u-bordeaux.fr/~jdurand1



produces garbage signals inside the con�guration, and universality is not so obvious to achieve.Second, zeroes are encoded by the lack of any signal and it is impossible to distinguish betweenzero and no information. In this paper, we make a full construction of a simulation of any two-counter automaton with conservative and reversible logic inside the BBM.The paper is architectured as follows. Section 2 gathers the de�nition of block CA and re-versibility. It is shown that one-dimensional BCA are able to simulate any Turing machine andthat there exists an universal one-dimensional BCA with only 11 states.In section 3, we de�ne the BBM and recall some basic constructions with conservative logic.Another encoding, which we call dual, is made by encoding the value of a bit by the position of asignal. Let us remark that this encoding is the �double-line trick� of von Neumann as mentionedby Minsky [8, p. 69]. Both dual signals zero and one are tangible. Any function of the reversiblelogic can be embedded in the BBM with this encoding without garbage nor constant signals.In section 4, we built a simulation of any two counters automaton by the BBM and provedrigorously that the BBM is universal.2 De�nitionsThe elements of Zd are referred as cells. They take their value in a �nite set of states Q. Acon�guration is an element of QZd.2.1 Block cellular automataBlock cellular automata (block CA or BCA for short) perform parallel and uniform updates ofcon�gurations. They use regular partitions of the underlying lattice Zd in blocks of size v1 � v2 �� � � � vd. A partition is identi�ed by an origin oi 2Zd as illustrated in Fig. 1.Let V be the following subset of Zd :V = [0; v1 � 1]� [0; v2� 1]� � � � � [0; vd � 1] :It represents the underlying lattice of any block. The local block function t is a mapping over QV :t : QV ! QV .The updating step corresponding to a partition Toi is the synchronous replacement of all theblocks by their images by a local block function t as depicted in Fig. 1. The update is done bymaking successive steps corresponding to a sequence of partitions. All the updating steps use thesame local block function t.-v1� -v1� 6v2?6v2?Roi = b0;0 b1;0b0;1 b1;1 t(b0;0) t(b1;0)t(b0;1) t(b1;1)Toi�!Figure 1: Updating step of origin oi.A BCA is totally de�ned by (d;Q; v; O; t) where v de�nes the size of the blocks and O = (oi)iis the �nite sequence of the origins oi of the used partitions. Replacements are successively made2



over various partitions identi�ed by their origins (oi)i as in Fig. 1, but all those updating steps usesthe same size of blocks v and the same local function t. More than one partition is needed in orderto let information spreads over the lattice.The global function of a BCA G is the composition of all the updating steps:G = Ton � Ton�1 � � � � To1 :De�nition 1 An automaton A is reversible if its global function is a bijection and its inverse isitself the global function of some automaton of the same kind, called the inverse and denoted A�1.Concerning BCA:Lemma 2 A BCA is reversible if its local function t is reversible, and then, its inverse is:B�1 = � Q; v; O; t�1 � :where O is the sequence of the origins in reverse order.Since QV is �nite, reversibility is decidable for BCA.2.2 UniversalityDe�nition 3 A Turing machine is de�ned by:( �; Q; �; s0 )where � is a �nite set of symbols for the tape, Q a �nite set of states of the machine, � is thetransition function and s0 is the initial state.The function � yields the symbol to be written on the tape, the new state and the movementof the head according to the state and the read symbol:� : Q� � ! Q� �� f�1; 1g [ fstopg :An automaton is universal for computation if it is able to simulate any Turing machine or isable to simulate an universal automaton. There exists universal CA [11] and universal reversibleCA [12, 10].Proposition 4 There exists universal BCA.Let M = (�; Q; �; s0) be a universal Turing machine with m states and n symbols distinct fromthe states (m = j�j, n = jQj and � \Q = ;).Let B be the following one-dimensional BCA:B = ( Q [ � [ f stop g; (2); ( (0); (1) ); tM ) :There are two partitions; their origins are (0) and (1). The states of B are either symbols,states of M or stop. The local transition is de�ned on Fig. 2. The location of the head is encodedby the presence of a M -state (2 Q) in the same block.The initial con�guration and some iterations are depicted in Fig. 3. Each iteration of B makestwo iterations of M . The end of the computation corresponds to the apparition of stop.The built BCA has minimal dimension (1), minimal width (2) and minimal number of partitions(2) to be universal. It has m+n+1 states. Margenstern and Rogozhin [6], proved that there existsa universal Turing machine with 5 states and 5 symbols. So:3



8a; b 2 �, tM � a b � = a b8p; q 2 Q, tM � p q � = p qif �(p; a) = (q; b; 1) then 8>><>>: tM � p a � = b qtM � a p � = b qif �(p; a) = (q; b;�1) then 8>><>>: tM � p a � = q btM � a p � = q bif �(p; a) = stop then 8>><>>: tM � p a � = stop atM � a p � = stop aFigure 2: Local block function of B to simulate M .w�2 w�1 w0 w1 w2 w3?s0 w�2 w�1 s0 w0 w1 w2 w3�(s; w0) = (p1; a; 1)w�2 w�1 a w1 w2 w3?p1 w�2 w�1 a p1 w1 w2 w3�(p1; w1) = (p2; b; 1)w�2 w�1 a b w2 w3?p2 w�2 w�1 a b p2 w2 w3�(p2; w2) = (p3; c;�1)w�2 w�1 a b c w3?p3 w�2 w�1 a b p3 c w3�(p3; b) = (p4; d;�1)w�2 w�1 a d c w3?p4 w�2 w�1 a p4 d c w3Turing machine Block CAThe thick lines indicate the iterated partition.Figure 3: Simulation of a Turing machine by a BCA.Theorem 5 There exists a universal BCA with 11 states which is geometrically minimal.This number of state should be lowered.In dimension 2, the Billiard ball model described in the next section is minimal geometrically,4



has only two states and is reversible.3 Billiard ball modelThe Billiard ball model (BBM) is a two-dimensional reversible BCA.3.1 De�nitionThe BBM is de�ned by: BBM = ( f ; �g; ( 2; 2 ); ( (0; 0); (1; 1) ); tbbm ) :There are only two states: void and a particle symbolized by a ball �. The local block functiontbbm is only partially given in Fig. 4; it should be completed by rotations and symmetries. It worksas follows:- if there is only one ball, the ball moves to the opposite corner (case (iv));- if there are two balls diagonally opposed, they move to the other diagonal (case (ii));- in any other case, nothing changes.(i) - (ii) � � ��- (iii) �� � �� �-(iv) � �- (v) � � � �- (vi) � �� � � �� �-Figure 4: De�nition of tbbm.The number of � is preserved. From lemma 2, BBM is reversible. Up to one shift, BBM is itsown inverse.Two levels of encoding of logical signals are used: the basic one of To�oli and Margolus and thedual one. They are de�ned in the next subsections.3.2 Basic encodingThis subsection is inspired by the work of To�oli and Margolus [14].Figure 5 depicts an example of iterations of BBM. It can be seen that the two rules (i) and (iv)of Fig. 4 are enough to create a signal: a moving ball.� T0;0 � T1;1 � T0;0 �- - - �Figure 5: Ball movement.Single balls could be used as a signals. But it should also be possible to change their directionsand to make them interact with each other.Let balls travel by pairs. If there is a motionless rectangle on their way, they bounce on it asdepicted in Fig. 6. The key rule is number (ii) of Fig. 4. When two pairs meet, they are delayedand shifted aside. 5



� � � �� � � ��� � � � �� � � ��� � � � �� � � �� � � � � �� � � �� �T0;0 T1;1 T0;0- - -Figure 6: Re�ection of a signal.Signals are now encoded with two consecutive balls. They can move diagonally, in both direc-tions, everywhere.To build a delay, the path of a signal is enlarged as depicted in Fig. 7.R � R	RFigure 7: Delay.Margolus and To�oli [13] have a logical approach to computation. They encoded signal 1 withone signal and 0 with no signal. They used the so-called conservative logic where all gates arereversible and the number of ones (and zeroes) is preserved.For example, the only conservative gate working with one bit is the identity and with two bitsis the permutation (and the identity). To get a gate with a minimal computing ability, one has toconsider a gate with three bits: the Fredkin gate. This gate works as follows: one bit goes throughuna�ected and depending on its value, the two others just pass through or are permuted. This isdetailed in Fig. 8. 8�; � 2 f0; 1g ---- ---1�� 1��-- ---- ---0�� 0���RFigure 8: Fredkin gate.In 1982, Fredkin and To�oli [5] proved that any logical function could be built out of Fredkingates. There are drawbacks: the function has to be embedded in another one working with morebits, constant bits have to be fed, and unwanted bits are generated. This can not be avoided withirreversible functions.In 1990, Morita [9] proved that it is possible to built any conservative gate out of Fredkin gates.The only signals needed are zero signals which are regenerated at the end.To�oli and Margolus [14] proved that it is possible to simulate a Fredkin gate on the BBM withthe basic encoding. Also BBM is simple, their construction is designed in two levels and takes alarge amount of space and time. 6



Since zeroes are implemented by the lack of any signal, from these two results comes:Lemma 6 BBM is able to simulate any conservative logical function with basic signals withoutfeeding nor disposal problem.3.3 Dual encodingThe preceding construction is interesting as long as one uses automata which works in a �nite andknown time. But when this time is unknown, it is impossible to distinguish between the answer0, i.e. no signal, and an un�nished computation. Additional features have to be designed to solvethis problem which is particularly annoying with Turing machines which may unpredictablely stopat any time, even never.To mind this, we use the dual encoding also known as the �double-line trick� of von Neumann[8]. The implementation of signals is now done by doubling the signal as depicted in Fig. 9.s+ s� s0 0 No signal0 1 01 0 11 1 ErrorFigure 9: From basic encoding to dual encoding.A signal is now always composed of two balls. Their position indicates the value of the bit. Thepresence of any dual signal is explicit.It is possible to build a Fredkin gate with the new encoding as depicted in Fig. 10. Delays areneeded, but are not indicated for clarity.- -- -- -fg - -- -- -fgc n c+c� c0+c0� oc0x n x+x� x0+x0�ox0y n y+y� y0+y0�oy0------Figure 10: Fredkin gate for dual signals.It is still possible to compute any conservative function, but it is now possible to make anautonomous not gate (Fig. 11). There is no risk of collision because there is only one real signalinside any dual signal.The reversible logic is the restriction of the logical functions to the bijective ones.Let f : f0; 1gn ! f0; 1gn be any reversible logic function encoded with dual signals. It can alsobe viewed as a function f1 : f(0; 1); (1; 0)gn ! f(0; 1); (1; 0)gn in the basic encoding. This functionf1 is a partial but conservative de�nition of a function f2 : f0; 1g2n ! f0; 1g2n. This function f2can be completed into a conservative one. From Lem. 6 comes:7



s 8<: s+s� s+s� 9=; s-? --6 -6 -Figure 11: A not gate with dual signals.Lemma 7 BBM is able to simulate any reversible logical function with dual signals without anyfeeding nor disposal.4 Universality of the BBMMinsky [8] introduces two-counter automata and proves that they are universal. To prove thatBBM is universal, it is enough to prove that it is able to simulate any two counters automaton.A two counters automaton is a �nite automaton linked to two counters which can hold anypositive integer value. The automaton can perform the following operations on the counters: addone, subtract one (zero if it is already zero), and test for nullity and branch.In this section, we prove:Lemma 8 BBM is able to simulate any two counters automaton.The construction relies on the automaton on the one side, and on the counters on the otherside.The main automaton can be simulated by a large logical unit to which some of its output isinjected back in order to store the current state. It yields orders with signals and then waits fora noti�cation of their executions. Its state is only updated when a noti�cation comes in. Theautomaton is depicted in Fig. 12. Mainautomaton?Disposal signals
?Constants�6 -State - o Order� e End of execution-�6 ?a0b0Figure 12: Main automaton.Constant inputs and disposal signals are needed because the function of the automaton canbe not invertible. The constant �ow is in�nite since no one can presume of the duration of thecomputation. 8



Counters are handled by an in�nite line of logical register units. The value of any given counteris encoded in unary: n � 1n. Boolean values are held in signals locked between register units.These signals are updated by the units according to the orders received from the main automaton.The units implement a reversible function. Thanks to Lem. 7 they can be totally autonomous.They do not bring any perturbation in the con�guration.An order o is encoded with two dual signals: o = (o0; o1). Signal o0 is used to state that thereis an order, and o1 to de�ne it. The end of execution noti�cation signal e is equal to 1 to notifythat an order was well carried out by the register, otherwise it is 0.Counters are encoded in unary with dual signals: n � 1n0! . The two counters are denotedA = a0a1 : : : and B = b0b1 : : : Theses signals are stocked in an in�nite line. They are nestedbetween identical register units as depicted in �gures 13 and 14.Signals a0 and b0 are only bounced back by the automaton. Since The dual signal a0 (b0) is 0only if a (b) is 0, the main automaton can test easily whether a (b) is 0. This allows the automatonto test directly the nullity of any counter.The di�cult part is the administration of the registers. The register units are all identical andcommunicate with the signals o, l, r and e. Their function is depicted in Fig. 13. It should benoted that even if it is not conservative, it is are reversible as it can be proved from the table.---�� ---��---?� �6-�oinlinlouteout ooutroutrinein oin lin rin ein oout lout rout eout0,0 * * * 0,0 * * *1,* 1 1 0 1,* 1 1 01,0 1 0 0 0,1 0 0 11,1 1 0 0 0,1 1 1 10,1 * * 0 0,1 * * 0� : unchangedFigure 13: Register unit and its logical function.The units work by modifying l and r according to their values and the order o. If there is anorder to execute (o0 = 1), the values are modi�ed only at the end of meaning part of the counter(l = 1 and r = 0). The modi�cation is indicated by o1: 0 for subtraction and 1 for an addition.To subtract one, the appropriate register unit sets l to 0 at the appropriate time; to add one, itsets r to 1.Signal e is 0 except when it brings a noti�cation message (and then it is 1). It is set to 1 whena unit carries out an order. There is never more than one active order (ot = (1; :)) or noti�cationsignal (et = 1) in a whole con�guration.The automaton and the units are connected as depicted in Fig. 14 where it appears that theunits only have a's, then b's, successively. Each time, (lin; rin) and (lout; rout) are both either(ak; ak+1) or (bk ;bk+1) depending on the parity of the clock.For the same reasons, depending on the parity of t, ot only meets a's or b's, but it meets all ofthem.Let us decompose the execution of an order.If the counter a (b) is null, the main automata knows it since a0 (b0) is part of its inputs.In this case, it can test and branch directly. If it wants to subtract one it just goes to the nextinstruction. If it wants to add one, it sets a0 (b0) to 1 and goes to the next instruction.To make an operation op over a (b) the automaton sends a signal o = (1; op) synchronizedwith a0 (b0). Then it waits till it receives a e equal to 1 indicating that the operation was executed;then it goes on to the next operation. 9



---�� ot+1bi�1ai�1et�2 ---�� otaibiet�1 ---�� ot�1bi+1ai+1et ---�� ot�2ai+2bi+2et+1ot+1bi�1biet�1 otaiai+1et ot�1bi+1bi+2et+1M.A. ---��ot+ia0b0et�i�1 : : :: : :: : :: : : : : :: : :: : :: : :---�� ot+2ai�1bi�1et�1 ---�� ot+1biaiet ---�� otai+1bi+1et+1 ---�� ot�1bi+2ai+2et+2ot+2ai�1aiet ot+1bibi+1et+1 otai+1ai+2et+2M.A. ---��ot+i+1b0a0et�i : : :: : :: : :: : : : : :: : :: : :: : :---�� ot+3bi�1ai�1et ---�� ot+2aibiet+1 ---�� ot+1bi+1ai+1et+2 ---�� otai+2bi+2et+3ot+3bi�1biet+1 ot+2aiai+1et+2 ot+1bi+1bi+2et+3M.A. ---��ot+i+2a0b0et�i+1 : : :: : :: : :: : : : : :: : :: : :: : :Figure 14: Automaton, units and wiring for three successive iterations.The order o is treated by the registers as follows. The signal o travels and meets successivelyall the pairs (ai; ai+1) which are equal to (1; 1) till it reaches the end of the meaning part of thecounter, where (ai; ai+1) is equal to (1; 0). If op is 1 (addition) then the output value (ai; ai+1)is set to (1; 1), otherwise, subtraction, it is set to (0; 0). The signal o is set to (0; 1) and movesendlessly to the right. The signal e is set to 1 and moves backward to the main automaton andindicates that the operation was carried out. The next operation can start.The noti�cation time is proportional to the value of a (b).Going backward, the unit which performs the operation is de�ned by the meeting of the e whichis equal to 1 and the o which is equal to (0; 1). The performed operation is de�ned by the value of(ai; ai+1).It should be noted that to build a n counters automaton, one just have to enlarge the distancebetween the unit and add new trapped signals.Theorem 9 BBM is universal.The universality of BBM was totally proved using reversible techniques. For the units, re-versibility was designed abstractly before it was implemented.AcknowledgmentI want to thank the referee for his remarks, especially the right reference for the dual encoding.References[1] C. H. Bennett. Logical reversibility of computation. ibm Journal of Research and Development,6:525�532, 1973. 10
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