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The 
hapter studies relations between billiard ball model, reversible 
ellular au-tomata, 
onservative and reversible logi
s and Turing ma
hines. At �rst we intro-du
e blo
k 
ellular automata and 
onsider the automata reversibility and simulationdependen
ies between the blo
k 
ellular automata and 
lassi
al 
ellular automata.We prove that there exists a universal, i.e. simulating a Turing ma
hine, blo
k 
el-lular automaton with eleven states, whi
h is geometri
ally minimal. Basi
s of thebilliard ball model and presentation of an information in the model are dis
ussedthen. We demonstrate how to implement ball movement, re
e
tion of a signal, de-lays and 
y
les, 
ollision of signals in 
on�gurations of the 
ellular automaton withMargolus neighborhood. Realizations of Fredkin gate and NOT gate with dual sig-nal en
oding are o�ered. The rest of the 
hapter deals with a Turing and an intrinsi
universality, and un
omputable properties of the billiard ball model. The Turinguniversality is proved via simulation of a two-
ounter automaton, whi
h itself is Tur-ing universal. We demonstrate that the billiard ball model is intrinsi
ally universal,or 
omplete, in a 
lass of reversible 
ellular automata, i.e. the model 
an simu-late any reversible automaton over �nite or in�nite 
on�gurations. A novel notionof spa
e-time simulation, that employs whole spa
e-time diagrams of automatonevolution, is brought up. It is proved that the billiard ball model is also able tospa
e-time simulate any (ir)reversible 
ellular automaton. Sin
e the billiard ballmodel possesses the Turing 
omputation power we 
an proje
t a Turing ma
hine'shalting problem to development of 
ellular automaton simulating the billiard ballmodel. Namely, we un
over a 
onne
tion between unde
idability of 
omputationand high unpredi
tability of 
on�gurations of the billiard ball model.The whole �eld of 
ollision-based 
omputing was initiated by a billiardball model. It is a well-known model be
ause it 
learly shows how to performa universal 
omputation by a simple reversible 
ellular automaton ma
hinein an intuitively appealing way.Reversibility allows to run evolution of a system, an automaton in our
ase, ba
kward. Both information and energy are preserved during a 
ompu-tation implemented by a reversible ma
hine. A �rst published result on thereversible universal 
omputing, dealing with reversible Turing ma
hines, isdated forty years ago universal [12,2℄. A universality is a 
apability to 
om-pute any 
omputable fun
tion, in the re
ursion theory, given its de�nitionand its arguments in some en
oding.



2 Durand-LoseCellular automata (CA for short) are a well known model of syn
hronousand uniform pro
esses over large arrays. They operate over in�nite d-dimen-sional arrays of �nite state automata, or 
ells. Ea
h 
ell takes a �nite numberof states. All 
ells of an array update their states in dis
rete time by the same
ell state transition rule, or a lo
al fun
tion.A reversibility of CA has been studied from the 1960s from a mathemat-i
al point of view, and from the 1970s for a more pra
ti
al trend: savingenergy. In 1970, Burks [3℄ 
onje
tured that there did not exist any universalreversible CA. This hypothesis was disproved for two-dimensional CA in 1977by To�oli [30℄. In 1992, Morita [18℄ proved that there also exist universal re-versible one-dimensional CA. We would like to attra
t readers' attention toa 
omprehensive survey on reversible CA by To�oli and Margolus [29℄, whi
his a ri
h sour
e of referen
es.CA models of latti
e gas and relevant physi
al 
onsiderations lead Margo-lus [13℄ to introdu
e the billiard ball model (BBM). The BBM is not exa
tlya CA. It has the same 
on�gurations as a CA| there are only two states| but 
ell state updating is done di�erently. The array is partitioned intoregularly displayed re
tangular 2 by 2 blo
ks. A transition step is done byrepla
ing ea
h blo
k of a given partition by its image a

ording to a uniqueblo
k transition fun
tion from blo
ks to blo
ks. This repla
ement is donetwi
e, with distin
t partitions, in order to let information spread over thearray.The BBM 
an easily be generalized: any �nite set of states, any size ofblo
ks, any number of partitions, any fun
tion from blo
ks to blo
ks. Thisvariation of CA is 
alled a blo
k CA (BCA), partitioned CA or CA with theMargolus neighborhood. In this 
hapter, we use the term blo
k CA .In [28℄, it is 
laimed that sin
e any Boolean fun
tion 
an be implementedwithin the BBM, the BBM is universal. The 
onstru
tion employs 
onserva-tive logi
, reversible gates of whi
h have the same number of ones in the inputand in the output. However, 
onservative logi
 based implementation has twodrawba
ks. First, it needs 
onstant inputs and produ
es garbage signals in-side the 
on�guration; universality is not so obvious to a
hieve. Se
ond andmost important, zeroes are en
oded by the la
k of any signal and it is impos-sible to distinguish, without employing additional \
lo
k" signal, between noinformation and a zero result.In this 
hapter, after presenting BCA and a small universal one-dimensio-nal BCA, we show how any two-
ounter automaton, a universal model intro-du
ed by Minsky [14℄, is simulated by BCA. The simulation is implementedby embedding reversible logi
, gates of whi
h are reversible but the numberof ones is not ne
essarily preserved, into the BBM. The en
oding keeps bothzero and one signals tangible.Using partitioned CA, a 
lass of CA introdu
ed by Morita et al. [15℄{[21℄,we also prove that the BBM 
an simulate any reversible CA over any 
on-�guration, �nite or not [5℄. Su
h an ability to simulate a reversible CA is
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alled an intrinsi
 universality. The di�eren
e from the usual Turing univer-sality, in the CA 
ontext, is that, during a single transition step, an in�nite
on�guration 
an be 
ompletely 
hanged. This 
learly falls outside of Turinguniversality. There are reversible CA that are able to simulate any CA withone less dimension [30℄. It is still an open problem whether the BBM or anyreversible CA 
an simulate all CA, in
luding irreversible CA over in�nite
on�gurations, of the same dimension.We present a new notion of universality, spa
e-time universality, whi
hdoes not rely on automata 
on�gurations but whole orbits of the automataevolution or spa
e-time diagrams. We show that the BBM is spa
e-time in-trinsi
ally universal among the whole 
lass of CA. De�nitions and resultsfrom [6℄ are used to a
hieve this.This 
hapter ends with some unde
idability results like the passage of aball at some point or the apparition of a given pattern inside the 
on�gura-tion.The 
hapter is stru
tured as follows. De�nitions of blo
k 
ellular automata(BCA) and reversibility, as well as 
onne
tions with 
lassi
al 
ellular au-tomata are gathered in Se
t. 1.1. In Se
t. 1.2, it is shown that one-dimensionalBCA are able to simulate any Turing ma
hine and that there exists a uni-versal one-dimensional BCA with 11 states.In Se
t. 1.3, we re
all the de�nition of the billiard ball model (BBM) andbasi
 
onstru
tions with 
onservative logi
 as they are originally presented byMargolus. Another version of en
oding, dual en
oding, is made by en
odingthe value of a bit by the position of a signal; this en
oding is the \double-linetri
k" of von Neumann as mentioned by Minsky [14, p. 69℄. Any fun
tion ofthe reversible logi
 
an be embedded in the BBM with this en
oding, garbageor 
onstant signals.In Se
t. 1.4, we simulate a two-
ounters automaton in the BBM andrigorously prove that the BBM is universal.Partition CA are de�ned in Se
t. 1.5. Then the intrinsi
 universality ofthe BBM among reversible CA is proved. In the same se
tion, spa
e-timesimulation is presented and the spa
e-time intrinsi
 universality of the BBMis demonstrated.In Se
t. 1.6, some types of BBM behavior are proved to be unde
idable;the unde
idability leads to high unpredi
tability of the way along whi
h a
on�guration may develop.1.1 De�nitionsBlo
k 
ellular automata, like \
onventional" 
ellular automata (see Sub-se
t. 1.1.4) and partitioned 
ellular automata (see Subse
t. 1.5.1), operateover bi-in�nite arrays of dimension d. The elements of Zd are referred as
ells. Ea
h 
ell has a value 
hosen from a �nite set of states S. A 
on�gu-



4 Durand-Loseration is a valuation of the whole array, i.e., an element of SZd. The set of
on�gurations is denoted C (C � SZd).1.1.1 Blo
k Cellular AutomataA blo
k 
ellular automaton (blo
k CA or BCA for short) performs lo
al, par-allel and uniform updates of 
on�gurations. Updating is done by partitioningthe 
on�guration into re
tangular blo
ks and independently 
al
ulating ea
hblo
k's next state. The update may be repeated several times for variouspartitions.All blo
ks have the same shape V = [0; v1�1℄�[0; v2�1℄�� � ��[0; vd�1℄,whi
h is a �nite sub-array of Zd; and, v1, v2, : : : vd are positive integers. Theblo
k transition fun
tion t, used to update blo
ks, is a mapping over SV ,t : SV ! SV .A V -partition is a regular partition of the array into blo
ks of size V . Itis de�ned by an origin oi 2 Zd as illustrated in Fig. 1.1. The transition step
orresponding to a partition Toi , and the blo
k transition fun
tion t, is thesyn
hronous repla
ement of all the blo
ks by their images by t as depi
ted inFig. 1.1.
-v1� -v1� 6v2?6v2?Roi =partitioning b0;0 b1;0b0;1 b1;1 t(b0;0) t(b1;0)t(b0;1) t(b1;1)Toi�!
omputingFig. 1.1. Transition step of the origin oi.Repla
ements are su

essively made over various partitions identi�ed bythe sequen
e of their origins O = (oi)1�i�n. All the transition steps usethe same size of blo
ks V and the same blo
k transition fun
tion t. Sin
e theblo
ks are updated independently, more than one partition is needed in orderto let information spread over the array.The global transition fun
tion G maps 
on�gurations into 
on�gurations.It is the 
omposition of all the transition steps:G = Ton Æ Ton�1 � � � Æ To1 :A blo
k 
ellular automaton BCA is 
ompletely de�ned by (d; S; V; t; n;O).1.1.2 ReversibilityDe�nition 1. An automaton A is reversible if its global transition fun
tionis a bije
tion and its inverse is itself the global transition fun
tion of someautomaton of the same kind, 
alled an inverse and denoted A�1.



1 Computing Inside the Billiard Ball Model 5Reversibility 
an be tested and the inverse 
an be built very easily asstated by the following lemma:Lemma 1. A BCA B is reversible if and only if its blo
k transition fun
tiont is reversible, and then, its inverse is:B�1 = � d; S; V; t�1; n; O � ;where O is the sequen
e of the origins in reverse order (O = (on+1�i)1�i�n).Sin
e SV is �nite, reversibility is de
idable for BCA.1.1.3 SimulationIn this 
hapter, by simulation, we mean the following:De�nition 2. For any two fun
tions f : F ! F and g : G ! G the fun
-tion g simulates the fun
tion f (in real time) if and only if there exists twoen
oding fun
tions � : F ! G and � : G ! F , re
ursive, spa
e and timeinexpensive 
ompared to f and g, su
h that: fn = � Æ gn Æ � for any naturaln. The fun
tion g 
an be used instead of f for iterating the global fun
tion.A 
ellular automaton simulates another 
ellular automaton if and only ifa global fun
tion of the �rst automaton simulates the global fun
tion of these
ond one.A simulation 
orresponds to the 
ommuting diagram of Fig. 1.2. The sim-ulation is therefore a transitive relation.8n 2 N; F�G gnfn F �G? 6--Fig. 1.2. g simulates f .The en
oding and de
oding fun
tions � and � are not always given ex-pli
itly, but their meaning is usually 
lear from the 
ontext.1.1.4 Cellular AutomataCellular automata (CA) use the same set of 
on�gurations as BCA. Theyalso perform lo
al, parallel and uniform updates of 
on�gurations, but theupdating is done di�erently.



6 Durand-LoseA 
ellular automaton is de�ned by (d; S;N; f). The neighborhood N is a�nite subset of Zd. It represents the 
oordinates (relatively to the 
ell) ofthe 
ells whose states are to be 
onsidered for updating. The lo
al fun
tionf : SN ! S maps the states of 
ell neighbors into the 
ell's next state. Thelo
al fun
tion is said to 
ompute the new state of ea
h 
ell.The global fun
tion G : C! C maps 
on�gurations into 
on�gurations asfollows:8
 2 C; 8x 2 Zd; G(
)x = f �(
x+�)�2N� :A new state of a 
ell depends only on its neighbors' states as depi
ted byFig. 1.3 where N = f�1; 0; 1g.Previous 
on�guration
ommuni
ation
omputationNext 
on�guration
: : : : : :

: : : : : :??f ??f ??f	 R 	 R 	 R 	 RFig. 1.3. Cell state updating in one-dimensional CA.Blo
k CA and partitioning CA (de�ned in Se
t. 1.5) are sub-
lasses ofCA. They are often 
onsidered just as CA, with a spe
ial 
onstraint on theirde�nitions.1.1.5 Relations with Classi
al Cellular AutomataBCA are CA In a BCA, the next value of a 
ell depends on the values of itsneighboring blo
ks, this is a lo
al updating. Yet the value is highly dependenton the position of the 
ell inside the blo
ks of the various partitions.Let us 
onsider the blo
ks of the �rst partition of the BCA as a 
ell, witha larger but still �nite set of states. The 
omposition of blo
k transitionsonly 
onsider blo
ks whi
h are around the blo
k. Thus, any BCA 
an beexpressed as a CA at the blo
k s
ale. Sin
e this is an identi�
ation, if theBCA is reversible then the 
orresponding CA is reversible.In fa
t, one of the reasons to introdu
e the billiard ball model and BCAwas to design as simple as possible a two-dimensional CA whi
h is reversibleand universal. It was a tri
ky problem sin
e reversible CA are 
ompli
ated tobuild and to manipulate, and even worse, as Kari proved in [10℄, reversibility isnot de
idable for CA of dimension two and above. In 
omparison, reversibilityof BCA is easily 
he
kable in any dimension as stated in Lemma1.



1 Computing Inside the Billiard Ball Model 7Representation of CA as BCA It is possible to embed CA in BCA ifmore states are allowed during the 
omputation. One 
an also represent aCA whi
h is known to be reversible as a reversible BCA [4,7℄.One open problem is whether, and how, this representation 
an be madewithout in
reasing the number of states. The answer is positive in dimensionsone and two if a 
omposition with a partial translation is allowed [11℄.1.2 Universality of One-Dimensional Blo
k CAHow good are BCA for 
omputing? How 
omplex 
an a spa
e-time diagramof a BCA be?In the previous subse
tion we found that any CA 
an be simulated bya BCA, so that one-dimensional BCA 
an 
arry out any 
omputation andits spa
e-time diagrams 
an be very 
omplex (see e.g. the four 
omplexity
lasses of Wolfram [31℄).In this se
tion we present a simulation of Turing ma
hines by BCA andprove the existen
e of a universal one-dimensional BCA with only 11 states.Re
all, that Turing ma
hines are simply �nite automata, or pro
essors,that 
an read and write on an in�nite tape, or a memory. The ma
hines
apture a notion of 
omputability and they are able to 
arry out any 
om-putation. More information on 
omputability and Turing ma
hines 
an befound in many textbook, e.g. [25℄.De�nition 3. A Turing ma
hine is de�ned by the tuple ( �; Q; Æ; s0 ),where � is a �nite set of symbols for the tape, Q a �nite set of states of thema
hine, Æ is a transition fun
tion and s0 is the initial state.The transition fun
tion Æ yields the symbol to be written on the tape, thenew state and the movement of the head a

ording to the state and the readsymbol:Æ : Q�� ! Q�� � f ;!g[ fstopg :An automaton is universal (for 
omputation) if it is able to simulate anyTuring ma
hine or is able to simulate a universal automaton. There existuniversal CA [26℄ and universal reversible CA [30,18℄.Proposition 1. There exists universal BCA.Let M = (�;Q; Æ; s0) be a universal Turing ma
hine with distin
t mstates and n symbols (m = j�j, n = jQj and � \ Q = ;). Let B be thefollowing one-dimensional BCA:B = ( 1; Q [ � [ f stop g; (2); tM ; 2; ( (0); (1) ) ) :There are two partitions; their origins are (0) and (1). The states of Bare either symbols, states of M or a halting state stop. The lo
al transition



8 Durand-Lose 8a; b 2 �, tM � a b � = a b8p; q 2 Q, tM � p q � = p qif Æ(p; a) = (q; b;!) then 8>>><>>>: tM � p a � = b qtM � a p � = b qif Æ(p; a) = (q; b; ) then 8>>><>>>: tM � p a � = q btM � a p � = q bif Æ(p; a) = stop then 8>>><>>>: tM � p a � = stop atM � a p � = stop aFig. 1.4. Blo
k transition fun
tion of B to simulate M .is de�ned on Fig. 1.4. The lo
ation of the head is en
oded by the presen
e ofa M -state (in Q) together with a M -symbol (in �) in one blo
k.The initial 
on�guration and some iterations are depi
ted in Fig. 1.5. Ea
htransition step 
orresponds to one iteration of M . Ea
h iteration of B makestwo iterations of M . The end of the 
omputation 
orresponds to the o

ur-ren
e of the state stop.The built BCA has minimal dimension (1), minimal width (2) and mini-mal number of partitions (2) to be universal. It has m+n+1 states. Earlier,Rogozhin [23,24℄ proved that there exists a universal Turing ma
hine with 5states and 5 symbols. It 
omes immediately that:Theorem 1. There exists a universal BCA with 11 states whi
h is geomet-ri
ally minimal.The extensive de�nition of this BCA is skipped be
ause it is lengthy andnot so relevant. Anyway, it 
an be 
onstru
ted quite easily.In two-dimensional spa
e, the billiard ball model des
ribed in the nextse
tion, is also minimal geometri
ally, has only two states and is reversible.The model is minimal for every parameter but the dimension.



1 Computing Inside the Billiard Ball Model 9w�2 w�1 w0 w1 w2 w3?s0 w�2 w�1 s0 w0 w1 w2 w3Æ(s0; w0) = (p1; a;!)w�2 w�1 a w1 w2 w3?p1 w�2 w�1 a p1 w1 w2 w3Æ(p1; w1) = (p2; b;!)w�2 w�1 a b w2 w3?p2 w�2 w�1 a b p2 w2 w3Æ(p2; w2) = (p3; 
; )w�2 w�1 a b 
 w3?p3 w�2 w�1 a b p3 
 w3Æ(p3; b) = (p4; d; )w�2 w�1 a d 
 w3?p4 w�2 w�1 a p4 d 
 w3Turing ma
hine Blo
k CAThe thi
k lines indi
ate the iterated partitions.Fig. 1.5. Simulation of a Turing ma
hine by a BCA.1.3 Billiard Ball ModelThe billiard ball model (BBM) is a two-dimensional reversible BCA. It isde�ned by the following tuple:BBM = ( 2; f ; �g; ( 2; 2 ); tbbm; 2; ( (0; 0); (1; 1) ) ) :There are only two states: void and a parti
le symbolized by a ball, �. Thesize of the blo
ks is 2� 2. There are two partitions, one is dedu
ed from theother by a (1; 1)-shift. The four 
ells of a blo
k are split between four blo
ksin the next partition.The blo
k transition fun
tion tbbm is only partially given in Fig. 1.6; itshould be 
ompleted by rotations and symmetries. It works as follows:- if there is only one ball, the ball moves to the opposite 
orner (
ase (iv));- if there are two balls diagonally opposed, they move to the other diagonal(
ase (ii));- in any other 
ase, nothing 
hanges.In all the �gures, the iterated partitions are indi
ated by thi
k lines.The blo
k transition fun
tion tbbm preserves the number of �. Applyingtwi
e tbbm to any blo
k, one gets the same blo
k, i.e., t�1bbm = tbbm. Sin
e tbbm



10 Durand-Lose(i) - (ii) � � ��- (iii) �� � �� �-(iv) � �- (v) � � � �- (vi) � �� � � �� �-Fig. 1.6. De�nition of tbbm.is reversible, from Lemma 1, the BBM is reversible. Up to a (1; 1)-shift, theBBM is its own inverse.Logi
al wiring is used to prove the 
omputational ability of the BBM. Twolevels of en
oding of signals are used: the basi
 one of To�oli and Margolusand the dual one. They are de�ned in the next two subse
tions.1.3.1 Basi
 En
odingThis subse
tion is inspired by the works of Fredkin, Margolus and To�oli[8,13,28℄.Figure 1.7 depi
ts an example of iterations of the BBM with only one ball.It 
an be seen that the two rules (i) and (iv) of Fig. 1.6 are enough to 
reatea signal: a moving ball.
� T0;0 � T1;1 � T0;0 �- - - �Fig. 1.7. Ball movement.Single balls 
ould be used as signals. But it should be possible to 
hangetheir dire
tions and to make them intera
t with ea
h other. To do this, letballs travel by pairs, one behind the other. If there is a re
tangle (whi
h is astable pattern) on their way, they boun
e on it as depi
ted in Fig. 1.8. Thekey rule is the rule (ii) of Fig. 1.6.
� � � �� � � ��� � � � �� � � ��� � � � �� � � �� � � � � �� � � �� �T0;0 T1;1 T0;0- - -Fig. 1.8. Re
e
tion of a signal.



1 Computing Inside the Billiard Ball Model 11Signals are now en
oded with two 
onse
utive balls. They move diago-nally, in both dire
tions, everywhere. With re
e
tions of signals it is easy tobuild delays: the path of a signal is enlarged as depi
ted in the left part ofFig. 1.9. Any even delay 
an be built this way.It is also possible to built a 
y
le of even length by trapping a ball betweenfour re
exive walls as indi
ated on the right part of Fig. 1.9.
R � R	R

�I R	Fig. 1.9. Delay and 
y
le.When signals meet on the side, they go in the same two dire
tions butthey are shifted one diagonal ba
kward as depi
ted in Fig. 1.10. The dottedline is the path they would have followed if only one signal would have beenpresent.
� � � � � � � � � � � �
� � � � � � � � � � � �

Fig. 1.10. Collision of two signals.



12 Durand-LoseThe 
omputation is 
arried out in a binary form. Now we know how tomake a signal. How 
an we en
ode di�erent values in signal forms? This 
anbe done following the en
oding proposed by Margolus in [13℄. Signal 1 isen
oded as the signal one and 0 as no signal. To distinguish between 0 andno signal present, one has to know somehow whether a signal is present.Signals 0 and 1 should intera
t in order to 
ompute, so some logi
al gatehas to be provided. With the 
ollision presented in Fig. 1.10, without addinga ball, we 
an make the mi
ro gate of Fig. 1.11. This is a two-signal gate withfour possible outputs: two balls, one ball on the left, another on the right andno ball at all. If the two signals are 1, then there are two balls and the twoballs 
ome out one row lower (the two a ^ b exits). If a is 1 (resp. 0) and bis 0 (resp. 1) then there is only one ball and thus no 
ollision, the ball leaveson exit a ^ b (resp. a ^ b). If no ball is present, then no ball leaves.In any 
ase, the output of balls (or la
k of any ball) exa
tly 
orrespondsto the en
oding. This mi
ro gate is devised by Margolus in [13℄ in order tobuild a more elaborated gate (i.e. Fredkin gate de�ned and used in the nextsubse
tions).a ^ b a ^ ba ^ b a ^ ba bBalls traje
tories
ab -- � ---- a ^ ba ^ ba ^ ba ^ bLogi
al gateFig. 1.11. Mi
ro gate.1.3.2 Conservative Logi
In the 
onservative logi
, invented in [8℄, all gates are reversible and thenumber of ones (and zeroes) is preserved. It is not possible to dupli
ate asignal nor to dis
ard it. For example, the only 
onservative gate workingwith one bit is the identity and with two bits is the permutation. To get agate with a minimal 
omputing ability, one has to 
onsider a three-bit gate{ the Fredkin gate. This gate works as follows. One bit goes through thegate una�e
ted and depending on value of this bit, two other bits just passthrough or are permuted, as represented in Fig. 1.12.



1 Computing Inside the Billiard Ball Model 138�; � 2 f0; 1g ---- ---1�� 1��-- ---- ---0�� 0���RFig. 1.12. Fredkin gate.Fredkin gates 
an be built in the BBM for the basi
 en
oding out ofmi
ro gates of Fig. 1.11 [28℄. Also the BBM is simple, the 
onstru
tion ofFredkin gates is designed in two levels and uses a large amount of spa
e andtime. Morita [16℄ proved that it is possible to built any 
onservative gateout of Fredkin gates; the only other signals needed are zero signals whi
hare regenerated at the end. Sin
e zeroes are implemented by the la
k of anysignal we 
an say thatLemma 2. The BBM is able to simulate any 
onservative logi
al fun
tionwith basi
 signals without feeding nor disposal of a signal.Any binary fun
tion f 
an be implemented with 
onservative logi
al fun
-tions. It is done using a larger 
onservative fun
tion '. Constant bits 
 areadded to the f -entry x to form a '-entry x:
. The output of ' is the output off together with bits whi
h are only there to guarantee that ' is 
onservative.There are drawba
ks of the te
hnique: 
onstant bits have to be provided andunwanted bits are generated (and have to be disposed o� in some way oranother). This 
annot be avoided with irreversible fun
tions. Sin
e the BBMdoes not allow the 
reation or removal of balls, one has to be very 
arefulwhen implementing an irreversible gate.1.3.3 Dual En
odingThe pre
eding 
onstru
tion is interesting as long as one uses Boolean 
ir
uitswhi
h work in a �nite and known time. But when this time is unknown,it is impossible to distinguish between the answer 0, i.e. no signal, and anun�nished 
omputation. Additional features have to be provided to solve thisproblem whi
h is parti
ularly annoying with Turing ma
hines whi
h mayunpredi
tably stop at any time.To 
ope with this, we use the dual en
oding also known as the \double-line tri
k" of von Neumann. This is done by doubling the signal as depi
tedin Fig. 1.13. A signal is now always 
omposed of two 
onse
utive balls. Theirposition indi
ates the value of the bit. The presen
e and value of any dualsignal are expli
it.
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Fig. 1.13. From basi
 en
oding to dual en
oding.It is possible to build a Fredkin gate with this en
oding as depi
ted inFig. 1.14. Some delay-elements may be required, but they are not indi
atedhere for brevity.

- -- -- -fg - -- -- -fg
 n
+
� 
0+
0� o
0x nx+x� x0+x0� ox0y ny+y� y0+y0� oy0
---
---Fig. 1.14. Fredkin gate for dual signals.It is still 
on
eivable to 
ompute any 
onservative fun
tion, but it is nowalso possible to make an autonomous not gate (Fig. 1.15). There is no riskof 
ollision between signals be
ause there is only one real signal for any dualsignal. s 8<: s+s� s+s� 9=; s-? --6 -6 -Fig. 1.15. A not gate with dual signals.1.3.4 Reversible Logi
We 
all reversible logi
 the restri
tion of the logi
al fun
tions to the bije
tiveones. Let f : f0;1gn ! f0;1gn be any reversible logi
al fun
tion en
oded
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an also be viewed as a fun
tion f1 : f(0; 1); (1; 0)gn !f(0; 1); (1; 0)gn in the basi
 en
oding. Fun
tion f1 is a partial de�nition ofa 
onservative fun
tion f2 : f0; 1g2n ! f0; 1g2n. From Lemma2 
omes thefollowing:Lemma 3. The BBM 
an simulate any reversible logi
al fun
tion with dualsignals without any feeding nor disposal of the signals.1.4 Turing Universality of the BBMA two-
ounter automaton is a �nite automaton linked to two 
ounters whi
h
an hold any non-negative integer value. The automaton 
an perform thefollowing operations on the 
ounters: add one, subtra
t one (zero minus oneis zero) and test for nullity and bran
h.Minsky [14℄ proved that there exist universal two-
ounters automata. Toprove that the BBM is universal, it is enough to show that the BBM isable to simulate any two-
ounter automaton. The 
onstru
tion relies on theautomaton on the one side, and on the 
ounters on the other side.1.4.1 AutomatonAn automaton 
an be simulated by a large logi
al unit. The state of theautomaton is en
oded in a part of the output whi
h is fed ba
k to the in-put. To perform an a
tion on the 
ounters, the automaton unit sends the
orresponding order signal to the 
ounters. The state remains the same un-til a noti�
ation of the exe
ution of the order is re
eived. Then the state is
hanged and a new 
y
le starts.Sin
e the transition fun
tion of the automaton 
an be irreversible, 
on-stant inputs have to be provided and garbage outputs are generated. The
ow of 
onstants is in�nite sin
e no one 
an presume the duration of the
omputation.The automaton 
ommuni
ates with the 
ounters by sending (dual) signalso to indi
ate modi�
ations; re
eiving (dual) signal e indi
ates that an orderwas performed. It re
eives and sends the �rst bits of the 
ounters in order tobe able to test itself if a 
ounter is zero. These signals are endlessly sent andre
eived, most of the time, signals o and e are meaningless. The order o isen
oded with two dual signals: o = (op;od). The signal op indi
ates whetheror not the order is to be 
arried out (op = 0 means no a
tion). The signalod de�nes it: od = 0 for subtra
tion and od = 1 for addition. The end ofexe
ution noti�
ation signal e equals 1 to notify that an order was properlyexe
uted by the register, otherwise it is 0.
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automaton

?Garbage signals
?Constants

�6 -State Ordero� eEnd of exe
ution
-�6 ?--� -�6 ?--� -�6 ?--�a0b0 a1b1 a2b2

Fig. 1.16. The automaton and two register units.1.4.2 CountersCounters are stored and handled inside a unique in�nite line of logi
al registerunits. The value of 
ounters are en
oded in unary form with dual signals(n � 1n0!). The two 
ounters are denoted asA = a0a1 : : : and B = b0b1 : : :The 
orresponding signals are lo
ked between 
onse
utive register units asdepi
ted in �gures 1.16 and 1.18. The register units update the values of thesignals a

ording to the orders re
eived from the automaton.Signals a0 and b0 are nested not between two register units but betweenthe automaton and the �rst register unit. Sin
e signal a0 (b0) equals 0 onlyif A (B) equals 0, the automaton 
an test easily whether A (B) is 0. Thisallows the automaton to test dire
tly the nullity of any 
ounter.The 
ru
ial part is the administration of the 
ounters. The register unitsare all identi
al and 
ommuni
ate with the signals o, l, r and e. The fun
tionof a register unit is de�ned by the table of Fig. 1.17. It should be notedthat even if it is not 
onservative, it is reversible as it 
an be seen from thetable, so that no extra signal is involved. The last two lines of the table looklike they 
an be merged into a rule like \if op is 0 then nothing 
hanges"but the fun
tion would not be \one to one" anymore. Ea
h register unitimplements a reversible fun
tion. Thanks to Lemma3, register units 
an betotally autonomous. They do not bring any perturbation in the 
on�guration.A register unit works by modifying l and r a

ording to their values andthe order o. If there is an order to exe
ute (op = 1), the values are modi�edonly at the end of meaning part of the 
ounter (l = 1 and r = 0, se
ond andthird lines of Fig. 1.17). The modi�
ation is indi
ated by od: 0 for subtra
tionand 1 for an addition. To subtra
t one, the appropriate register unit sets lto 0; to add one, it sets r to 1.
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hangedFig. 1.17. Register unit and the 
orresponding logi
al fun
tion.Signal e is 0 ex
ept when it brings the noti�
ation that the order wasexe
uted (and then it is 1). It is set to 1 by a register unit whi
h 
arriesout the order. There is never more than one a
tive order (ot = (1; :)) ornoti�
ation signal (et = 1) in a whole 
on�guration.The automaton and the register units are 
onne
ted as depi
ted inFig. 1.18. Ea
h unit re
eives only a's, then only b's, su

essively. Ea
h time,(lin; rin) and (lout; rout) are both either (ak; ak+1) or (bk;bk+1) dependingon the parity of the 
lo
k. All the same, depending on the parity of t, ot meetsonly a's or only b's, but it meets all of them as it 
an be seen on Fig. 1.18.---�� ot+1bi�1ai�1et�2 ---�� otaibiet�1 ---�� ot�1bi+1ai+1et ---�� ot�2ai+2bi+2et+1ot+1bi�1biet�1 otaiai+1et ot�1bi+1bi+2et+1M.A. ---��ot+ia0b0et�i�1 : : :: : :: : :: : : : : :: : :: : :: : :---�� ot+2ai�1bi�1et�1 ---�� ot+1biaiet ---�� otai+1bi+1et+1 ---�� ot�1bi+2ai+2et+2ot+2ai�1aiet ot+1bibi+1et+1 otai+1ai+2et+2M.A. ---��ot+i+1b0a0et�i : : :: : :: : :: : : : : :: : :: : :: : :---�� ot+3bi�1ai�1et ---�� ot+2aibiet+1 ---�� ot+1bi+1ai+1et+2 ---�� otai+2bi+2et+3ot+3bi�1biet+1 ot+2aiai+1et+2 ot+1bi+1bi+2et+3M.A. ---��ot+i+2a0b0et�i+1 : : :: : :: : :: : : : : :: : :: : :: : :Fig. 1.18. Automaton, units and wiring for three su

essive iterations.Let us de
ompose the exe
ution of an order, �rst the test and bran
h andthen 
hanging the value of a 
ounter.If the 
ounter A (B) is null, the automaton knows it sin
e a0 (b0) is inits inputs. It 
an test and bran
h dire
tly.



18 Durand-LoseIf the automaton wants to subtra
t one from a null 
ounter, the automatonjust goes to the next instru
tion. If it wants to add one to a null 
ounter, itsets a0 (or b0) to 1 and goes to the next instru
tion.Let us 
onsider that 
ounter A is not null (it works exa
tly the same for
ounter B). To make an operation op (op is 1 for addition, 0 for subtra
tion)overA the automaton sends a signal o = (1; op) syn
hronized with a0. Thenit waits till it re
eives a the signal e equal to 1 indi
ating that the operationwas performed. After that the automaton goes on to the next operation.The order o is re
eived and treated by the register units as follows. Re-member that 
ounters are en
oded in a unary form. The signal o travels andmeets su

essively all the pairs (ai; ai+1), whi
h are equal to (1;1), until itrea
hes the end of the meaning part of the 
ounter ((ai; ai+1) equal (1;0)). Ifop is 1 (addition) then the output value (ai; ai+1) is (1;1), otherwise (sub-tra
tion) it is (0;0). The signal o is set to (0;1) and moves endlessly to theright. The signal e is set to 1 and moves ba
k to the automaton and indi
atesthat the operation was 
arried out. The next operation 
an start.The exe
ution time is proportional to the value of the 
ounter.Going ba
kward in time, the register unit, whi
h performs the operation,is de�ned by the meeting of the e equal to 1 and the �rst o equal to (0;1).The performed operation is de�ned by the value of (ai; ai+1).It should be noted that to build a n-
ounters automaton, one just has toenlarge the distan
e between register units and add new trapped signals.Lemma 4. The BBM is able to simulate any two-
ounters automaton.Sin
e there exist universal two-
ounters automata we have the following:Theorem 2. The BBM is universal.The universality of the BBM was proved using reversible te
hniques. Forthe register units, reversibility was designed abstra
tly before it was imple-mented. This is a general strategy in a reversible 
ontext and 
an be trans-lated to other reversible models.1.5 Intrinsi
 Universality of the BBMAs we already know the BBM 
an 
ompute any 
omputable fun
tion. Can itdo something more sophisti
ated? If yes, to what extent? The BBM 
an beprogrammed very easily on any 
omputer. The real 
omputer is less powerfulthan a Turing ma
hine, be
ause 
omputer memory is �nite. Does it 
ontradi
tto the universality of the BBM?No, it does not sin
e the 
on�guration of the BBM are in�nite and only�nite 
on�gurations 
an be simulated in a 
omputer. The BBM handles in�-nite 
on�gurations and these 
on�gurations may well not be periodi
 or just



1 Computing Inside the Billiard Ball Model 19re
ursive. Turing universality deals with �nite inputs and �nite modi�
ation.The BBM, as well as CA and BCA, handles in�nite data. Parti
ularly, CA
orrespond exa
tly to all the fun
tions over SZd that are 
ontinuous for theprodu
t topology [9,22℄, and an automaton 
an 
hange the state of every 
ellin a single transition step. There lies a 
omputing ability whi
h is beyond aTuring 
omputability.The question is whether the BBM 
an 
apture all the 
omputing abilityof CA over C. Another way to understand this is to remember that a Turingma
hine is universal if it is able to simulate any Turing ma
hine. We say thata CA (resp. R-CA) is intrinsi
ally universal if it is able to simulate any CA(resp. R-CA) over any 
on�guration (�nite or not).De�nition 4. A ma
hine is intrinsi
ally universal inside a 
lass of ma
hineif it is able to simulate any ma
hine of this 
lass for any 
on�guration. Fora given ma
hine, the way the simulation is 
arried out must be the same forevery 
on�guration.In this se
tion, we shall prove that the BBM is intrinsi
ally universal forR-CA with our usual understanding of simulation. Then if simulation is takenin a wider way, namely spa
e-time simulation [6℄, the BBM is intrinsi
allyspa
e-time universal for CA.We introdu
e another sub-
lass of CA whi
h is used throughout this se
-tion: partitioned CA (PCA). This model was proposed by Morita et al. [15℄.The model, like BCA, was introdu
ed to study and manage reversible \
las-si
al" CA.1.5.1 Partitioned Cellular AutomataPartitioned 
ellular automata (PCA) imply mapping over the same set of
on�gurations as BCA and CA. They also perform lo
al, parallel and uniformupdates of 
on�gurations, but the 
on�guration updating is done di�erently.Instead of partitioning the array, we partition the 
ells themselves. A
ell state is partitioned into as many sub-states as there are neighbors. Atransition is done by ex
hanging these parts with the neighbors and thenupdating the state. An intermediate state is 
onstituted with the part whi
his left and the parts whi
h are re
eived. Updating is done by using a mapping� from states to states, just as BCA use the mapping from blo
ks into blo
ks.A PCA is totally de�ned by the tuple (d;N; (Si)i2N ; �). The state is par-titioned in su
h a way that there is a pie
e 
orresponding to every neighbor.The �rst part of the transition is to send all these pie
es to the 
orresponding
ells. Ea
h 
ell re
eives one and only one sub-state of ea
h part. On
e a fullstate is re
onstru
ted, the state is 
hanged a

ording to the lo
al fun
tion� : (Si)i2N ! (Si)i2N.This is illustrated for NvN = f (0; 0); (0; 1); (0;�1); (�1; 0); (1; 0) g, thevon Neumann neighborhood, (the sub-states are denoted 
, n, s, e and w)



20 Durand-Loseon Fig. 1.19. On the right part, it is indi
ated whi
h parts of the neighboring
ells are 
onsidered for � for updating.

nse w 
x;ywx-1;y ex+1;ynx;y-1

sx;y+1 � 
0x;yn0x;ys0x;ye0x;y w0x;y
Fig. 1.19. De
omposition of a PCA 
ell and parts 
onsidered for �.Partitioned CA have one thing in 
ommon with the 
onservative logi
,dis
ussed in the Subse
t. 1.3.1: there is no dupli
ation { ea
h sub-state issent to one and only one 
ell and it is not kept anymore by the 
ell.The following lemma is the PCA 
ounterpart of Lemma1.Lemma 5. A PCA P is reversible if and only if its transition fun
tion � isa bije
tion.Proof. The ex
hange of sub-states is reversible. Ea
h sub-state goes to oneand only one 
ell, there is no dupli
ation. Then, the global fun
tion of thePCA is reversible if and only if � is one-to-one and onto.Let us denote that the inverse of PCA is not exa
tly a PCA sin
e theinverse of � is applied before the sub-states are sent. Anyway, it is still a CA.1.5.2 Intrinsi
 Universality of the BBM among R-CAThere exist R-CA and R-PCA that are able to simulate any R-CA (andR-PCA and R-BCA) over any 
on�guration. We refer to the paper [5℄ for afull 
onstru
tion. The design, o�ered in [5℄, is based on simulation of R-CAby R-PCA and then the 
onstru
tion of an intrinsi
ally universal R-PCA.This 
onstru
tion relies on binary en
oding of states, en
oding the transitionfun
tion inside the 
on�guration and using a reversible signal approa
h totest and update.Theorem 3. [5℄ Any R-CA 
an be simulated by a R-PCA and there existintrinsi
ally universal R-CA (and R-PCA).



1 Computing Inside the Billiard Ball Model 21Moreover, the simulating R-CA use the von Neumann neighborhood. Toprove that the BBM is intrinsi
ally universal, we shall prove that it is able tosimulate a R-PCA with this neighborhood. Two things must be taken 
are of.They are ex
hanging the sub-states and 
omputing the transition fun
tion.Ex
hanging information is not a problem here be
ause all the ne
essary wiringis present.Sin
e the PCA is reversible, the transition fun
tion is reversible (Lemma5)as well. Thanks to Lemma2, it is possible to implement a 
orresponding gatewhi
h does not need feeding nor disposal. Figure 1.20 presents the unit andshows how units are inter
onne
ted. This pattern is repeated over all the 
on-�gurations so that in�nite 
on�gurations and unbounded orbits are handled.
's n

s new ew
 ' ' '' ' '' ' '
Fig. 1.20. Pro
essing unit and inter
onne
tion for PCA.Theorem 4. The BBM is able to simulate any R-PCA.The following 
orollary follows from the Theorems 3 and 4 and the tran-sitivity of simulation.Corollary 1. The BBM is intrinsi
ally universal for reversible R-CA(R-BCA and R-PCA).This only works inside the subset of reversible 
ellular automata. It isknown [1℄ that there exist CA that are intrinsi
ally universal (for CA) butnot reversible. This is an open problem to investigate whether any irreversibleCA 
an be simulated by a reversible one (in terms of the De�nition 2). Theproblem is ta
kled in the next se
tion. There the simulation relation 
onsidersorbits and not just isolated 
on�gurations. In this parti
ular 
ontext, we 
angive a positive answer.



22 Durand-Lose1.5.3 Spa
e-time SimulationFollowing the De�nition 2 of a simulation, a simulated 
on�guration is to-tally en
oded in a simulating 
on�guration. This is a natural idea when onethinks about a dynami
al system whi
h goes from one 
on�guration to thenext one. Another point of view is to 
onsider that single 
on�gurations arenot important and that only the orbit, as the whole, is relevant. The nextde�nition tries to 
apture this idea: the whole simulated spa
e-time diagramis en
oded in the simulating spa
e-time diagram.This de�nition is quite new. As far as we know, it was �rst introdu
edin [6℄.De�nition 5. Let G be the global transition fun
tion of some CA A and abe A's 
on�guration. The spa
e-time diagram A : Zd� N ! S asso
iated toA and a is de�ned by A tx = (Gt(a))x. It is denoted by (G; a) or (A; a).In other words, a spa
e-time diagram is the sequen
e of the iterated imagesof 
on�gurations of a CA. A spa
e-time diagram B is embedded into anotherspa
e-time diagram A when it is possible to \re
onstru
t" B from A and theway that B is embedded into A .The re
overing of an embedded B-
on�guration is done in the followingway. An A-
on�guration is 
onstru
ted by taking ea
h 
ell at a given iteration.This A-
on�guration is de
oded to get an iterated 
on�guration for B. Hen
ewe 
an use the following de�nition.De�nition 6. A spa
e-time diagram B = (B; b) is embedded into anotherspa
e-time diagram A = (A; a) when there exist three fun
tions � : Zd�N !N, � : CB ! CA and � : CA ! CB su
h that:- a = �(b);- 8(x; t) 2 Zd�N, let 
t be the 
on�guration of A su
h that 
tx = A �(x;t)x ;- 8t 2 N, GtB(b) = �(
t).The 
on�guration b is en
oded into a with respe
t to �. To re
over aniterated image of b, the fun
tion � indi
ates whi
h iteration is to be 
onsideredfor ea
h 
ell and � de
odes the generated 
on�guration. The generation of 
tand then GtB(b) is illustrated in Fig. 1.21.De�nition 7. A CA A spa
e-time simulates another CA B if and only ifany spa
e-time diagram of B 
an be embedded inside a spa
e-time diagramof A.The fun
tions �, � and � must be as minimal as possible be
ause oth-erwise the fun
tions 
ould implement all the 
omputation and A 
ould bealmost any CA.The spa
e-time simulation is still under investigation and more naturalnotion of embedding might appear.



1 Computing Inside the Billiard Ball Model 23simulatedB = (B; b) bGtB(b)t = 0t = 1t = 2t = 3... -�� 6
��

simulatingA = (A;�(b)) t = 0t = 1t = 2t = 3...�(b)

t

1 2 3 4 5 6� 1 2 3 4 5 6? ? ? ? ? ?Fig. 1.21. Spa
e-time diagram B is embedded into A .1.5.4 Intrinsi
 Spa
e-Time Universality of the BBM among CAWe use the following result:Theorem 5 ([6℄). There exist R-PCA whi
h are spa
e-time intrinsi
allyuniversal for CA.In the 
onstru
tion of [6℄, the simulated 
on�gurations are \bent" inparabola inside the simulating spa
e-time diagram. The spa
e between para-bola is used to store the information generated for implementation of thereversibility.Among these R-PCA some have the von Neumann neighborhood. Againusing Theorem4 we draw the following 
orollary:Corollary 2. The BBM is spa
e-time intrinsi
ally universal for reversibleCA (BCA and PCA) with the spa
e-time simulation.Altogether, this shows that the BBM has a strong 
omputing 
apability,it is 
omplete for reversible CA and, 
onsidering the spa
e-time simulation,
omplete for CA.1.6 Un
omputable PropertiesWe already mentioned earlier that Turing ma
hines, two-
ounters automata,
ellular automata, and most 
omputing languages 
apture the notion of 
om-putability. They 
ompute all and only 
omputable fun
tions. What 
an besolved/
omputed in one ar
hite
ture/language is exa
tly the same that 
anbe solved in other.All results of this se
tion 
ome dire
tly from the 
lassi
al halting problem.



24 Durand-LoseTheorem 6 (Halting problem). There is no Turing ma
hine (two-
oun-ters automaton, re
ursive fun
tion, C++ program, et
. that, given the 
odeof a Turing ma
hine et
. as entry, stops and indi
ates whether or not the
ode would stop on an empty entry.For the following results, it is only sket
hed how to transform any Turingma
hine T (or two-
ounters automaton et
.) to a BBM 
on�guration so thatit has the desired property if and only if T stops when it is started with anempty tape.For other results on 
omplexity and 
al
ulability of de
ision problems inthe evolution of CA see [27℄.1.6.1 Rea
hing a Stable or Periodi
 Con�gurationSin
e the BBM employs the \onto" mapping, any 
on�guration has in�nite
hain of pre-images. It is possible to get any 
on�guration after any num-ber of iterations, provided the BBM is started in the proper prede
essor-
on�guration. Moreover, sin
e the inverse of the BBM is known and is verysimple | BBM with the inverted order of the partitions | one 
an 
omputea 
on�guration looking random but 
orresponding to the nth pre-image of avery regular image, e.g., a bottle or a fa
e.Sin
e the BBM is reversible, it is not possible to rea
h a stable or periodi

on�guration from outside the 
orresponding orbit.There are periodi
 orbits. Some 
an be built very easily as shown inSubse
t. 1.3.1. Aperiodi
 
on�gurations 
an be built also without problems:just let a single ball move on forever. If the underlying latti
e is a �nite (e.g.a torus), then all 
on�gurations belong to 
y
les for the same reason.1.6.2 Rea
hing a (Sub-)Con�gurationOne 
an build a simulation of a two-
ounter automaton su
h that its stopsignal 
orresponds to a dual signal. The value of the state is given by thepassing of a signal to a given path between a
tivation of the automaton.Sin
e it is not possible to predi
t (de
ide) if a two-
ounter automaton willstop, it is not possible to predi
t the passing of a signal in a given lo
ation.Lemma 6. It is unde
idable if a ball will ever 
ross some given part of the
on�guration.More generally, we have the following:Corollary 3. It is unde
idable if a given part of the 
on�guration will everbe in a given sub-
on�guration.
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on�guration 
an be stret
hed (and padded with \void" state)so that parallel signals are always at least four diagonals away from ea
hother and then make it so that when the simulated ma
hine stops then two
losed parallel signals are emitted. So it is de
idable if there will ever be two
lose parallel basi
 signals. More general result looks as follows:Theorem 7. It is unde
idable if a given sub-
on�guration will ever appearsomewhere in the spa
e diagram generated from a BBM 
on�guration.Referen
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