
Randomized Uniform Self-stabilizing MutualExclusionJ�erôme O. DURAND-LOSE �yLaboratoire I3S, CNRS UPREES-A 6070, 930 Route des Colles, BP 145,06903 SOPHIA ANTIPOLIS Cedex, FRANCE.Abstract. The mutual exclusion protocol presented ensures that what-ever perturbation the network undergo, it regains consistency in �nitetime: one and only one privilege token is present. Many such protocolsare know for rings, ours is the �rst one for anonymous network withany topology in the shared memory communication model.It carries out the token random walk scheme presented by Israeli andJalfon in PODC '90 and extends a ring protocol presented by Beauquierand Dela�et in PODC '94. It uses O(ln n) states per register and theexpected transient time is polynomial.Key-words. Self-stabilization, Mutual exclusion, Random walks.1 IntroductionA system of interconnected processors often needs some mutual exclusion (ME)scheme for processors to execute some critical part of their code. At any timeone and only one processor is privileged and may enter a critical section {in order, e.g., to write a data or access a device. Each processors should beprivileged in�nitely often. We use the abstract concept of token to indicate theprivilege.Sometimes systems get corrupted, e.g., no privileged processor exists {accessto crucial resources is lost{ or more that one is privileged {data might getcorrupted, devices confused by dual access : : : This can happen for variousreasons: processor/communication failure/addition/removal.A system is said self-stabilizing (SS) if when started in any possible con-�guration it eventually reaches a legal con�guration (convergence) and once�jdurand@unice.fr, http://www.i3s.unice.fr/~jdurand.yThis work was done while the author was in LaBRI, Universit�e Bordeaux I, FRANCE.

in a legal con�guration, all following con�gurations are legal (correctness orclosure).A self-stabilizing system does not need to be initialized. Moreover, it is tol-erant to fault: it regains consistency without any external intervention when aprocessor crashes and recovers in any arbitrary state. The time period betweencrashed is supposed to be long enough for stabilization and computation.It this article we provide an algorithm that ensures that the system even-tually enters a legal con�guration {one and only one privileged processor{ andthat the system remains in legal con�gurations afterwards. Our uniform self-stabilizing mutual exclusion (USSME) is randomized.The concept of self-stabilization was �rst introduced in the pioneering paperby Dijkstra [Dij74] which provides SSME for rings. He mentions that no deter-ministic protocol exists for uniform ring with a composite number of vertices.Angluin [Ang80] proves that it is impossible to deterministically distinguisheda vertex in a graph that is a strict covering of another graph. There is noway to deterministically break existing symmetries in any uniform distributedsystem. Thus, no deterministic USSME exists for graph with symmetries andrandomized approach has to be used.Herman [Her90] provides a parallel and randomized USSME for rings of oddsize. Each processor holds a bit. The privilege token corresponds to having thesame value as the preceding processor. Tokens make random walk on the ring;disappearing on meeting.Israeli and Jalfon [IJ90] de�ne a SSME construction based on two levels ofabstraction: token manipulation (lower level) and graph traversal. They provelower bounds on the number of states for USSME on rings and general graphs.Our USSME uses a number of states of the order of their bounds as long asthe degree is bounded by some constant.Beauquier and Dela�et [BD94] provide a random USSME on rings. Theirtechnique is to impose a gap between the integer values of neighbor vertices,the gap and modulo base are such that there should be an irregular gap some-where in the ring. This irregular gap yields the privilege. The correction oftheir algorithm comes from the non-increasing number of irregular gaps. Thisprovides a generalization of SSME on rings based on alternating 0 and 1. Theirgap depends on the number of vertices and a global orientation is needed. Ori-entation of ring can be constructed by SS algorithms. Israeli and Jalfon [IJ93]provide such an algorithm, as does Beauquier et al. [BDK96] (and one fortorus [BDKR98]).In a distributed system, there is no global control, processors work on theirown with only the information provided by neighbor processors. Each processoris a randomized �nite state machine. The processor network is uniform, thismeans that processors are anonymous and that any two processors with thesame degree are identical.Communications are made through registers. One register is attached toeach end of any communication edge. Along any edge, any incident processorcan read the register on both side but it can only write on the register on its

side. The communications are safe.To ensure correctness of our USSME we consider that processors are ac-tivated by some adversary deamon scheduler. The deamon knows the actualcon�guration but ignores the result of the next coin toss. It can activate anyset of vertices at a time. The deamon is fair: it must activate in�nitely ofteneach processor.We consider central, distributed and read/write deamons. With the last one,activated processors can only perform one atomic action during which only one(communication) register can be accessed (for either reading or writing).The cited algorithms work on rings ([Dij74, BD94]) or any graphs ([IJ90]),directed or oriented or not, for some deamon or only in the synchronous case([Her90]), are deterministic ([Dij74, BD94]) or randomized ([Her90, DIM90]): : : Some work on any graph but with a lesser version of uniformity: one ortwo processors may be di�erent ([Dij74, DIM90]).Our USSME works in almost all of the above cases. It follows the ideaof Beauquier and Dela�et: identify irregular integer gaps with tokens. We userandom walks to ensure stabilization and fair sharing of the token afterwardsin any graph. Each register holds an integer between 0 and m�1, where mdoes not divide the number of vertices n (n=jV j). We say that a processoris balanced if it veri�es a modi�ed Kirsho�'s law: the sum of inside registersis equal to the sum of outside registers, plus 1 (modulo m). The number ofprocessors ensures that not all processors can be balanced simultaneously.An unbalanced processor �rst tosses a coin to decide whether he passes thetoken, this forbids deadlocks in the synchronous case. To pass it, he recov-ers balance by adding its bias to one of its registers randomly chosen. Thecorresponding processor gains the bias which is added to its own if any. Thebias represents a privilege token which is transmitted to some randomly chosenneighboring processor.Tokens make random walks in the graph and merge or disappear on meeting.Using random walk techniques, we show that any two tokens meet in �nite timewith probability one. Eventually, only one token remains.Let a round be any minimal activation sequence such that all the processorsare activated at least one time. The expected stabilization time, in rounds, ispolynomial. It is bounded by O(mn2) in the case of a central random activationand O(mn3) in the read/write case.The USSME and the privilege condition are presented in Sect. 3. We provethe correction and the convergence of our algorithm In Sect. 4 and give a poly-nomial bound on the expected stabilization time in Sect. 5.2 De�nitionsThe processor network is modeled by its (�nite and connected) communicationgraph G = (V;E). Let n be the number of vertices in the graph (n=jV j), � beits diameter and D be its maximal degree. For any vertex x, we denote Ex the

collection of edges incident to x and dx its degree. If (x; y) is an edge, then xand y are neighbors.Communications are handled with registers. For each edge (x; y) there areone register attached to each incident vertex: Rxy and Ryx. Vertices x and ycan read both registers. Only x (y) can modify Rxy (Ryx).We suppose the network uniform: processors are anonymous and any twoprocessors with the same degree are identical. Each processor is de�ned by itsdegree.Let C be the set of all con�gurations. We denote that a con�guration c2can be reached from con�guration c1 by a single activation of processors byc1 ` c2. The transitive closure of ` is denoted `�.A protocol is called self-stabilizing (SS) for a given set of legal con�gurationsL (L � C) if it veri�es the following assertions:{ correctness: once in a legal con�guration c (c 2 L) the system remains inlegal con�gurations (if c1 2 L then for any c2 such that c1`�c2, c2 2 L);{ convergence: the system eventually enters a legal con�guration with prob-ability 1.No deadlock should come from SS: any deadlock con�guration must be alegal one.A mutual exclusion (ME) is an algorithm/protocol/scheme such that in anycon�guration, one and only one processor is in a privileged state, all the otherprocessors are in unprivileged states. In any execution of a ME, all processorsare in�nitely often privileged. The privilege is represented by some abstracttoken which is passed on.When legal con�gurations are de�ned by containing exactly one token, onespeaks of a self-stabilizing mutual exclusion (SSME).Generally the termination, or the fact that a legal con�guration is reached, isnot locally detectable. This comes from the fact that the system can be startedin any con�guration, including ones that are locally correct but globally illegal,e.g., two privilege tokens at su�ciently large distance.The updates of the processors are done according to their activation by ascheduler. The scheduler chooses each time which processors are activated.To ensure correctness, the classical model for scheduler is an adversarydeamon. The deamon knows the whole con�guration but ignores the result ofthe next coin toss. It is fair : any processor is activated in�nitely often in anyin�nite activation sequence.We consider the following kinds of deamons:{ central deamon: it can only activate one processor at a time;{ distributed deamon: it can activate any set of processors at a time;{ read/write deamon: it can activate any set of processors, but processorsonly performs one atomic action that contains at most one access (reading orwriting) to one (communication) register.The central deamon is the weakest adversary. The read/write deamon isthe strongest one because it may have all the processor read registers and thenhave some modify registers so that many processors works with outdated data.

3 USSME de�nitionDe�nition 1 Let m be the smallest integer such that m does not divide thenumber of vertices n.Each edge register can hold any value between 0 and m�1. A con�gurationis de�ned by the values of all the registers.De�nition 2 A vertex x is balanced if it veri�es the following equation:X(x;y)2Ex Rxy � X(x;y)2ExRyx + 1 mod m :It is a modi�ed Kirsho�'s law: the outgoing (inside) is the incoming (out-side) plus 1 (modulo m).De�nition 3 A processor is privileged when it is unbalanced. The di�erenceto balance is called the bias.When an unbalanced processor is activated, if a coin toss succeeds, it triesto recover balance by adding the computed bias to a randomly chosen register.The algorithm is given in Fig.1.1 di� := 0 ;2 for each (x; y) in Ex3 di� := (di� + Rxy) mod m ;4 di� := (di� � Ryx) mod m ;5 if (di� == 1) then /* unbalanced */6 /* begin critical section */7 : : :8 /* end critical section */9 if toss coin with probability (degree = (degree+ 1)) then10 /* pass the privilege */11 (x; y) := randomly chosen incident edge () ;12 di� := (Rxy + 1 � di�) mod m ;13 Rxy := di� ; /* regain balance */14 end15 end Figure 1: Balancing algorithm for vertex x.The algorithm is written in detail in order to show the atomic activationparts of the read/write deamon. The atomic actions are the reading of all

registers (inside and outside, i.e., lines 3 and 4) then the eventual passing ofthe privilege (lines 12 and 13).Let us note that no copy of the contents of the registers are inside theprocessor. This avoid duplication of data and the risk of outdated values. Ifthere would have been copies, the processor should read anyway its registersbecause they can mask the presence of bias and produce a deadlock.The random test to let go the privilege (line 9) prevents malice actions ofdistributed and read/write deamons as in [DIM90]. If the toss coin fails, theprocessor has to read again all the registers. If the value of the held data diffis wrong, on the second reading, the other bias is discovered and both are added(leading even to their destruction).In the next section, we prove that the algorithm ensures that the systemeventually reaches a con�guration where one and only one processor is unbal-anced and afterward, one and only one processor is unbalanced.An example of stabilizing iterations is given in Fig. 2. We only considerthe case where activated processors are unbalanced and pass the privilege. Theprivileged processors are indicated by `�' and the activated processors by circles.Only two states are needed on each register since the number of vertices is odd.Initially, the number of irregular gap is 3, it rapidly goes down to 1. Finally,the irregular gap makes a random walk inside the graph.���� @@@@00 00 0 0ii01 1 0 0100��� :: ` ���� @@@@00 00 0 0i01 0 0 0110:�: �� ` ���� @@@@00 00 0 0i01 0 0 0111::: �: ` ���� @@@@00 00 0 0i01 0 0 1111::: :�Figure 2: Example of iterations, n = 5 and m = 2.4 Correction of the algorithmIn this section, we prove that our algorithm is a USSME against any deamon.The proofs for read/write deamon are only sketched. The atomic action are:{ all the readings to test for balancing and to compute the bias;{ reading the value of the register to be modi�ed;{ writing a new value (with the known information) on the chosen register.Lemma 4 There is always at least one unbalanced processor.

Proof. By contradiction, let's assume that all the processors are balanced.Then the following formula is veri�ed:8x 2 V; X(x;y)2Ex Rxy � X(x;y)2Ex Ryx + 1 mod m :Let us sum it over all vertices:X(x;y)2ERxy � X(x;y)2ERyx + n mod m :Is simpli�es to n � 0 mod m which contradicts De�nition 1 (m does notdivide n).When considering the read/write deamon, unbalance can be temporallyhidden. If no processor �nds itself unbalanced because of outdated readingthen no register can be modi�ed. Since the deamon is fair, all processors willread again the registers and then any unbalanced one realizes that it has atoken. �There is always at least one privileged processor. This ensures that nodeadlock is possible.Lemma 5 The number of unbalanced processors is non-increasing.Proof. Let us look what happens when a vertex is updated:{ if the vertex is balanced then no register is modi�ed, the number of unbal-anced processors remains as is;{ if the vertex is not balanced then the algorithm eventually balances it {the number of unbalanced processors is diminished by one{ and the registerof one edge is changed. This change can only unbalanced one processor: theone at the other end of the edge. If it was unbalanced, then the numberof unbalanced processors is diminished by one {or two if it balances the endprocessor{ otherwise it remains constant;{ if more than processor are activated synchronously. Let us only considerthe unbalanced ones. Each one can unbalance at most one processor. If itremains unbalanced, it means that it was unbalanced by another one, but theother one does not act on any other processor. �For read/write deamon, we have to consider:{ processors that \perceived themselves unbalanced" once they have read aregister that has changed since last read (even if they have no memory ofprevious value and have not yet computed the total bias);{ \delayed bias" sent by a processor but the corresponding register has alreadybeen read. The delayed bias is considered in the next cycle of the processor.There are less token than perceived themselves unbalanced processors anddelayed bias. It is possible to prove that this sum is non increasing.From the two previous lemmas, it comes:

Lemma 6 Once there is only one unbalanced processor, there remains onlyone forever.Finally we have to ensure that a legal state is eventually reached.Lemma 7 The system eventually reaches a con�guration where only one pro-cessor is unbalanced with probability 1.Proof. There must be at least one token in the graph, let us consider thatthere are more than one. Let us consider any two tokens in the graph.The dynamic given in the proof of Lem.5 is the dynamic of random walkof bias in the graph. When two biases met, they merge (or disappear whichaccelerate the diminishing process and is thus not considered).Let d be their distance and D the maximal degree of the graph. The �rsttime that one of their processors is activated (the last part of the algorithm):{ if the other processor is not activated: the probability that the distancebetween bias decreases by one is down bounded by 1=(D + 1) � min(1=(dx +1); 1=(dy + 1)) (it goes towards the other);{ if both are activated: this probability is down bounded by 1=(D + 1) �(dx=(dx+1)+dy=(dy+1)):1=(D+1) (one goes toward the other and the otherremains in the same vertex). The case where they both go one toward the otheris not counted because they pass each other at the distance one.The probability that the distance decreases is down bounded by 4=(D+2)2.Once the distance reach 0, they merge or both disappear, the number of tokendecreases. Since the deamon is fair, the processors holding the two tokens haveto be activated. They eventually merge or disappear with probability 1.There are at most n tokens and while there are at least two, their numbereventually decreases with probability one. �Let a round be any minimal sequence of activations where each processoris activated at least one. Above computation gives a lower bound of the prob-ability that a token disappear in � rounds. Let St = r mean that the systems,starting with t tokens is stable after r rounds, i.e., there is only one token left.Since two tokens are at most at distance � (the diameter of the graph):� 1(D + 1)�� � P (S2 = �) :For the read/write deamon, one must only consider activations which cor-responds to lines 9 to 14 of Fig. 1, i.e., the reading part is not considered. Thiscorresponds to a factor of O(D).5 Expected stabilization timeLet us consider the central assumption {only one processor activated at a time{and that processors are activated with a probability proportional to their de-grees plus one to simplify calculus.

Theorem 8 Under the central deamon assumption, the expected number ofrounds for stabilization is up bounded by 12mn2�.Proof. We consider the expected time for two tokens to meet. If oneencounters another one before, either they merge and we consider the resultingtoken or they disappear which terminate directly as only one token remains.Let us consider the graph ~G build as follows: ~V = V � V and for anyx, y, t and u in V , the following edges are in ~E: ([x; t]; [x; t]); ([x; t]; [y; t])if (x; y) 2 E; and ([x; t]; [x; u]) if (t; u) 2 E. Any position in ~G represents aposition of two tokens. When a token is activated, any kind of edge can becrossed with the same probability (from the probabilities of processor activationand edge selection in our algorithm). By counting double the loop edge, we geta random walk in ~G.Using Lemma 3 from [AKL+79], we get an upper bound on the expectednumber of activation before the two tokens go from any vertex to some [x; x]vertex: T � 2 ~m ~� where ~m = n+2mn is the number of edges of ~G and ~� = 2�is the diameter of ~G.Since at maximumn�1 token encounters are needed to reduce to one token,the expected number of rounds for stabilization is bounded by: (n� 1)2 ~m ~� =(n� 1)2(n+ 2mn)(2�) � 12mn2�. �It is also possible to prove polynomial upper bounds in O(mn3) for dis-tributed and read/write deamon with similar techniques and probabilities ofactivation.6 ConclusionThe algorithm works for any graph. One stabilization is achieved, randomwalks ensure a fair sharing of the privilege token.The lowest integer which does not divide the number of vertices n is upbounded byO(log(n)) because e1:8k<lcm(1; 2; ::k) [RS62] (as mentioned in [IJ90]).The number of states needed to implement the algorithm is bounded byO(D log(n)).There are at most n�1 incident edges, a more general upper bounded isO(n log(n)).To bound the expected stabilization time, we consider the time to arrive tosome particular vertex and not in the diagonal set of ~G and that the �rst tokenmerge with the second, then the third, : : : then the nth. The possibility thatthey merge before and in any order is omitted. We believe that all our boundscan be lowered by a power n or log(n).The algorithm is partially dynamic: if processors/communication links areadded or deleted, new bias are generated. As long as m does not divide n, thesystem regains consistency. For any N , it is su�cient to take m = N + 1 tomake the algorithm work on any network with at most N processors.

References[AKL+79] R. Aleliunas, R. M. Karp, R. Lipton, L. Lov�asz, and C. Racko�.Random walks, univeral traversal sequences and the complexity ofthe maze problem. In Proc. Symp. on Foundation of ComputerScience (FOCS'79), pages 218{223, 1979.[Ang80] D. Angluin. Local and global properties in networks of processors.In Proc. Symp. on Theory of Computing (STOC'80), pages 82{93,1980.[BD94] J. Beauquier and S. Dela�et. Probabilistic self-stabilizing mutualexclusion in uniform rings. In Principles of Distributed Computing(PODC'94), page 378, 1994.[BDK96] J. Beauquier, O. Debas, and S. Kekkonen. Fault-tolerant and self-stabilizing ring orientation. In 3st International Colloquium onStructural Information & Communication Complexity (SIROCCO).Carleton University Press, 1996.[BDKR98] J. Beauquier, O. Debas, S. Kekkonen, and B. Rozoy. Self-stabilizingtorus orientation. private communication, 1998.[Dij74] E. Dijkstra. Self-stabilizing systems in spite of distributed control.Journal of the ACM, 17(11):643{644, 1974.[DIM90] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamicsystems assuming only read/write atomicity. In Principles of Dis-tributed Computing (PODC'90), pages 103{117, 1990.[Her90] T. Herman. Probabilistic self-stabilization. Information ProcessingLetters, 35:63{67, 1990.[IJ90] A. Israeli and M. Jalfon. Token management schemes and ran-dom walks yields self-stabilizing mutual exclusion. In Principles ofDistributed Computing (PODC'90), pages 119{130, 1990.[IJ93] A. Israeli and M. Jalfon. Uniform self-stabilizing ring orientation.Information and Computation, 104:175{196, 1993.[RS62] J. B. Rosser and L. Schoenfeld. Approximate formulas for somefunctions of prime numbers. Illinois Journal of Mathematics, 6:64{94, 1962.

