
Information Proessing Letters 74, pp. 203-207, 2000.Randomized Uniform Self-stabilizingMutual Exlusion ?J�erôme Durand-Lose 1Laboratoire ISSS, Bât. ESSI, BP 145, 06903 Sophia Antipolis Cedex, FRANCE.A system is self-stabilizing if when started in any on�guration it reahesa legal on�guration, all subsequent on�gurations are legal. We presenta randomized self-stabilizing mutual exlusion that works on any uniformgraphs. It is based on irregularities that have to be present in the graph.Irregularities make random walks and merge on meeting. The number ofstates is bounded by o(� lnn) where � is the maximal degree and n isthe number of verties. The protool is also proof against addition andremoval of proessors.Key words: Self-stabilization, Mutual exlusion, Fault tolerane, Distributedomputing, Random walks.
1 IntrodutionA system of interonneted proessors often needs some mutual exlusion(ME) sheme to handle resoures. At any time one and only one proessoris privileged and may enter a ritial setion {in order, e.g., to aess someresoure. Eah proessor should be privileged in�nitely often. The abstratonept of token is used to indiate the privilege.Sometimes systems get orrupted, e.g., no privileged proessor exists {aessto ruial resoures is lost{ or more that one proessor are privileged {deviesmight get onfused by dual aess. Sine it is not possible to prevent anyfailure, we would like the system to regain onsisteny without any externalintervention, and as sound as possible.? This work was done while the author was in the LaBRI, UMR CNRS 5 800,Universit�e Bordeaux I, Talene, FRANCE.1 Jerome.DURAND-LOSE�unie.fr, http://www.i3s.unie.fr/~jdurandTo appear in Information Proessing Letters IPL 2338 Marh 2000

A system is self-stabilizing (SS) for a prediate if when started in any possi-ble on�guration it eventually reahes a legal on�guration (onvergene) andone in a legal on�guration, it remains in legal on�gurations (losure) andthe prediate is veri�ed (orretness). A self-stabilizing system does not needto be initialized. Moreover, it is tolerant to transient fault: it regains onsis-teny without any external intervention when a proessor halts and reoversin any arbitrary state or ommuniations get orrupted.It this artile we provide an algorithm for mutual exlusion that ensures thatthe system eventually enters a legal on�guration {one and only one privilegedproessor{ and that the system remains in legal on�gurations afterwards.The onept of self-stabilization was �rst introdued the pioneering paper byDijkstra [Dij74℄ whih presents some SSME on semi-uniform rings. He men-tions that no deterministi protool exists for uniform ring with a ompositenumber of verties. Angluin [Ang80℄ proves that it is impossible to determin-istially distinguished a vertex in a graph that is a strit overing of anothergraph. There is no way to deterministially break existing symmetries in anyuniform distributed system. Thus, no deterministi USSME exists for graphwith symmetries and randomized approah has to be used. Our uniform self-stabilizing mutual exlusion (USSME) is randomized.There already exists self-stabilizing mutual exlusion algorithms in the litera-ture: on rings ([Dij74,BD94℄) or any graphs ([IJ90℄), randomized ([DIM90,Her90,BD94℄)or deterministi ([Dij74℄), for some daemon sheduler or only in the syn-hronous ase ([Her90℄) : : : Some work on any graph but with a lesser versionof uniformity: one or two proessors may be di�erent ([Dij74,DIM90℄). OurUSSME works on any graph under any daemon.Israeli and Jalfon [IJ90℄ provide a SSME onstrution based on two levels ofabstration: Token Manipulation Sheme (TMS) and Graph Traversal (GT).In their artile they provide two TMS (one with an in�nite number of statesand one for rings) and use random walks for GT. They prove lower bounds onthe number of states for USSME on rings and on general graphs. At the end oftheir artile, they mention three problems for further researh. The third oneis to �nd a TMS with a �nite number of states for any ommuniation graphwith a bounded number of proessors. Our USSME provides suh a TMS.Beauquier and Dela�et [BD94℄ give a randomized USSME on oriented rings.Their tehnique is to impose a gap between the values of neighbor verties.The gap is suh that there should be an irregular gap somewhere in the ring.This irregular gap yields the privilege. The orretion of their algorithm omesfrom the non-inreasing number of irregular gaps.We extend the idea of Beauquier and Dela�et to undireted graphs. The gap2

is omputed in the following way. Eah ommuniation edge register holds aninteger between 0 and m�1, where m does not divide the number of verties.We say that a proessor is balaned if it veri�es a modi�ed Kirsho�'s law: thesum of inside registers is equal to the sum of outside registers (of neighboringproessors), plus 1 (modulom). The de�nition ofm ensures that all proessorsan not be balaned simultaneously.We all bias the di�erene from balane. An unbalaned proessor reoversbalane by adding its bias to one of its registers randomly hosen. The orre-sponding proessor gains the bias whih is added to its own (if any). The biasrepresents a privilege token whih is transmitted to some randomly hosenneighboring proessor. This provides the TMS.The GT is as in [IJ90℄: tokens make random walks in the graph and merge(or disappear) on meeting. We show that any two tokens eventually meetwith probability 1. Eventually, only one token remains. Upper bounds on themeeting time of tokens an be found in [BHWG99℄.The network is uniform, this means that proessors are anonymous and thatany two proessors with the same degree are idential. Eah proessor is arandomized �nite state mahine. Communiations are made through registers.One register is attahed to eah end of any ommuniation edge. Along anyedge, any inident proessor may read the registers on both side but it anonly write on the register on its side.Proessors are ativated by some adversary daemon sheduler. To simplifythe proofs, we only onsider here the entral daemon (it an only ativate oneproessor at a time); nevertheless, our protool is also proof against distributed(it an ativate any set of proessors) and read/write daemons (during anativation, a proessor an only perform one single read or write operation)sine passing the token onsists only in one ation.We onlude the paper with a short remark on how to use our TMS fordynamial self-stabilization (proessors an be added or removed).2 De�nitionsThe network is uniform: proessors are anonymous and any two proessorswith the same degree are idential. A proessor is fully de�ned by its degree.The network is modeled by its (undireted, �nite and onneted) ommunia-tion graph G = (V;E). Let n be the number of verties in the graph (n = jV j).For any vertex x, we denote Ex the olletion of edges inident to x. If (x; y)is an edge, then x and y are neighbors.3

Communiations are handled with registers. For eah edge (x; y) there is oneregister attahed to eah inident vertex: Rxy and Ryx. Verties x and y anread both registers. Only x (y) an modify Rxy (Ryx).Let C be the set of all on�gurations. We denote that a on�guration 2 anbe reahed from on�guration 1 by a single ativation of a proessor(s) by1 ` 2. The transitive losure of ` is denoted `�. A protool is self-stabilizing(SS) for a given prediate P if there exist some set of legal on�gurations L(L � C) suh that:{ onvergene: the system eventually enters a legal on�guration with proba-bility 1;{ losure: one in a legal on�guration (2 L) the system remains in legalon�gurations (if 1 2 L then for any 2 suh that 1`�2, 2 2 L). The set Lis an attrator of the system;{ orretness: starting on a legal on�guration, the exeution of the systemwill verify P with probability 1.A mutual exlusion (ME) protool ensures that in any (legal) on�guration,one and only one proessor is in a privileged state, all the other proessors arein unprivileged states. In any exeution of a ME, all proessors are in�nitelyoften privileged. The privilege is represented by some abstrat token whih ispassed on. When legal on�gurations are de�ned by ontaining exatly onetoken, one speaks of a self-stabilizing mutual exlusion (SSME).Proessors are ativated by a sheduler(s). The sheduler hooses eah timewhih proessor(s) to ativate. To ensure orretness, the lassial model forsheduler is an adversary daemon. The daemon knows the whole on�gurationbut ignores the result of the next oin toss. We only onsider here the entraldaemon whih an only ativate one proessor at a time.3 USSME de�nitionLet m be the smallest integer suh that m does not divide the number ofverties n. Eah edge register an hold any value between 0 and m � 1. Aon�guration is de�ned by the values of all the registers. The lowest integerwhih does not divide the number of verties n is up bounded by O(log(n)) asmentioned in [IJ90℄. The number of states needed to implement the algorithmis bounded by O(� log(n)), where � is the maximal degree.De�nition 1 A vertex x is balaned if it veri�es the equation:X(x;y)2ExRxy � X(x;y)2ExRyx + 1 mod m : (1)4

It is a modi�ed Kirsho�'s law: the outgoing ow is the inoming ow plus 1(modulo m).De�nition 2 A proessor is privileged when it is unbalaned. The di�erenefrom balane is alled the bias.When an unbalaned proessor is ativated, it tosses a oin. If it sueeds, ittries to reover balane by adding the omputed bias to a randomly hosenregister. The algorithm is detailed in Fig. 1.1 bias := �1 ;2 for eah (x; y) in Ex3 bias := (bias + Rxy � Ryx) mod m ;4 if (bias ! = 0) then /* unbalaned */5 /* begin ritial setion */6 : : :7 /* end ritial setion */8 if toss oin () then9 /* pass the privilege */10 (x; y) := randomly hosen inident edge () ;11 Rxy := (Rxy � bias) mod m ; /* regain balane */12 end13 end Fig. 1. Balaning algorithm for vertex x.There is no opy of the ontents of the registers inside the proessor. Thisavoid dupliation of data and risks of inoherene. If there would have beenopies, the proessor should read anyway its registers beause they an maskthe presene of bias and produe a deadlok.The random test to let go the privilege (line 8) prevents malie ations ofdistributed and read/write daemons as in [DIM90,Her90℄.An example of stabilization is given in Fig. 2 (only the ativations of un-balaned proessors that pass tokens are indiated). Balaned proessors areindiated by `:' and eah unbalaned one holds the value of its bias. The ati-vated proessors are irled, the hosen edge is in bolt. Only 4 states (m = 4)are needed on eah register sine there are 6 proessors. Initially, the numberof irregular gap is 4, it rapidly goes down to 1. Finally, the irregular gap makesa random walk inside the graph. 5

���� ����
k

013
3 31 02 0
2 12 3 2310

1
:3
2 221 ` ���� ���� k013

3 31 02 0
2 12 3 2330

1
:3
2 ::1 ` ���� ����

k
013

3 31 02 0
2 12 3 2331

1
:3
2 :1: ` ���� ����k013

3 31 02 0
2 12 3 2331

3
:1
: :1:Fig. 2. Example of iterations, n = 6 and m = 4.4 ProofsOur USSME veri�es the Reliability, No Deadlok and Self Stabilization re-quirements of [IJ90℄.Lemma 3 There is always at least one token, i.e., an unbalaned proessor.PROOF. By ontradition, let's assume that all the proessors are balaned.Then the following formula is veri�ed:8x 2 V; X(x;y)2ExRxy � X(x;y)2ExRyx + 1 mod m :Let us sum it over all verties:X(x;y)2ERxy � X(x;y)2ERyx + n mod m :It simpli�es to n � 0 mod m whih ontradits the de�nition of m. 2Lemma 4 The number of unbalaned proessors is non-inreasing.PROOF. Let us look what happens when a vertex is updated:{ if the vertex is balaned or is unbalaned but does not send the token thenno register is modi�ed, the number of unbalaned proessors remains onstant;{ if the vertex is unbalaned and sends the token then the algorithm balanesit {the number of unbalaned proessors is diminished by one{ and the registerof one edge is hanged. This hange an only unbalaned one proessor: theone at the other end of the edge. If it was unbalaned, then the number ofunbalaned proessors is diminished by one {or two if it balanes the endproessor{ otherwise it remains onstant. 2From the two previous lemmas, omes:6

Lemma 5 One there is only one unbalaned proessor, there remains onlyone forever.Lemma 6 The system eventually reahes a on�guration where only one pro-essor is unbalaned with probability 1.
PROOF. Sine there must be at least one token in the graph, we only haveto onsider the ase where there are more than one token. Let us onsider anytwo tokens in the graph.The dynamis given in the proof of Lem. 4 are the dynamis of random walkof token in the graph. When two tokens met, they merge (or disappear whihaelerate the diminishing proess and is thus not onsidered).Let d be the distane between these two token and � the maximal degree of thegraph. The �rst time that one of their proessors is ativated: the probabilitythat the distane between token dereases by one is down bounded by 1=(2:�)(it goes towards the other). One the distane reah 0, they merge or bothdisappear, the number of token dereases.If these proessors are not ativated, then other tokens moves. Sine tokensmake random walks, one of the moving tokens will enter one of the left idleproessors and merge.Two tokens will eventually merge {or disappear{ with probability 1. Thereare at most n tokens and while there are at least two, their number eventuallydereases with probability 1. 2
Finally, random walks ensure that the token eventually visits eah proessorin�nitely often.Although it is impossible for a proessor to know that the whole on�gurationis orret, it an tell that the system is perturbed if it owns a bias di�erentfrom n mod m.By taking m = N+1, one get a USSME whih works even if a proessor isadded or removed (dynami self-stabilization) as long as there are less thanN proessors. By removing the modulo part in (1) of Def. 1, on get a dynamiUSSME with no bounds on the number of proessors, but in this ase, thenumber of state in in�nite. 7

Referenes[Ang80℄ D. Angluin. Loal and global properties in networks of proessors. InPro. Symp. on Theory of Computing (STOC '80), pages 82{93, 1980.[BD94℄ J. Beauquier and S. Dela�et. Probabilisti self-stabilizing mutualexlusion in uniform rings. In Priniples of Distributed Computing(PODC '94), page 378, 1994.[BHWG99℄ N. Bshouty, L. Higham, and J. Warpehowska-Grua. Meeting times ofrandom walks on graphs. Information Proessing Letters, 69:259{265,1999.[Dij74℄ E. Dijkstra. Self-stabilizing systems in spite of distributed ontrol.Journal of the ACM, 17(11):643{644, 1974.[DIM90℄ S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamisystems assuming only read/write atomiity. In Priniples of DistributedComputing (PODC '90), pages 103{117, 1990.[Her90℄ T. Herman. Probabilisti self-stabilization. Information ProessingLetters, 35:63{67, 1990.[IJ90℄ A. Israeli and M. Jalfon. Token management shemes and random walksyields self-stabilizing mutual exlusion. In Priniples of DistributedComputing (PODC '90), pages 119{130, 1990.

8

