Information Processing Letters 74, pp. 203-207, 2000.

Randomized Uniform Self-stabilizing

Mutual Exclusion™

Jérome Durand-Lose !

Laboratoire I8SS, Bat. ESSI, BP 145, 06903 Sophia Antipolis Cedex, FRANCE.

A system is self-stabilizing if when started in any configuration it reaches
a legal configuration, all subsequent configurations are legal. We present
a randomized self-stabilizing mutual exclusion that works on any uniform
graphs. It is based on irregularities that have to be present in the graph.
Irregularities make random walks and merge on meeting. The number of
states is bounded by o(Alnn) where A is the maximal degree and n is
the number of vertices. The protocol is also proof against addition and
removal of processors.

Key words: Self-stabilization, Mutual exclusion, Fault tolerance, Distributed
computing, Random walks.

1 Introduction

A system of interconnected processors often needs some mutual exclusion
(ME) scheme to handle resources. At any time one and only one processor
is privileged and may enter a critical section —in order, e.g., to access some
resource. Each processor should be privileged infinitely often. The abstract
concept of token is used to indicate the privilege.

Sometimes systems get corrupted, e.g., no privileged processor exists —access
to crucial resources is lost— or more that one processor are privileged —devices
might get confused by dual access. Since it is not possible to prevent any
failure, we would like the system to regain consistency without any external
intervention, and as sound as possible.

* This work was done while the author was in the LaBRI, UMR CNRS 5 800,
Université Bordeaux I, Talence, FRANCE.
! Jerome.DURAND-LOSEQunice.fr, http://www.i3s.unice.fr/~jdurand

To appear in Information Processing Letters IPL 2338 March 2000

A system is self-stabilizing (SS) for a predicate if when started in any possi-
ble configuration it eventually reaches a legal configuration (convergence) and
once in a legal configuration, it remains in legal configurations (closure) and
the predicate is verified (correctness). A self-stabilizing system does not need
to be initialized. Moreover, it is tolerant to transient fault: it regains consis-
tency without any external intervention when a processor halts and recovers
in any arbitrary state or communications get corrupted.

It this article we provide an algorithm for mutual exclusion that ensures that
the system eventually enters a legal configuration —one and only one privileged
processor— and that the system remains in legal configurations afterwards.

The concept of self-stabilization was first introduced the pioneering paper by
Dijkstra [Dij74] which presents some SSME on semi-uniform rings. He men-
tions that no deterministic protocol exists for uniform ring with a composite
number of vertices. Angluin [Ang80] proves that it is impossible to determin-
istically distinguished a vertex in a graph that is a strict covering of another
graph. There is no way to deterministically break existing symmetries in any
uniform distributed system. Thus, no deterministic USSME exists for graph
with symmetries and randomized approach has to be used. Our uniform self-
stabilizing mutual exclusion (USSME) is randomized.

There already exists self-stabilizing mutual exclusion algorithms in the litera-

ture: on rings ([Dij74,BD94]) or any graphs ([IJ90]), randomized ([DIM90,Her90,BD94))
or deterministic ([Dij74]), for some daemon scheduler or only in the syn-
chronous case ([Her90]) ... Some work on any graph but with a lesser version

of uniformity: one or two processors may be different ([Dij74,DIM90]). Our
USSME works on any graph under any daemon.

Israeli and Jalfon [IJ90] provide a SSME construction based on two levels of
abstraction: Token Manipulation Scheme (TMS) and Graph Traversal (GT).
In their article they provide two TMS (one with an infinite number of states
and one for rings) and use random walks for GT. They prove lower bounds on
the number of states for USSME on rings and on general graphs. At the end of
their article, they mention three problems for further research. The third one
is to find a TMS with a finite number of states for any communication graph
with a bounded number of processors. Our USSME provides such a TMS.

Beauquier and Delaét [BD94| give a randomized USSME on oriented rings.
Their technique is to impose a gap between the values of neighbor vertices.
The gap is such that there should be an irregular gap somewhere in the ring.
This irregular gap yields the privilege. The correction of their algorithm comes
from the non-increasing number of irregular gaps.

We extend the idea of Beauquier and Delaét to undirected graphs. The gap

is computed in the following way. Each communication edge register holds an
integer between 0 and m—1, where m does not divide the number of vertices.
We say that a processor is balanced if it verifies a modified Kirshoff’s law: the
sum of inside registers is equal to the sum of outside registers (of neighboring
processors), plus 1 (modulo m). The definition of m ensures that all processors
can not be balanced simultaneously.

We call bias the difference from balance. An unbalanced processor recovers
balance by adding its bias to one of its registers randomly chosen. The corre-
sponding processor gains the bias which is added to its own (if any). The bias
represents a privilege token which is transmitted to some randomly chosen
neighboring processor. This provides the TMS.

The GT is as in [I1J90]: tokens make random walks in the graph and merge
(or disappear) on meeting. We show that any two tokens eventually meet
with probability 1. Eventually, only one token remains. Upper bounds on the
meeting time of tokens can be found in [BHWG99].

The network is uniform, this means that processors are anonymous and that
any two processors with the same degree are identical. Each processor is a
randomized finite state machine. Communications are made through registers.
One register is attached to each end of any communication edge. Along any
edge, any incident processor may read the registers on both side but it can
only write on the register on its side.

Processors are activated by some adversary daemon scheduler. To simplify
the proofs, we only consider here the central daemon (it can only activate one
processor at a time); nevertheless, our protocol is also proof against distributed
(it can activate any set of processors) and read/write daemons (during an
activation, a processor can only perform one single read or write operation)
since passing the token consists only in one action.

We conclude the paper with a short remark on how to use our TMS for
dynamical self-stabilization (processors can be added or removed).

2 Definitions

The network is uniform: processors are anonymous and any two processors
with the same degree are identical. A processor is fully defined by its degree.
The network is modeled by its (undirected, finite and connected) communica-
tion graph G = (V, E). Let n be the number of vertices in the graph (n = [V]).
For any vertex x, we denote E, the collection of edges incident to x. If (z,y)
is an edge, then x and y are neighbors.

Communications are handled with registers. For each edge (z,y) there is one
register attached to each incident vertex: R,, and R,,. Vertices z and y can
read both registers. Only z (y) can modify R,, (Ry,).

Let C be the set of all configurations. We denote that a configuration ¢, can
be reached from configuration ¢; by a single activation of a processor(s) by
¢1 F ¢y. The transitive closure of is denoted F*. A protocol is self-stabilizing
(SS) for a given predicate P if there exist some set of legal configurations L
(L C C) such that:

— convergence: the system eventually enters a legal configuration with proba-
bility 1;

— closure: once in a legal configuration ¢ (¢ € £) the system remains in legal
configurations (if ¢; € £ then for any ¢y such that ¢;-"¢y, ¢o € £). The set £
is an attractor of the system;

— correctness: starting on a legal configuration, the execution of the system
will verify P with probability 1.

A mutual exclusion (ME) protocol ensures that in any (legal) configuration,
one and only one processor is in a privileged state, all the other processors are
in unprivileged states. In any execution of a ME, all processors are infinitely
often privileged. The privilege is represented by some abstract token which is
passed on. When legal configurations are defined by containing exactly one
token, one speaks of a self-stabilizing mutual exclusion (SSME).

Processors are activated by a scheduler(s). The scheduler chooses each time
which processor(s) to activate. To ensure correctness, the classical model for
scheduler is an adversary daemon. The daemon knows the whole configuration
but ignores the result of the next coin toss. We only consider here the central
daemon which can only activate one processor at a time.

3 USSME definition

Let m be the smallest integer such that m does not divide the number of
vertices n. Each edge register can hold any value between 0 and m — 1. A
configuration is defined by the values of all the registers. The lowest integer
which does not divide the number of vertices n is up bounded by O(log(n)) as
mentioned in [IJ90]. The number of states needed to implement the algorithm
is bounded by O(Alog(n)), where A is the maximal degree.

Definition 1 A verter x is balanced if it verifies the equation:

> Ry = > Ry, +1 modm . (1)

(z,y)EE: (z,y)€EL

It is a modified Kirshoff’s law: the outgoing flow is the incoming flow plus 1
(modulo m).

Definition 2 A processor is privileged when it is unbalanced. The difference
from balance is called the bias.

When an unbalanced processor is activated, it tosses a coin. If it succeeds, it
tries to recover balance by adding the computed bias to a randomly chosen
register. The algorithm is detailed in Fig. 1.

1 bias .= —1:

2 for_each (z,y) in E,

3 bias := (bias + Ryy — Ry,) mod m ;

4 if (bias ! =0) then /* unbalanced */
5 /* begin critical section */

6

7 /* end critical section */

8 if toss_coin () then

9 /* pass the privilege */

10 (x,y) := randomly_chosen_incident_edge () ;
11 Ryy = (Rgy — bias) mod m ; /* regain balance */
12 end

13 end

Fig. 1. Balancing algorithm for vertex z.

There is no copy of the contents of the registers inside the processor. This
avoid duplication of data and risks of incoherence. If there would have been
copies, the processor should read anyway its registers because they can mask
the presence of bias and produce a deadlock.

The random test to let go the privilege (line 8) prevents malice actions of
distributed and read/write daemons as in [DIM90,Her90].

An example of stabilization is given in Fig.2 (only the activations of un-
balanced processors that pass tokens are indicated). Balanced processors are
indicated by ‘.” and each unbalanced one holds the value of its bias. The acti-
vated processors are circled, the chosen edge is in bolt. Only 4 states (m = 4)
are needed on each register since there are 6 processors. Initially, the number
of irregular gap is 4, it rapidly goes down to 1. Finally, the irregular gap makes
a random walk inside the graph.

w —
—-
[¥]
o
—
%] —_
w —
-
[¥]
o
—
¥ w
w —
—-
[¥]
o
—
%] w
w w

o —
(¥

w
o w
o =
(%]

w
o w
o —
(%]

w
— w
o =

%]
o
—_
M
o
—_
%]
o
M
o

Fig. 2. Example of iterations, n = 6 and m = 4.

4 Proofs

Our USSME verifies the Reliability, No Deadlock and Self Stabilization re-
quirements of [1J90].

Lemma 3 There is always at least one token, i.e., an unbalanced processor.

PROQOF. By contradiction, let’s assume that all the processors are balanced.
Then the following formula is verified:

Vo €V, > Ry = > Ry +1 modm .

(z,y)EE, (z,y)EE,

Let us sum it over all vertices:

> Ry= > Ry+n modm .

(z,y)EE (z,y)EE

It simplifies to n =0 mod m which contradicts the definition of m. O

Lemma 4 The number of unbalanced processors is non-increasing.

PROOF. Let us look what happens when a vertex is updated:

— if the vertex is balanced or is unbalanced but does not send the token then
no register is modified, the number of unbalanced processors remains constant;
— if the vertex is unbalanced and sends the token then the algorithm balances
it —the number of unbalanced processors is diminished by one— and the register
of one edge is changed. This change can only unbalanced one processor: the
one at the other end of the edge. If it was unbalanced, then the number of
unbalanced processors is diminished by one —or two if it balances the end
processor— otherwise it remains constant. O

From the two previous lemmas, comes:

Lemma 5 Once there is only one unbalanced processor, there remains only
one forever.

Lemma 6 The system eventually reaches a configuration where only one pro-
cessor is unbalanced with probability 1.

PROOF. Since there must be at least one token in the graph, we only have
to consider the case where there are more than one token. Let us consider any
two tokens in the graph.

The dynamics given in the proof of Lem. 4 are the dynamics of random walk
of token in the graph. When two tokens met, they merge (or disappear which
accelerate the diminishing process and is thus not considered).

Let d be the distance between these two token and A the maximal degree of the
graph. The first time that one of their processors is activated: the probability
that the distance between token decreases by one is down bounded by 1/(2.A)
(it goes towards the other). Once the distance reach 0, they merge or both
disappear, the number of token decreases.

If these processors are not activated, then other tokens moves. Since tokens
make random walks, one of the moving tokens will enter one of the left idle
processors and merge.

Two tokens will eventually merge —or disappear— with probability 1. There
are at most n tokens and while there are at least two, their number eventually
decreases with probability 1. O

Finally, random walks ensure that the token eventually visits each processor
infinitely often.

Although it is impossible for a processor to know that the whole configuration
is correct, it can tell that the system is perturbed if it owns a bias different
from n mod m.

By taking m = N+1, one get a USSME which works even if a processor is
added or removed (dynamic self-stabilization) as long as there are less than
N processors. By removing the modulo part in (1) of Def. 1, on get a dynamic
USSME with no bounds on the number of processors, but in this case, the
number of state in infinite.

References

[Ang80] D. Angluin. Local and global properties in networks of processors. In
Proc. Symp. on Theory of Computing (STOC ’80), pages 82-93, 1980.

[BD94] J. Beauquier and S. Delaét. Probabilistic self-stabilizing mutual
exclusion in uniform rings. In Principles of Distributed Computing
(PODC ’94), page 378, 1994.

[BHWG99] N. Bshouty, L. Higham, and J. Warpechowska-Gruca. Meeting times of
random walks on graphs. Information Processing Letters, 69:259-265,
1999.

[Dij74] E. Dijkstra. Self-stabilizing systems in spite of distributed control.
Journal of the ACM, 17(11):643-644, 1974.

[DIM90] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic
systems assuming only read /write atomicity. In Principles of Distributed
Computing (PODC ’90), pages 103-117, 1990.

[Her90] T. Herman. Probabilistic self-stabilization. Information Processing
Letters, 35:63—67, 1990.

[LJ90] A. Israeli and M. Jalfon. Token management schemes and random walks
yields self-stabilizing mutual exclusion. In Principles of Distributed
Computing (PODC ’90), pages 119-130, 1990.

