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Laboratoire I3S, CNRS UPREES-A 6070, 930 Route des Colles, BP 145,F-06 903 SOPHIA ANTIPOLIS Cedex, FRANCE.AbstratA full onstrution of the universality of the Billiard ball model,a lattie gas model introdued by Margolus in 84 is provided. TheBBM is a reversible two-dimensional blok ellular automaton withtwo states. Fredkin's gate and reversible logi an be emulated insidethe Billiard ball model. They are use to embed two-ounters automata,a model universal for omputation.In the one-dimensional ase, there exists a universal blok ellularautomaton with 11 states.1 IntrodutionThe Billiard ball model is a reversible ellular automaton of some sort.Reversibility allows to run bakward an automaton; information andenergy are preserved. Reversible Turing mahines were the �rst reversiblemodel to be proven universal [1℄.Cellular automata (CA for short) are well known models of synhronousand uniform proesses over large arrays. They operate over in�nite d-dimensional arrays of ells. Eah ell has a state hosen inside a �niteset. Eah iteration, eah ell is updated aording to a unique loal funtionand the states of the ells around it.The reversibility of CA has been studied from the sixties from a math-ematial point of view, and from the seventies for a more pratial trend:saving energy. In 1970, Burks [2℄ onjetured that there did not exist any�jdurand�unie.fr, http://www.i3s.unie.fr/~jdurand.yThis work was done while the author was in the Departamento de Ingenier��aMatem�atia, Faultad de Cienias F��sias y Matem�atias, Universidad de Chile, Santi-ago, Chile. 1



universal reversible CA. This onjeture was proven false in dimension twoin 1977 by To�oli [13℄. In 1992, Morita [9℄ proved that there also exist uni-versal reversible CA in dimension one. To�oli and Margolus wrote a largesurvey about reversible CA [15℄.Physial onsiderations about lattie gas lead Margolus [6℄ to introduea new kind of CA, blok CA (BCA), together with a pratial example: theBilliard ball model (BBM). Blok CA have the same on�gurations as CAbut the updating is done di�erently. The array is partitioned into regularlydisplayed retangular bloks. A transition step is done by replaing eahblok of a given partition by its image aording to a unique blok transitionfuntion from bloks to bloks. This replaement is repeated for variouspartitions in order to let information spread over the on�guration.In [14℄, it is laimed that sine any boolean funtion an be implementedwithin the BBM, it is universal. Their onstrution uses onservative logi(reversible gates with the same number of ones in the input and in the out-put). But this implementation has two drawbaks. First, it needs onstantinputs and produes garbage signals inside the on�guration; universality isnot so obvious to ahieve. Seond, zeroes are enoded by the lak of anysignal and it is impossible to distinguish between zero and no information.In this paper, we make a full onstrution of a simulation of any two-ounters automaton, a universal model introdued by Minsky [7℄, by em-bedding reversible logi inside the BBM. With our enoding, both zero andone signals are tangible.The de�nition of blok CA and reversibility are gathered in setion 2. Itis shown that one-dimensional BCA are able to simulate any Turing mahineand that there exists a universal one-dimensional BCA with 11 states.In setion 3, we reall the de�nition of the BBM and basi onstrutionswith onservative logi as presented by Margolus. Another enoding, whihwe all dual, is made by enoding the value of a bit by the position of asignal. Let us remark that this enoding is the \double-line trik" of vonNeumann as mentioned by Minsky [7, p. 69℄. Any funtion of reversiblelogi an be embedded in the BBM with this enoding, without garbage noronstant signals.In setion 4, we built a simulation of any two-ounters automaton andproved rigorously that the BBM is universal.
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2 De�nitionsBlok ellular automata operate over bi-in�nite arrays of dimension d. Theelements of Zd are referred as ells. Eah ell has a value hosen inside a�nite set of states S. A on�guration is a valuation of the whole array, i.e.,an element of SZd.2.1 Blok ellular automataBlok ellular automata (blok CA or BCA for short) perform parallel anduniform updates of on�gurations.Let v1, v2, : : : vd be stritly positive integers. Let V be the following�nite sub-array of Zd : V = [0; v1 � 1℄ � [0; v2 � 1℄ � � � � � [0; vd � 1℄.It represents the shape of any blok. The blok transition funtion t is amapping over SV : t : SV ! SV .A V -partition is a regular partition of the array in bloks of size V . Itis de�ned by an origin oi 2 Zd as illustrated in Fig. 1. The transition steporresponding to a partition Toi is the synhronous replaement of all thebloks by their images by the blok transition funtion t as depited in Fig. 1.The update is done by making suessive transition steps orresponding toa sequene of partitions.
-v1� -v1� 6v2?6v2?Roi = b0;0 b1;0b0;1 b1;1 t(b0;0) t(b1;0)t(b0;1) t(b1;1)Toi�!Figure 1: Transition step of origin oi.Replaements are suessively made over various partitions identi�ed bytheir origins (oi)i (as in Fig. 1). All the transition steps use the same size ofbloks V and the same blok transition funtion t. More than one partitionis needed in order to let information spread over the array.The global transition funtion T maps on�gurations into on�gurations.It is the omposition of all the transition steps:T = Ton Æ Ton�1 � � � Æ To1 :A BCA is totally de�ned by (d; S; V;O; t) where O = (oi)i is the �nitesequene of the origins oi of the partitions.3



De�nition 1 An automaton A is reversible if its global transition funtionis a bijetion and its inverse is itself the global transition funtion of someautomaton of the same kind (alled the inverse and denoted A�1).Conerning BCA:Lemma 2 A BCA is reversible if its blok transition funtion t is reversible,and then, its inverse is:B�1 = � S; V; O; t�1 � :where O is the sequene of the origins in reverse order.Sine SV is �nite, reversibility is deidable for BCA.Remark A BCA is not exatly a ellular automaton sine it does notommute with all the shifts. Yet, it ommutes with all (�0v0; �1v1; : : : �dvd)-shifts (�i 2 Z). At blok sale, a BCA is indeed a ellular automaton.2.2 UniversalityDe�nition 3 A Turing mahine is de�ned by: ( �; Q; Æ; s0 ) where � isa �nite set of symbols for the tape, Q a �nite set of states of the mahine, Æis the transition funtion and s0 is the initial state.The transition funtion Æ yields the symbol to be written on the tape,the new state and the movement of the head aording to the state and theread symbol: Æ : Q� � ! Q� �� f�1; 1g [ fstopg :An automaton is universal for omputation if it is able to simulate anyTuring mahine or is able to simulate a universal automaton. There existsuniversal CA [12℄ and universal reversible CA [13, 9℄.Proposition 4 There exists universal BCA.Let M = (�; Q; Æ; s0) be a universal Turing mahine with distint mstates and n symbols (m = j�j, n = jQj and � \Q = ;).Let B be the following one-dimensional BCA:B = ( Q [ � [ f stop g; (2); ( (0); (1) ); tM ) :There are two partitions; their origins are (0) and (1). The states ofB are either symbols, states of M or an halting symbol stop. The loal4



8a; b 2 �, tM � a b � = a b8p; q 2 Q, tM � p q � = p qif Æ(p; a) = (q; b; 1) then 8>><>>: tM � p a � = b qtM � a p � = b qif Æ(p; a) = (q; b;�1) then 8>><>>: tM � p a � = q btM � a p � = q bif Æ(p; a) = stop then 8>><>>: tM � p a � = stop atM � a p � = stop aFigure 2: Blok transition funtion of B to simulate M .transition is de�ned on Fig. 2. The loation of the head is enoded by thepresene of a M -state (in Q) together with a M -symbol (in �) in one blok.The initial on�guration and some iterations are depited in Fig. 3. Eahtransition step orresponds to one iteration of M . Eah iteration of Bmakes two iterations of M . The end of the omputation orresponds to theapparition of state stop.The built BCA has minimal dimension (1), minimal width (2) and min-imal number of partitions (2) to be universal. It has m + n + 1 states.Rogozhin [10, 11℄ proved that there exists a universal Turing mahine with5 states and 5 symbols. It omes immediately that:Theorem 5 There exists a universal BCA with 11 states whih is geomet-rially minimal.In dimension 2, the Billiard ball model desribed in the next setion isminimal geometrially, has only two states and is reversible. It is minimalfor every parameter but for its dimension.
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w�2 w�1 w0 w1 w2 w3?s0 w�2 w�1 s0 w0 w1 w2 w3Æ(s; w0) = (p1; a; 1)w�2 w�1 a w1 w2 w3?p1 w�2 w�1 a p1 w1 w2 w3Æ(p1; w1) = (p2; b; 1)w�2 w�1 a b w2 w3?p2 w�2 w�1 a b p2 w2 w3Æ(p2; w2) = (p3; ;�1)w�2 w�1 a b  w3?p3 w�2 w�1 a b p3  w3Æ(p3; b) = (p4; d;�1)w�2 w�1 a d  w3?p4 w�2 w�1 a p4 d  w3Turing mahine Blok CAThe thik lines indiate the iterated partitions.Figure 3: Simulation of a Turing mahine by a BCA.3 Billiard ball modelThe Billiard ball model (BBM) is a two-dimensional reversible BCA. It isde�ned by: BBM = ( f ; �g; ( 2; 2 ); ( (0; 0); (1; 1) ); tbbm ) :There are only two states: void and a partile symbolized by a ball �.The blok transition funtion tbbm is only partially given in Fig. 4; it shouldbe ompleted by rotations and symmetries. It works as follows:- if there is only one ball, the ball moves to the opposite orner (ase (iv));- if there are two balls diagonally opposed, they move to the other diagonal(ase (ii));- in any other ase, nothing hanges.The number of � is preserved. The blok transition funtion tbbm isreversible, from lemma 2, the BBM is reversible. Up to one shift, the BBMis its own inverse. 6



(i) - (ii) � � ��- (iii) �� � �� �-(iv) � �- (v) � � � �- (vi) � �� � � �� �-Figure 4: De�nition of tbbm.To prove the ability of the BBM to ompute, we implement logial wiring.Two levels of enoding of binary signals are used: the basi one of To�oliand Margolus and the dual one. They are de�ned in the next subsetions.3.1 Basi enodingThis subsetion is inspired by the works of Fredkin, Margolus and To�oli[5, 6, 14℄.Figure 5 depits an example of iterations of the BBM with only one ball.It an be seen that the two rules (i) and (iv) of Fig. 4 are enough to reatea signal: a moving ball.� T0;0 � T1;1 � T0;0 �- - - �Figure 5: Ball movement.Single balls ould be used as signals. But it should be possible to hangetheir diretions and to make them interat with eah other. To do this, letballs travel by pairs, one behind the other. If there is a motionless retangleon their way, they boune on it as depited in Fig. 6. The key rule is therule (ii) of Fig. 4.� � � �� � � ��� � � � �� � � ��� � � � �� � � �� � � � � �� � � �� �T0;0 T1;1 T0;0- - -Figure 6: Reetion of a signal.7



Signals are now enoded with two onseutive balls. They an movediagonally, in both diretions, everywhere. With reetions of signals it iseasy to build delays: the path of a signal is enlarged as depited in Fig. 7.R � R	RFigure 7: Delay.When signals meet on the side, they go in the same two diretions butthe are shifted one diagonal bakward as depited in Fig. 8. The dotted lineis the way they would have follow if only one signal would have been present.� � � � � �� � ���� ���� � �� � � � � �- - - - -Figure 8: Signals ollision.Signal 1 is enoded with one signal and 0 with no signal.In onservative logi, all gates are reversible and the number of ones(and zeroes) is preserved. It is not possible to dupliate a signal nor todisard it. For example, the only onservative gate working with one bit isthe identity and with two bits is the permutation (and the identity). To geta gate with a minimal omputing ability, one has to onsider a three bitsgate: the Fredkin gate. This gate works as follows: one bit goes throughuna�eted and depending on its value, the two others just pass through orare permuted as represented in Fig. 9.8�; � 2 f0; 1g ---- ---1�� 1��-- ---- ---0�� 0���RFigure 9: Fredkin gate.8



Fredkin gates an be simulated on the BBM with the basi enoding [14℄.Also the BBM is simple, their onstrution is designed in two levels and takesa large amount of spae and time. Morita [8℄ proved that it is possible tobuilt any onservative gate out of Fredkin gates. The only signals needed arezero signals whih are regenerated at the end. Sine zeroes are implementedby the lak of any signal:Lemma 6 The BBM is able to simulate any onservative logial funtionwith basi signals without feeding nor disposal problem.Any binary funtion f an be implemented with onservative logialfuntions. It is done using a larger onservative funtion ' in the followingway. Constant bits  are added to the f -entry x to form a '-entry x:. Theoutput of ' is the output of f together with bits whih are only there toguaranty that ' is onservative.This tehnique has drawbaks: onstant bits have to be provided, andunwanted bits are generated (and have to be disposed o� in some way). Thisan not be avoided with irreversible funtions. The BBM does not allow toreate nor to remove balls.3.2 Dual enodingThe preeding onstrution is interesting as long as one uses automata whihworks in a �nite and known time. But when this time is unknown, it isimpossible to distinguish between the answer 0, i.e. no signal, and an un-�nished omputation. Additional features have to be provided to solve thisproblem whih is partiularly annoying with Turing mahines whih mayunpreditably stop at any time.To mind this, we use the dual enoding also known as the \double-linetrik" of von Neumann. This is done by doubling the signal as depited inFig. 10. A signal is now always omposed of two onseutive balls. Theirposition indiates the value of the bit. The presene and value of any dualsignal are expliit.It is possible to build a Fredkin gate with the new enoding as depitedin Fig. 11. Some delays are needed, but they are not indiated for larity.It is still possible to ompute any onservative funtion, but it is nowpossible to make an autonomous not gate (Fig. 12). There is no risk ofollision beause there is only one real signal for any dual signal.We all reversible logi the restrition of the logial funtions to thebijetive ones. Let f : f0;1gn ! f0;1gn be any reversible logial fun-tion enoded with dual signals. It an also be viewed as a funtion f1 :9



s+ s� s0 0 No signal0 1 01 0 11 1 ErrorFigure 10: From basi enoding to dual enoding.
- -- -- -fg - -- -- -fg n +� 0+0� o0x n x+x� x0+x0�ox0y n y+y� y0+y0�oy0

---
---Figure 11: Fredkin gate for dual signals.f(0; 1); (1; 0)gn ! f(0; 1); (1; 0)gn in the basi enoding. Funtion f1 is apartial de�nition of a onservative funtion f2 : f0; 1g2n ! f0; 1g2n. FromLem. 6 omes:Lemma 7 The BBM is able to simulate any reversible logial funtion withdual signals without any feeding nor disposal.4 Universality of the BBMA two-ounters automaton is a �nite automaton linked to two ounters whihan hold any positive integer value. The automaton an perform the follow-ing operations on the ounters: add one, subtrat one (zero if it is alreadys 8<: s+s� s+s� 9=; s-? --6 -6 -Figure 12: A not gate with dual signals.10



zero) and test for nullity and branh.Minsky proved that there exist universal two-ounters automata [7℄. Toprove that the BBM is universal, it is enough to show that it is able tosimulate any two-ounters automaton.Lemma 8 The BBM is able to simulate any two-ounters automaton.The onstrution relies on the automaton on the one side, and on theounters on the other side.The automaton an be simulated by a large logial unit. The state ofthe automaton is enoded in a part of the output whih is fed bak to theinput. To perform an ation on the ounters, the automaton unit send theorresponding order signal to the ounters. The state remains the sameuntil a noti�ation of the exeution of the order is reeived. Then the stateis hanged and a new yle starts. The automaton is depited in Fig. 13.Constant input has to be provided and garbage output is produed beausethe funtion of the automaton an be irreversible. The ow of onstants isin�nite sine no one an presume of the duration of the omputation.
Mainautomaton?Garbage signals
?Constants

�6 -State -Ordero
� eEnd of exeution

-�6 ? -�6 ? -�6 ?-� -�a0b0 a1b1 a2b2
Figure 13: Main automaton and two register units.An order o is enoded with two dual signals: o = (o0;o1). Signal o0 isused to state that there is an order, and o1 to de�ne it. The end of exeutionnoti�ation signal e equals 1 to notify that an order was well arried out bythe register, otherwise it is 0.Counters are stored and handled inside a unique in�nite line of logialregister units. The value of ounters are enoded in unary with dual signals11



(n � 1n0!). The two ounters are denoted a = a0a1 : : : and b = b0b1 : : :The orresponding signals are loked between onseutive register units asdepited in �gures 13 and 15. The register units update the values of thesignals aording to the orders reeived from the automaton.Signals a0 and b0 are not nested between two register units but betweenthe automaton and the �rst register unit. Sine signal a0 (b0) equals 0 onlyif a (b) equals 0, the automaton an test easily whether a (b) is 0. Thisallows the automaton to test diretly the nullity of any ounter.The ruial part is the administration of the ounters. The register unitsare all idential and ommuniate with the signals o, l, r and e. The funtionof a register unit is de�ned by the table of Fig. 14. It should be noted thateven if it is not onservative, it is reversible as it an be proved from thetable. The last two lines of the table look like they an be merge into a rulelike \if o0 is 0 then nothing hanges" but the funtion wouldn't be one toone anymore. Eah register unit implements a reversible funtion. Thanksto Lem. 7, register units an be totally autonomous. They do not bring anyperturbation in the on�guration.---�� ---��---?� �6-�oinlinlouteout ooutroutrinein oin lin rin ein oout lout rout eout1,- 1 1 0 *,* * * *1,1 1 0 0 0,1 * 1 11,0 1 0 0 0,1 0 * 10,1 - - 0 *,* * * *0,0 - - - *,* * * *� : don't are � : unhangedFigure 14: Register unit and the orresponding logial funtion.A register unit works by modifying l and r aording to their values andthe order o. If there is an order to exeute (o0 = 1), the values are modi�edonly at the end of meaning part of the ounter (l = 1 and r = 0, seond andthird lines of Fig. 14). The modi�ation is indiated by o1: 0 for subtrationand 1 for an addition. To subtrat one, the appropriate register unit sets lto 0; to add one, it sets r to 1.Signal e is 0 exept when it brings the noti�ation that an order wasexeuted (and then it is 1). It is set to 1 by a register unit whih arriesout an order. There is never more than one ative order (ot = (1; :)) ornoti�ation signal (et = 1) in a whole on�guration.The automaton and the register units are onneted as depited inFig. 15. Eah unit only has a's, then b's, suessively. Eah time, (lin; rin)and (lout; rout) are both either (ak;ak+1) or (bk;bk+1) depending on the12



parity of the lok. All the same, depending on the parity of t, ot meetsonly a's or only b's, but it meets all of them as it an be seen on Fig. 15.---�� ot+1bi�1ai�1et�2 ---�� otaibiet�1 ---�� ot�1bi+1ai+1et ---�� ot�2ai+2bi+2et+1ot+1bi�1biet�1 otaiai+1et ot�1bi+1bi+2et+1M.A. ---��ot+ia0b0et�i�1 : : :: : :: : :: : : : : :: : :: : :: : :---�� ot+2ai�1bi�1et�1 ---�� ot+1biaiet ---�� otai+1bi+1et+1 ---�� ot�1bi+2ai+2et+2ot+2ai�1aiet ot+1bibi+1et+1 otai+1ai+2et+2M.A. ---��ot+i+1b0a0et�i : : :: : :: : :: : : : : :: : :: : :: : :---�� ot+3bi�1ai�1et ---�� ot+2aibiet+1 ---�� ot+1bi+1ai+1et+2 ---�� otai+2bi+2et+3ot+3bi�1biet+1 ot+2aiai+1et+2 ot+1bi+1bi+2et+3M.A. ---��ot+i+2a0b0et�i+1 : : :: : :: : :: : : : : :: : :: : :: : :Figure 15: Automaton, units and wiring for three suessive iterations.Let us deompose the exeution of an order.If the ounter a (b) is null, the automaton knows it sine a0 (b0) is partof its inputs. It an test and branh diretly. If it wants to subtrat one,the automaton just goes to the next instrution. If it wants to add one, itsets a0 (b0) to 1 and goes to the next instrution.To make an operation op (op is 1 for addition, 0 for subtration) overa (b) the automaton sends a signal o = (1; op) synhronized with a0 (b0).Then it waits till it reeives a e equal to 1 indiating that the operation wasperformed; then it goes on to the next operation.The order o is treated by the register units as follows. The signal otravels and meets suessively all the pairs (ai;ai+1) whih are equal to(1;1) until it reahes the end of the meaning part of the ounter ((ai;ai+1)equals (1;0)). If op is 1 (addition) then the output value (ai;ai+1) is set to(1;1), otherwise (subtration) it is set to (0;0). The signal o is set to (0;1)and moves endlessly to the right. The signal e is set to 1 and moves bak tothe automaton and indiates that the operation was arried out. The nextoperation an start.The exeution time is proportional to the value of a (b).13



Going bakward in time, the register unit whih performs the operationis de�ned by the meeting of the e equal to 1 and the �rst o equal to (0;1).The performed operation is de�ned by the value of (ai;ai+1).It should be noted that to build a n-ounters automaton, one just haveto enlarge the distane between register units and add new trapped signals.Theorem 9 The BBM is universal.The universality of the BBM was totally proved using reversible teh-niques. For the register units, reversibility was designed abstratly before itwas implemented.Referenes[1℄ C. H. Bennett. Logial reversibility of omputation. IBM Journal ofResearh and Development, 6:525{532, 1973.[2℄ A. Burks. Essays on Cellular Automata. Univ. of Illinois Press, 1970.[3℄ J. Durand-Lose. Reversible ellular automaton able to simulate anyother reversible one using partitioning automata. In LATIN '95, num-ber 911 in LNCS, pages 230{244. Springer-Verlag, 1995.[4℄ J. Durand-Lose. Automates Cellulaires, Automates �a Partitions et Tasde Sable. PhD thesis, LaBRI, 1996. In Frenh.[5℄ E. Fredkin and T. To�oli. Conservative logi. International Journal ofTheoretial Physis, 21, 3/4:219{253, 1982.[6℄ N. Margolus. Physis-like models of omputation. Physia D, 10:81{95,1984.[7℄ M. Minsky. Finite and In�nite Mahines. Prentie Hall, 1967.[8℄ K. Morita. A simple onstrution method of a reversible �nite automa-ton out of Fredkin gates, and its related problem. Transations of theIEICE, E 73(6):978{984, June 1990.[9℄ K. Morita. Computation-universality of one-dimensional one-way re-versible ellular automata. Information Proessing Letters, 42:325{329,1992. 14
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