
Information Pro
essing Letters 74, pp. 203-207, 2000.Randomized Uniform Self-stabilizingMutual Ex
lusion ?J�erôme Durand-Lose 1Laboratoire ISSS, Bât. ESSI, BP 145, 06903 Sophia Antipolis Cedex, FRANCE.A system is self-stabilizing if when started in any
on�guration it rea
hesa legal
on�guration, all subsequent
on�gurations are legal. We presenta randomized self-stabilizing mutual ex
lusion that works on any uniformgraphs. It is based on irregularities that have to be present in the graph.Irregularities make random walks and merge on meeting. The number ofstates is bounded by o(� lnn) where � is the maximal degree and n isthe number of verti
es. The proto
ol is also proof against addition andremoval of pro
essors.Key words: Self-stabilization, Mutual ex
lusion, Fault toleran
e, Distributed
omputing, Random walks.
1 Introdu
tionA system of inter
onne
ted pro
essors often needs some mutual ex
lusion(ME) s
heme to handle resour
es. At any time one and only one pro
essoris privileged and may enter a
riti
al se
tion {in order, e.g., to a

ess someresour
e. Ea
h pro
essor should be privileged in�nitely often. The abstra
t
on
ept of token is used to indi
ate the privilege.Sometimes systems get
orrupted, e.g., no privileged pro
essor exists {a

essto
ru
ial resour
es is lost{ or more that one pro
essor are privileged {devi
esmight get
onfused by dual a

ess. Sin
e it is not possible to prevent anyfailure, we would like the system to regain
onsisten
y without any externalintervention, and as sound as possible.? This work was done while the author was in the LaBRI, UMR CNRS 5 800,Universit�e Bordeaux I, Talen
e, FRANCE.1 Jerome.DURAND-LOSE�uni
e.fr, http://www.i3s.uni
e.fr/~jdurandTo appear in Information Pro
essing Letters IPL 2338 Mar
h 2000

A system is self-stabilizing (SS) for a predi
ate if when started in any possi-ble
on�guration it eventually rea
hes a legal
on�guration (
onvergen
e) andon
e in a legal
on�guration, it remains in legal
on�gurations (
losure) andthe predi
ate is veri�ed (
orre
tness). A self-stabilizing system does not needto be initialized. Moreover, it is tolerant to transient fault: it regains
onsis-ten
y without any external intervention when a pro
essor halts and re
oversin any arbitrary state or
ommuni
ations get
orrupted.It this arti
le we provide an algorithm for mutual ex
lusion that ensures thatthe system eventually enters a legal
on�guration {one and only one privilegedpro
essor{ and that the system remains in legal
on�gurations afterwards.The
on
ept of self-stabilization was �rst introdu
ed the pioneering paper byDijkstra [Dij74℄ whi
h presents some SSME on semi-uniform rings. He men-tions that no deterministi
 proto
ol exists for uniform ring with a
ompositenumber of verti
es. Angluin [Ang80℄ proves that it is impossible to determin-isti
ally distinguished a vertex in a graph that is a stri
t
overing of anothergraph. There is no way to deterministi
ally break existing symmetries in anyuniform distributed system. Thus, no deterministi
 USSME exists for graphwith symmetries and randomized approa
h has to be used. Our uniform self-stabilizing mutual ex
lusion (USSME) is randomized.There already exists self-stabilizing mutual ex
lusion algorithms in the litera-ture: on rings ([Dij74,BD94℄) or any graphs ([IJ90℄), randomized ([DIM90,Her90,BD94℄)or deterministi
 ([Dij74℄), for some daemon s
heduler or only in the syn-
hronous
ase ([Her90℄) : : : Some work on any graph but with a lesser versionof uniformity: one or two pro
essors may be di�erent ([Dij74,DIM90℄). OurUSSME works on any graph under any daemon.Israeli and Jalfon [IJ90℄ provide a SSME
onstru
tion based on two levels ofabstra
tion: Token Manipulation S
heme (TMS) and Graph Traversal (GT).In their arti
le they provide two TMS (one with an in�nite number of statesand one for rings) and use random walks for GT. They prove lower bounds onthe number of states for USSME on rings and on general graphs. At the end oftheir arti
le, they mention three problems for further resear
h. The third oneis to �nd a TMS with a �nite number of states for any
ommuni
ation graphwith a bounded number of pro
essors. Our USSME provides su
h a TMS.Beauquier and Dela�et [BD94℄ give a randomized USSME on oriented rings.Their te
hnique is to impose a gap between the values of neighbor verti
es.The gap is su
h that there should be an irregular gap somewhere in the ring.This irregular gap yields the privilege. The
orre
tion of their algorithm
omesfrom the non-in
reasing number of irregular gaps.We extend the idea of Beauquier and Dela�et to undire
ted graphs. The gap2

is
omputed in the following way. Ea
h
ommuni
ation edge register holds aninteger between 0 and m�1, where m does not divide the number of verti
es.We say that a pro
essor is balan
ed if it veri�es a modi�ed Kirsho�'s law: thesum of inside registers is equal to the sum of outside registers (of neighboringpro
essors), plus 1 (modulom). The de�nition ofm ensures that all pro
essors
an not be balan
ed simultaneously.We
all bias the di�eren
e from balan
e. An unbalan
ed pro
essor re
oversbalan
e by adding its bias to one of its registers randomly
hosen. The
orre-sponding pro
essor gains the bias whi
h is added to its own (if any). The biasrepresents a privilege token whi
h is transmitted to some randomly
hosenneighboring pro
essor. This provides the TMS.The GT is as in [IJ90℄: tokens make random walks in the graph and merge(or disappear) on meeting. We show that any two tokens eventually meetwith probability 1. Eventually, only one token remains. Upper bounds on themeeting time of tokens
an be found in [BHWG99℄.The network is uniform, this means that pro
essors are anonymous and thatany two pro
essors with the same degree are identi
al. Ea
h pro
essor is arandomized �nite state ma
hine. Communi
ations are made through registers.One register is atta
hed to ea
h end of any
ommuni
ation edge. Along anyedge, any in
ident pro
essor may read the registers on both side but it
anonly write on the register on its side.Pro
essors are a
tivated by some adversary daemon s
heduler. To simplifythe proofs, we only
onsider here the
entral daemon (it
an only a
tivate onepro
essor at a time); nevertheless, our proto
ol is also proof against distributed(it
an a
tivate any set of pro
essors) and read/write daemons (during ana
tivation, a pro
essor
an only perform one single read or write operation)sin
e passing the token
onsists only in one a
tion.We
on
lude the paper with a short remark on how to use our TMS fordynami
al self-stabilization (pro
essors
an be added or removed).2 De�nitionsThe network is uniform: pro
essors are anonymous and any two pro
essorswith the same degree are identi
al. A pro
essor is fully de�ned by its degree.The network is modeled by its (undire
ted, �nite and
onne
ted)
ommuni
a-tion graph G = (V;E). Let n be the number of verti
es in the graph (n = jV j).For any vertex x, we denote Ex the
olle
tion of edges in
ident to x. If (x; y)is an edge, then x and y are neighbors.3

Communi
ations are handled with registers. For ea
h edge (x; y) there is oneregister atta
hed to ea
h in
ident vertex: Rxy and Ryx. Verti
es x and y
anread both registers. Only x (y)
an modify Rxy (Ryx).Let C be the set of all
on�gurations. We denote that a
on�guration
2
anbe rea
hed from
on�guration
1 by a single a
tivation of a pro
essor(s) by
1 `
2. The transitive
losure of ` is denoted `�. A proto
ol is self-stabilizing(SS) for a given predi
ate P if there exist some set of legal
on�gurations L(L � C) su
h that:{
onvergen
e: the system eventually enters a legal
on�guration with proba-bility 1;{
losure: on
e in a legal
on�guration
 (
 2 L) the system remains in legal
on�gurations (if
1 2 L then for any
2 su
h that
1`�
2,
2 2 L). The set Lis an attra
tor of the system;{
orre
tness: starting on a legal
on�guration, the exe
ution of the systemwill verify P with probability 1.A mutual ex
lusion (ME) proto
ol ensures that in any (legal)
on�guration,one and only one pro
essor is in a privileged state, all the other pro
essors arein unprivileged states. In any exe
ution of a ME, all pro
essors are in�nitelyoften privileged. The privilege is represented by some abstra
t token whi
h ispassed on. When legal
on�gurations are de�ned by
ontaining exa
tly onetoken, one speaks of a self-stabilizing mutual ex
lusion (SSME).Pro
essors are a
tivated by a s
heduler(s). The s
heduler
hooses ea
h timewhi
h pro
essor(s) to a
tivate. To ensure
orre
tness, the
lassi
al model fors
heduler is an adversary daemon. The daemon knows the whole
on�gurationbut ignores the result of the next
oin toss. We only
onsider here the
entraldaemon whi
h
an only a
tivate one pro
essor at a time.3 USSME de�nitionLet m be the smallest integer su
h that m does not divide the number ofverti
es n. Ea
h edge register
an hold any value between 0 and m � 1. A
on�guration is de�ned by the values of all the registers. The lowest integerwhi
h does not divide the number of verti
es n is up bounded by O(log(n)) asmentioned in [IJ90℄. The number of states needed to implement the algorithmis bounded by O(� log(n)), where � is the maximal degree.De�nition 1 A vertex x is balan
ed if it veri�es the equation:X(x;y)2ExRxy � X(x;y)2ExRyx + 1 mod m : (1)4

It is a modi�ed Kirsho�'s law: the outgoing
ow is the in
oming
ow plus 1(modulo m).De�nition 2 A pro
essor is privileged when it is unbalan
ed. The di�eren
efrom balan
e is
alled the bias.When an unbalan
ed pro
essor is a
tivated, it tosses a
oin. If it su

eeds, ittries to re
over balan
e by adding the
omputed bias to a randomly
hosenregister. The algorithm is detailed in Fig. 1.1 bias := �1 ;2 for ea
h (x; y) in Ex3 bias := (bias + Rxy � Ryx) mod m ;4 if (bias ! = 0) then /* unbalan
ed */5 /* begin
riti
al se
tion */6 : : :7 /* end
riti
al se
tion */8 if toss
oin () then9 /* pass the privilege */10 (x; y) := randomly
hosen in
ident edge () ;11 Rxy := (Rxy � bias) mod m ; /* regain balan
e */12 end13 end Fig. 1. Balan
ing algorithm for vertex x.There is no
opy of the
ontents of the registers inside the pro
essor. Thisavoid dupli
ation of data and risks of in
oheren
e. If there would have been
opies, the pro
essor should read anyway its registers be
ause they
an maskthe presen
e of bias and produ
e a deadlo
k.The random test to let go the privilege (line 8) prevents mali
e a
tions ofdistributed and read/write daemons as in [DIM90,Her90℄.An example of stabilization is given in Fig. 2 (only the a
tivations of un-balan
ed pro
essors that pass tokens are indi
ated). Balan
ed pro
essors areindi
ated by `:' and ea
h unbalan
ed one holds the value of its bias. The a
ti-vated pro
essors are
ir
led, the
hosen edge is in bolt. Only 4 states (m = 4)are needed on ea
h register sin
e there are 6 pro
essors. Initially, the numberof irregular gap is 4, it rapidly goes down to 1. Finally, the irregular gap makesa random walk inside the graph. 5

���� ����
k

013
3 31 02 0
2 12 3 2310

1
:3
2 221 ` ���� ���� k013

3 31 02 0
2 12 3 2330

1
:3
2 ::1 ` ���� ����

k
013

3 31 02 0
2 12 3 2331

1
:3
2 :1: ` ���� ����k013

3 31 02 0
2 12 3 2331

3
:1
: :1:Fig. 2. Example of iterations, n = 6 and m = 4.4 ProofsOur USSME veri�es the Reliability, No Deadlo
k and Self Stabilization re-quirements of [IJ90℄.Lemma 3 There is always at least one token, i.e., an unbalan
ed pro
essor.PROOF. By
ontradi
tion, let's assume that all the pro
essors are balan
ed.Then the following formula is veri�ed:8x 2 V; X(x;y)2ExRxy � X(x;y)2ExRyx + 1 mod m :Let us sum it over all verti
es:X(x;y)2ERxy � X(x;y)2ERyx + n mod m :It simpli�es to n � 0 mod m whi
h
ontradi
ts the de�nition of m. 2Lemma 4 The number of unbalan
ed pro
essors is non-in
reasing.PROOF. Let us look what happens when a vertex is updated:{ if the vertex is balan
ed or is unbalan
ed but does not send the token thenno register is modi�ed, the number of unbalan
ed pro
essors remains
onstant;{ if the vertex is unbalan
ed and sends the token then the algorithm balan
esit {the number of unbalan
ed pro
essors is diminished by one{ and the registerof one edge is
hanged. This
hange
an only unbalan
ed one pro
essor: theone at the other end of the edge. If it was unbalan
ed, then the number ofunbalan
ed pro
essors is diminished by one {or two if it balan
es the endpro
essor{ otherwise it remains
onstant. 2From the two previous lemmas,
omes:6

Lemma 5 On
e there is only one unbalan
ed pro
essor, there remains onlyone forever.Lemma 6 The system eventually rea
hes a
on�guration where only one pro-
essor is unbalan
ed with probability 1.
PROOF. Sin
e there must be at least one token in the graph, we only haveto
onsider the
ase where there are more than one token. Let us
onsider anytwo tokens in the graph.The dynami
s given in the proof of Lem. 4 are the dynami
s of random walkof token in the graph. When two tokens met, they merge (or disappear whi
ha

elerate the diminishing pro
ess and is thus not
onsidered).Let d be the distan
e between these two token and � the maximal degree of thegraph. The �rst time that one of their pro
essors is a
tivated: the probabilitythat the distan
e between token de
reases by one is down bounded by 1=(2:�)(it goes towards the other). On
e the distan
e rea
h 0, they merge or bothdisappear, the number of token de
reases.If these pro
essors are not a
tivated, then other tokens moves. Sin
e tokensmake random walks, one of the moving tokens will enter one of the left idlepro
essors and merge.Two tokens will eventually merge {or disappear{ with probability 1. Thereare at most n tokens and while there are at least two, their number eventuallyde
reases with probability 1. 2
Finally, random walks ensure that the token eventually visits ea
h pro
essorin�nitely often.Although it is impossible for a pro
essor to know that the whole
on�gurationis
orre
t, it
an tell that the system is perturbed if it owns a bias di�erentfrom n mod m.By taking m = N+1, one get a USSME whi
h works even if a pro
essor isadded or removed (dynami
 self-stabilization) as long as there are less thanN pro
essors. By removing the modulo part in (1) of Def. 1, on get a dynami
USSME with no bounds on the number of pro
essors, but in this
ase, thenumber of state in in�nite. 7

Referen
es[Ang80℄ D. Angluin. Lo
al and global properties in networks of pro
essors. InPro
. Symp. on Theory of Computing (STOC '80), pages 82{93, 1980.[BD94℄ J. Beauquier and S. Dela�et. Probabilisti
 self-stabilizing mutualex
lusion in uniform rings. In Prin
iples of Distributed Computing(PODC '94), page 378, 1994.[BHWG99℄ N. Bshouty, L. Higham, and J. Warpe
howska-Gru
a. Meeting times ofrandom walks on graphs. Information Pro
essing Letters, 69:259{265,1999.[Dij74℄ E. Dijkstra. Self-stabilizing systems in spite of distributed
ontrol.Journal of the ACM, 17(11):643{644, 1974.[DIM90℄ S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynami
systems assuming only read/write atomi
ity. In Prin
iples of DistributedComputing (PODC '90), pages 103{117, 1990.[Her90℄ T. Herman. Probabilisti
 self-stabilization. Information Pro
essingLetters, 35:63{67, 1990.[IJ90℄ A. Israeli and M. Jalfon. Token management s
hemes and random walksyields self-stabilizing mutual ex
lusion. In Prin
iples of DistributedComputing (PODC '90), pages 119{130, 1990.

8

