Representing reversible cellular automata with reversible block cellular automata

Jérôme Durand-Lose

DM-CCG 2001, July 2-5, Paris

Laboratoire ISSS, BP 145, 06 903 Sophia Antipolis Cedex, France.

jdurand@unice.fr

http://www.i3s.unice.fr/~jdurand

Context

History and definitions

Cellular automata as block cellular automata

Reversible CA as reversible BCA

Context — Cellular automata (1)

Model — Computation (von Neumann), parallelism Physical phenomena

Infinite *d*-dimensional underlying lattice

Context — Cellular automata (2)

Local and synchronous updating

Context — **Reversibility**

Physical phenomena are reversible at macroscopic level

Irreversibility \longleftrightarrow heating

$$\left(\mathcal{S}^{\mathbb{Z}^d},\mathcal{G}
ight)$$
 reversible $\iff \mathcal{G}^{-1}$ exists

Questions — Properties of such systems Computing abilities

History — Decidability

Amoroso and Patt, 1972

Reversibility is decidable in dimension 1 (linked to connected components of a finite graph) " ... should be translatable to higher dimension ... "

Kari 1989 Reversibility is undecidable from dimension 2 (linked to tiling in two dimension)

History — Block cellular automata

Reversibility easily checkable

History — Computing power

Margolus 1983 Billiard ball model is Turing universal

 \rightsquigarrow existence of 2-dimensional CA both reversible and universal

Morita 1989 Existence of 1-dimensional CA both reversible and universal

Identifying BCA as CA

BCA are CA Reversibility is preserved

CA as BCA

Yes, with a larger set of states: $S \rightsquigarrow S^2$

Reversbile CA by reversible BCA ?

Previous construction leads to non reversible BCA

Toffoli and Margolus 1990 Conjectures that it is possible

Yes,

- 1. find the inverse (*)
- 2. set radius large enough

(*) This can be done since the cellular automaton IS reversible (complexity can not be bound by any computable function)

Reversible CA by reversible BCA

Previous states

Next states

Reversible CA by reversible BCA 2D

Previous states Next states

Reversible CA by reversible BCA

Possible in any dimension

Number of partitions: d+1 $2^{d+1}-1$

Size of blocks: $(6rd)^d$ $(4r)^d$

Open problem

Is it possible *without increasing the number of states*?

— no extra storage —

Kari 96 Yes in dimension 1 and 2 Complex transformation (algebraic tools), uneasy to generalized

Still open for dimension 3 and higher