
1 Computing Inside the Billiard Ball ModelJ�erôme Durand-Lose
The hapter studies relations between billiard ball model, reversible ellular au-tomata, onservative and reversible logis and Turing mahines. At �rst we intro-due blok ellular automata and onsider the automata reversibility and simulationdependenies between the blok ellular automata and lassial ellular automata.We prove that there exists a universal, i.e. simulating a Turing mahine, blok el-lular automaton with eleven states, whih is geometrially minimal. Basis of thebilliard ball model and presentation of an information in the model are disussedthen. We demonstrate how to implement ball movement, reetion of a signal, de-lays and yles, ollision of signals in on�gurations of the ellular automaton withMargolus neighborhood. Realizations of Fredkin gate and NOT gate with dual sig-nal enoding are o�ered. The rest of the hapter deals with a Turing and an intrinsiuniversality, and unomputable properties of the billiard ball model. The Turinguniversality is proved via simulation of a two-ounter automaton, whih itself is Tur-ing universal. We demonstrate that the billiard ball model is intrinsially universal,or omplete, in a lass of reversible ellular automata, i.e. the model an simu-late any reversible automaton over �nite or in�nite on�gurations. A novel notionof spae-time simulation, that employs whole spae-time diagrams of automatonevolution, is brought up. It is proved that the billiard ball model is also able tospae-time simulate any (ir)reversible ellular automaton. Sine the billiard ballmodel possesses the Turing omputation power we an projet a Turing mahine'shalting problem to development of ellular automaton simulating the billiard ballmodel. Namely, we unover a onnetion between undeidability of omputationand high unpreditability of on�gurations of the billiard ball model.The whole �eld of ollision-based omputing was initiated by a billiardball model. It is a well-known model beause it learly shows how to performa universal omputation by a simple reversible ellular automaton mahinein an intuitively appealing way.Reversibility allows to run evolution of a system, an automaton in ourase, bakward. Both information and energy are preserved during a ompu-tation implemented by a reversible mahine. A �rst published result on thereversible universal omputing, dealing with reversible Turing mahines, isdated forty years ago universal [12,2℄. A universality is a apability to om-pute any omputable funtion, in the reursion theory, given its de�nitionand its arguments in some enoding.



2 Durand-LoseCellular automata (CA for short) are a well known model of synhronousand uniform proesses over large arrays. They operate over in�nite d-dimen-sional arrays of �nite state automata, or ells. Eah ell takes a �nite numberof states. All ells of an array update their states in disrete time by the sameell state transition rule, or a loal funtion.A reversibility of CA has been studied from the 1960s from a mathemat-ial point of view, and from the 1970s for a more pratial trend: savingenergy. In 1970, Burks [3℄ onjetured that there did not exist any universalreversible CA. This hypothesis was disproved for two-dimensional CA in 1977by To�oli [30℄. In 1992, Morita [18℄ proved that there also exist universal re-versible one-dimensional CA. We would like to attrat readers' attention toa omprehensive survey on reversible CA by To�oli and Margolus [29℄, whihis a rih soure of referenes.CA models of lattie gas and relevant physial onsiderations lead Margo-lus [13℄ to introdue the billiard ball model (BBM). The BBM is not exatlya CA. It has the same on�gurations as a CA| there are only two states| but ell state updating is done di�erently. The array is partitioned intoregularly displayed retangular 2 by 2 bloks. A transition step is done byreplaing eah blok of a given partition by its image aording to a uniqueblok transition funtion from bloks to bloks. This replaement is donetwie, with distint partitions, in order to let information spread over thearray.The BBM an easily be generalized: any �nite set of states, any size ofbloks, any number of partitions, any funtion from bloks to bloks. Thisvariation of CA is alled a blok CA (BCA), partitioned CA or CA with theMargolus neighborhood. In this hapter, we use the term blok CA .In [28℄, it is laimed that sine any Boolean funtion an be implementedwithin the BBM, the BBM is universal. The onstrution employs onserva-tive logi, reversible gates of whih have the same number of ones in the inputand in the output. However, onservative logi based implementation has twodrawbaks. First, it needs onstant inputs and produes garbage signals in-side the on�guration; universality is not so obvious to ahieve. Seond andmost important, zeroes are enoded by the lak of any signal and it is impos-sible to distinguish, without employing additional \lok" signal, between noinformation and a zero result.In this hapter, after presenting BCA and a small universal one-dimensio-nal BCA, we show how any two-ounter automaton, a universal model intro-dued by Minsky [14℄, is simulated by BCA. The simulation is implementedby embedding reversible logi, gates of whih are reversible but the numberof ones is not neessarily preserved, into the BBM. The enoding keeps bothzero and one signals tangible.Using partitioned CA, a lass of CA introdued by Morita et al. [15℄{[21℄,we also prove that the BBM an simulate any reversible CA over any on-�guration, �nite or not [5℄. Suh an ability to simulate a reversible CA is



1 Computing Inside the Billiard Ball Model 3alled an intrinsi universality. The di�erene from the usual Turing univer-sality, in the CA ontext, is that, during a single transition step, an in�niteon�guration an be ompletely hanged. This learly falls outside of Turinguniversality. There are reversible CA that are able to simulate any CA withone less dimension [30℄. It is still an open problem whether the BBM or anyreversible CA an simulate all CA, inluding irreversible CA over in�niteon�gurations, of the same dimension.We present a new notion of universality, spae-time universality, whihdoes not rely on automata on�gurations but whole orbits of the automataevolution or spae-time diagrams. We show that the BBM is spae-time in-trinsially universal among the whole lass of CA. De�nitions and resultsfrom [6℄ are used to ahieve this.This hapter ends with some undeidability results like the passage of aball at some point or the apparition of a given pattern inside the on�gura-tion.The hapter is strutured as follows. De�nitions of blok ellular automata(BCA) and reversibility, as well as onnetions with lassial ellular au-tomata are gathered in Set. 1.1. In Set. 1.2, it is shown that one-dimensionalBCA are able to simulate any Turing mahine and that there exists a uni-versal one-dimensional BCA with 11 states.In Set. 1.3, we reall the de�nition of the billiard ball model (BBM) andbasi onstrutions with onservative logi as they are originally presented byMargolus. Another version of enoding, dual enoding, is made by enodingthe value of a bit by the position of a signal; this enoding is the \double-linetrik" of von Neumann as mentioned by Minsky [14, p. 69℄. Any funtion ofthe reversible logi an be embedded in the BBM with this enoding, garbageor onstant signals.In Set. 1.4, we simulate a two-ounters automaton in the BBM andrigorously prove that the BBM is universal.Partition CA are de�ned in Set. 1.5. Then the intrinsi universality ofthe BBM among reversible CA is proved. In the same setion, spae-timesimulation is presented and the spae-time intrinsi universality of the BBMis demonstrated.In Set. 1.6, some types of BBM behavior are proved to be undeidable;the undeidability leads to high unpreditability of the way along whih aon�guration may develop.1.1 De�nitionsBlok ellular automata, like \onventional" ellular automata (see Sub-set. 1.1.4) and partitioned ellular automata (see Subset. 1.5.1), operateover bi-in�nite arrays of dimension d. The elements of Zd are referred asells. Eah ell has a value hosen from a �nite set of states S. A on�gu-



4 Durand-Loseration is a valuation of the whole array, i.e., an element of SZd. The set ofon�gurations is denoted C (C � SZd).1.1.1 Blok Cellular AutomataA blok ellular automaton (blok CA or BCA for short) performs loal, par-allel and uniform updates of on�gurations. Updating is done by partitioningthe on�guration into retangular bloks and independently alulating eahblok's next state. The update may be repeated several times for variouspartitions.All bloks have the same shape V = [0; v1�1℄�[0; v2�1℄�� � ��[0; vd�1℄,whih is a �nite sub-array of Zd; and, v1, v2, : : : vd are positive integers. Theblok transition funtion t, used to update bloks, is a mapping over SV ,t : SV ! SV .A V -partition is a regular partition of the array into bloks of size V . Itis de�ned by an origin oi 2 Zd as illustrated in Fig. 1.1. The transition steporresponding to a partition Toi , and the blok transition funtion t, is thesynhronous replaement of all the bloks by their images by t as depited inFig. 1.1.
-v1� -v1� 6v2?6v2?Roi =partitioning b0;0 b1;0b0;1 b1;1 t(b0;0) t(b1;0)t(b0;1) t(b1;1)Toi�!omputingFig. 1.1. Transition step of the origin oi.Replaements are suessively made over various partitions identi�ed bythe sequene of their origins O = (oi)1�i�n. All the transition steps usethe same size of bloks V and the same blok transition funtion t. Sine thebloks are updated independently, more than one partition is needed in orderto let information spread over the array.The global transition funtion G maps on�gurations into on�gurations.It is the omposition of all the transition steps:G = Ton Æ Ton�1 � � � Æ To1 :A blok ellular automaton BCA is ompletely de�ned by (d; S; V; t; n;O).1.1.2 ReversibilityDe�nition 1. An automaton A is reversible if its global transition funtionis a bijetion and its inverse is itself the global transition funtion of someautomaton of the same kind, alled an inverse and denoted A�1.



1 Computing Inside the Billiard Ball Model 5Reversibility an be tested and the inverse an be built very easily asstated by the following lemma:Lemma 1. A BCA B is reversible if and only if its blok transition funtiont is reversible, and then, its inverse is:B�1 = � d; S; V; t�1; n; O � ;where O is the sequene of the origins in reverse order (O = (on+1�i)1�i�n).Sine SV is �nite, reversibility is deidable for BCA.1.1.3 SimulationIn this hapter, by simulation, we mean the following:De�nition 2. For any two funtions f : F ! F and g : G ! G the fun-tion g simulates the funtion f (in real time) if and only if there exists twoenoding funtions � : F ! G and � : G ! F , reursive, spae and timeinexpensive ompared to f and g, suh that: fn = � Æ gn Æ � for any naturaln. The funtion g an be used instead of f for iterating the global funtion.A ellular automaton simulates another ellular automaton if and only ifa global funtion of the �rst automaton simulates the global funtion of theseond one.A simulation orresponds to the ommuting diagram of Fig. 1.2. The sim-ulation is therefore a transitive relation.8n 2 N; F�G gnfn F �G? 6--Fig. 1.2. g simulates f .The enoding and deoding funtions � and � are not always given ex-pliitly, but their meaning is usually lear from the ontext.1.1.4 Cellular AutomataCellular automata (CA) use the same set of on�gurations as BCA. Theyalso perform loal, parallel and uniform updates of on�gurations, but theupdating is done di�erently.



6 Durand-LoseA ellular automaton is de�ned by (d; S;N; f). The neighborhood N is a�nite subset of Zd. It represents the oordinates (relatively to the ell) ofthe ells whose states are to be onsidered for updating. The loal funtionf : SN ! S maps the states of ell neighbors into the ell's next state. Theloal funtion is said to ompute the new state of eah ell.The global funtion G : C! C maps on�gurations into on�gurations asfollows:8 2 C; 8x 2 Zd; G()x = f �(x+�)�2N� :A new state of a ell depends only on its neighbors' states as depited byFig. 1.3 where N = f�1; 0; 1g.Previous on�gurationommuniationomputationNext on�guration
: : : : : :

: : : : : :??f ??f ??f	 R 	 R 	 R 	 RFig. 1.3. Cell state updating in one-dimensional CA.Blok CA and partitioning CA (de�ned in Set. 1.5) are sub-lasses ofCA. They are often onsidered just as CA, with a speial onstraint on theirde�nitions.1.1.5 Relations with Classial Cellular AutomataBCA are CA In a BCA, the next value of a ell depends on the values of itsneighboring bloks, this is a loal updating. Yet the value is highly dependenton the position of the ell inside the bloks of the various partitions.Let us onsider the bloks of the �rst partition of the BCA as a ell, witha larger but still �nite set of states. The omposition of blok transitionsonly onsider bloks whih are around the blok. Thus, any BCA an beexpressed as a CA at the blok sale. Sine this is an identi�ation, if theBCA is reversible then the orresponding CA is reversible.In fat, one of the reasons to introdue the billiard ball model and BCAwas to design as simple as possible a two-dimensional CA whih is reversibleand universal. It was a triky problem sine reversible CA are ompliated tobuild and to manipulate, and even worse, as Kari proved in [10℄, reversibility isnot deidable for CA of dimension two and above. In omparison, reversibilityof BCA is easily hekable in any dimension as stated in Lemma1.



1 Computing Inside the Billiard Ball Model 7Representation of CA as BCA It is possible to embed CA in BCA ifmore states are allowed during the omputation. One an also represent aCA whih is known to be reversible as a reversible BCA [4,7℄.One open problem is whether, and how, this representation an be madewithout inreasing the number of states. The answer is positive in dimensionsone and two if a omposition with a partial translation is allowed [11℄.1.2 Universality of One-Dimensional Blok CAHow good are BCA for omputing? How omplex an a spae-time diagramof a BCA be?In the previous subsetion we found that any CA an be simulated bya BCA, so that one-dimensional BCA an arry out any omputation andits spae-time diagrams an be very omplex (see e.g. the four omplexitylasses of Wolfram [31℄).In this setion we present a simulation of Turing mahines by BCA andprove the existene of a universal one-dimensional BCA with only 11 states.Reall, that Turing mahines are simply �nite automata, or proessors,that an read and write on an in�nite tape, or a memory. The mahinesapture a notion of omputability and they are able to arry out any om-putation. More information on omputability and Turing mahines an befound in many textbook, e.g. [25℄.De�nition 3. A Turing mahine is de�ned by the tuple ( �; Q; Æ; s0 ),where � is a �nite set of symbols for the tape, Q a �nite set of states of themahine, Æ is a transition funtion and s0 is the initial state.The transition funtion Æ yields the symbol to be written on the tape, thenew state and the movement of the head aording to the state and the readsymbol:Æ : Q�� ! Q�� � f ;!g[ fstopg :An automaton is universal (for omputation) if it is able to simulate anyTuring mahine or is able to simulate a universal automaton. There existuniversal CA [26℄ and universal reversible CA [30,18℄.Proposition 1. There exists universal BCA.Let M = (�;Q; Æ; s0) be a universal Turing mahine with distint mstates and n symbols (m = j�j, n = jQj and � \ Q = ;). Let B be thefollowing one-dimensional BCA:B = ( 1; Q [ � [ f stop g; (2); tM ; 2; ( (0); (1) ) ) :There are two partitions; their origins are (0) and (1). The states of Bare either symbols, states of M or a halting state stop. The loal transition



8 Durand-Lose 8a; b 2 �, tM � a b � = a b8p; q 2 Q, tM � p q � = p qif Æ(p; a) = (q; b;!) then 8>>><>>>: tM � p a � = b qtM � a p � = b qif Æ(p; a) = (q; b; ) then 8>>><>>>: tM � p a � = q btM � a p � = q bif Æ(p; a) = stop then 8>>><>>>: tM � p a � = stop atM � a p � = stop aFig. 1.4. Blok transition funtion of B to simulate M .is de�ned on Fig. 1.4. The loation of the head is enoded by the presene ofa M -state (in Q) together with a M -symbol (in �) in one blok.The initial on�guration and some iterations are depited in Fig. 1.5. Eahtransition step orresponds to one iteration of M . Eah iteration of B makestwo iterations of M . The end of the omputation orresponds to the our-rene of the state stop.The built BCA has minimal dimension (1), minimal width (2) and mini-mal number of partitions (2) to be universal. It has m+n+1 states. Earlier,Rogozhin [23,24℄ proved that there exists a universal Turing mahine with 5states and 5 symbols. It omes immediately that:Theorem 1. There exists a universal BCA with 11 states whih is geomet-rially minimal.The extensive de�nition of this BCA is skipped beause it is lengthy andnot so relevant. Anyway, it an be onstruted quite easily.In two-dimensional spae, the billiard ball model desribed in the nextsetion, is also minimal geometrially, has only two states and is reversible.The model is minimal for every parameter but the dimension.



1 Computing Inside the Billiard Ball Model 9w�2 w�1 w0 w1 w2 w3?s0 w�2 w�1 s0 w0 w1 w2 w3Æ(s0; w0) = (p1; a;!)w�2 w�1 a w1 w2 w3?p1 w�2 w�1 a p1 w1 w2 w3Æ(p1; w1) = (p2; b;!)w�2 w�1 a b w2 w3?p2 w�2 w�1 a b p2 w2 w3Æ(p2; w2) = (p3; ; )w�2 w�1 a b  w3?p3 w�2 w�1 a b p3  w3Æ(p3; b) = (p4; d; )w�2 w�1 a d  w3?p4 w�2 w�1 a p4 d  w3Turing mahine Blok CAThe thik lines indiate the iterated partitions.Fig. 1.5. Simulation of a Turing mahine by a BCA.1.3 Billiard Ball ModelThe billiard ball model (BBM) is a two-dimensional reversible BCA. It isde�ned by the following tuple:BBM = ( 2; f ; �g; ( 2; 2 ); tbbm; 2; ( (0; 0); (1; 1) ) ) :There are only two states: void and a partile symbolized by a ball, �. Thesize of the bloks is 2� 2. There are two partitions, one is dedued from theother by a (1; 1)-shift. The four ells of a blok are split between four bloksin the next partition.The blok transition funtion tbbm is only partially given in Fig. 1.6; itshould be ompleted by rotations and symmetries. It works as follows:- if there is only one ball, the ball moves to the opposite orner (ase (iv));- if there are two balls diagonally opposed, they move to the other diagonal(ase (ii));- in any other ase, nothing hanges.In all the �gures, the iterated partitions are indiated by thik lines.The blok transition funtion tbbm preserves the number of �. Applyingtwie tbbm to any blok, one gets the same blok, i.e., t�1bbm = tbbm. Sine tbbm



10 Durand-Lose(i) - (ii) � � ��- (iii) �� � �� �-(iv) � �- (v) � � � �- (vi) � �� � � �� �-Fig. 1.6. De�nition of tbbm.is reversible, from Lemma 1, the BBM is reversible. Up to a (1; 1)-shift, theBBM is its own inverse.Logial wiring is used to prove the omputational ability of the BBM. Twolevels of enoding of signals are used: the basi one of To�oli and Margolusand the dual one. They are de�ned in the next two subsetions.1.3.1 Basi EnodingThis subsetion is inspired by the works of Fredkin, Margolus and To�oli[8,13,28℄.Figure 1.7 depits an example of iterations of the BBM with only one ball.It an be seen that the two rules (i) and (iv) of Fig. 1.6 are enough to reatea signal: a moving ball.
� T0;0 � T1;1 � T0;0 �- - - �Fig. 1.7. Ball movement.Single balls ould be used as signals. But it should be possible to hangetheir diretions and to make them interat with eah other. To do this, letballs travel by pairs, one behind the other. If there is a retangle (whih is astable pattern) on their way, they boune on it as depited in Fig. 1.8. Thekey rule is the rule (ii) of Fig. 1.6.
� � � �� � � ��� � � � �� � � ��� � � � �� � � �� � � � � �� � � �� �T0;0 T1;1 T0;0- - -Fig. 1.8. Reetion of a signal.



1 Computing Inside the Billiard Ball Model 11Signals are now enoded with two onseutive balls. They move diago-nally, in both diretions, everywhere. With reetions of signals it is easy tobuild delays: the path of a signal is enlarged as depited in the left part ofFig. 1.9. Any even delay an be built this way.It is also possible to built a yle of even length by trapping a ball betweenfour reexive walls as indiated on the right part of Fig. 1.9.
R � R	R

�I R	Fig. 1.9. Delay and yle.When signals meet on the side, they go in the same two diretions butthey are shifted one diagonal bakward as depited in Fig. 1.10. The dottedline is the path they would have followed if only one signal would have beenpresent.
� � � � � � � � � � � �
� � � � � � � � � � � �

Fig. 1.10. Collision of two signals.



12 Durand-LoseThe omputation is arried out in a binary form. Now we know how tomake a signal. How an we enode di�erent values in signal forms? This anbe done following the enoding proposed by Margolus in [13℄. Signal 1 isenoded as the signal one and 0 as no signal. To distinguish between 0 andno signal present, one has to know somehow whether a signal is present.Signals 0 and 1 should interat in order to ompute, so some logial gatehas to be provided. With the ollision presented in Fig. 1.10, without addinga ball, we an make the miro gate of Fig. 1.11. This is a two-signal gate withfour possible outputs: two balls, one ball on the left, another on the right andno ball at all. If the two signals are 1, then there are two balls and the twoballs ome out one row lower (the two a ^ b exits). If a is 1 (resp. 0) and bis 0 (resp. 1) then there is only one ball and thus no ollision, the ball leaveson exit a ^ b (resp. a ^ b). If no ball is present, then no ball leaves.In any ase, the output of balls (or lak of any ball) exatly orrespondsto the enoding. This miro gate is devised by Margolus in [13℄ in order tobuild a more elaborated gate (i.e. Fredkin gate de�ned and used in the nextsubsetions).a ^ b a ^ ba ^ b a ^ ba bBalls trajetories
ab -- � ---- a ^ ba ^ ba ^ ba ^ bLogial gateFig. 1.11. Miro gate.1.3.2 Conservative LogiIn the onservative logi, invented in [8℄, all gates are reversible and thenumber of ones (and zeroes) is preserved. It is not possible to dupliate asignal nor to disard it. For example, the only onservative gate workingwith one bit is the identity and with two bits is the permutation. To get agate with a minimal omputing ability, one has to onsider a three-bit gate{ the Fredkin gate. This gate works as follows. One bit goes through thegate una�eted and depending on value of this bit, two other bits just passthrough or are permuted, as represented in Fig. 1.12.



1 Computing Inside the Billiard Ball Model 138�; � 2 f0; 1g ---- ---1�� 1��-- ---- ---0�� 0���RFig. 1.12. Fredkin gate.Fredkin gates an be built in the BBM for the basi enoding out ofmiro gates of Fig. 1.11 [28℄. Also the BBM is simple, the onstrution ofFredkin gates is designed in two levels and uses a large amount of spae andtime. Morita [16℄ proved that it is possible to built any onservative gateout of Fredkin gates; the only other signals needed are zero signals whihare regenerated at the end. Sine zeroes are implemented by the lak of anysignal we an say thatLemma 2. The BBM is able to simulate any onservative logial funtionwith basi signals without feeding nor disposal of a signal.Any binary funtion f an be implemented with onservative logial fun-tions. It is done using a larger onservative funtion '. Constant bits  areadded to the f -entry x to form a '-entry x:. The output of ' is the output off together with bits whih are only there to guarantee that ' is onservative.There are drawbaks of the tehnique: onstant bits have to be provided andunwanted bits are generated (and have to be disposed o� in some way oranother). This annot be avoided with irreversible funtions. Sine the BBMdoes not allow the reation or removal of balls, one has to be very arefulwhen implementing an irreversible gate.1.3.3 Dual EnodingThe preeding onstrution is interesting as long as one uses Boolean iruitswhih work in a �nite and known time. But when this time is unknown,it is impossible to distinguish between the answer 0, i.e. no signal, and anun�nished omputation. Additional features have to be provided to solve thisproblem whih is partiularly annoying with Turing mahines whih mayunpreditably stop at any time.To ope with this, we use the dual enoding also known as the \double-line trik" of von Neumann. This is done by doubling the signal as depitedin Fig. 1.13. A signal is now always omposed of two onseutive balls. Theirposition indiates the value of the bit. The presene and value of any dualsignal are expliit.



14 Durand-Loses+ s� s0 0 No signal0 1 01 0 11 1 Error ss+s� 0 1
Fig. 1.13. From basi enoding to dual enoding.It is possible to build a Fredkin gate with this enoding as depited inFig. 1.14. Some delay-elements may be required, but they are not indiatedhere for brevity.

- -- -- -fg - -- -- -fg n+� 0+0� o0x nx+x� x0+x0� ox0y ny+y� y0+y0� oy0
---
---Fig. 1.14. Fredkin gate for dual signals.It is still oneivable to ompute any onservative funtion, but it is nowalso possible to make an autonomous not gate (Fig. 1.15). There is no riskof ollision between signals beause there is only one real signal for any dualsignal. s 8<: s+s� s+s� 9=; s-? --6 -6 -Fig. 1.15. A not gate with dual signals.1.3.4 Reversible LogiWe all reversible logi the restrition of the logial funtions to the bijetiveones. Let f : f0;1gn ! f0;1gn be any reversible logial funtion enoded



1 Computing Inside the Billiard Ball Model 15with dual signals. It an also be viewed as a funtion f1 : f(0; 1); (1; 0)gn !f(0; 1); (1; 0)gn in the basi enoding. Funtion f1 is a partial de�nition ofa onservative funtion f2 : f0; 1g2n ! f0; 1g2n. From Lemma2 omes thefollowing:Lemma 3. The BBM an simulate any reversible logial funtion with dualsignals without any feeding nor disposal of the signals.1.4 Turing Universality of the BBMA two-ounter automaton is a �nite automaton linked to two ounters whihan hold any non-negative integer value. The automaton an perform thefollowing operations on the ounters: add one, subtrat one (zero minus oneis zero) and test for nullity and branh.Minsky [14℄ proved that there exist universal two-ounters automata. Toprove that the BBM is universal, it is enough to show that the BBM isable to simulate any two-ounter automaton. The onstrution relies on theautomaton on the one side, and on the ounters on the other side.1.4.1 AutomatonAn automaton an be simulated by a large logial unit. The state of theautomaton is enoded in a part of the output whih is fed bak to the in-put. To perform an ation on the ounters, the automaton unit sends theorresponding order signal to the ounters. The state remains the same un-til a noti�ation of the exeution of the order is reeived. Then the state ishanged and a new yle starts.Sine the transition funtion of the automaton an be irreversible, on-stant inputs have to be provided and garbage outputs are generated. Theow of onstants is in�nite sine no one an presume the duration of theomputation.The automaton ommuniates with the ounters by sending (dual) signalso to indiate modi�ations; reeiving (dual) signal e indiates that an orderwas performed. It reeives and sends the �rst bits of the ounters in order tobe able to test itself if a ounter is zero. These signals are endlessly sent andreeived, most of the time, signals o and e are meaningless. The order o isenoded with two dual signals: o = (op;od). The signal op indiates whetheror not the order is to be arried out (op = 0 means no ation). The signalod de�nes it: od = 0 for subtration and od = 1 for addition. The end ofexeution noti�ation signal e equals 1 to notify that an order was properlyexeuted by the register, otherwise it is 0.
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automaton

?Garbage signals
?Constants

�6 -State Ordero� eEnd of exeution
-�6 ?--� -�6 ?--� -�6 ?--�a0b0 a1b1 a2b2

Fig. 1.16. The automaton and two register units.1.4.2 CountersCounters are stored and handled inside a unique in�nite line of logial registerunits. The value of ounters are enoded in unary form with dual signals(n � 1n0!). The two ounters are denoted asA = a0a1 : : : and B = b0b1 : : :The orresponding signals are loked between onseutive register units asdepited in �gures 1.16 and 1.18. The register units update the values of thesignals aording to the orders reeived from the automaton.Signals a0 and b0 are nested not between two register units but betweenthe automaton and the �rst register unit. Sine signal a0 (b0) equals 0 onlyif A (B) equals 0, the automaton an test easily whether A (B) is 0. Thisallows the automaton to test diretly the nullity of any ounter.The ruial part is the administration of the ounters. The register unitsare all idential and ommuniate with the signals o, l, r and e. The funtionof a register unit is de�ned by the table of Fig. 1.17. It should be notedthat even if it is not onservative, it is reversible as it an be seen from thetable, so that no extra signal is involved. The last two lines of the table looklike they an be merged into a rule like \if op is 0 then nothing hanges"but the funtion would not be \one to one" anymore. Eah register unitimplements a reversible funtion. Thanks to Lemma3, register units an betotally autonomous. They do not bring any perturbation in the on�guration.A register unit works by modifying l and r aording to their values andthe order o. If there is an order to exeute (op = 1), the values are modi�edonly at the end of meaning part of the ounter (l = 1 and r = 0, seond andthird lines of Fig. 1.17). The modi�ation is indiated by od: 0 for subtrationand 1 for an addition. To subtrat one, the appropriate register unit sets lto 0; to add one, it sets r to 1.



1 Computing Inside the Billiard Ball Model 17---�� ---��---?� �6-�oinlinlouteout ooutroutrinein oin lin rin ein oout lout rout eout1,- 1 1 0 *,* * * *1,1 1 0 0 0,1 * 1 11,0 1 0 0 0,1 0 * 10,1 - - 0 *,* * * *0,0 - - - *,* * * *� : any � : unhangedFig. 1.17. Register unit and the orresponding logial funtion.Signal e is 0 exept when it brings the noti�ation that the order wasexeuted (and then it is 1). It is set to 1 by a register unit whih arriesout the order. There is never more than one ative order (ot = (1; :)) ornoti�ation signal (et = 1) in a whole on�guration.The automaton and the register units are onneted as depited inFig. 1.18. Eah unit reeives only a's, then only b's, suessively. Eah time,(lin; rin) and (lout; rout) are both either (ak; ak+1) or (bk;bk+1) dependingon the parity of the lok. All the same, depending on the parity of t, ot meetsonly a's or only b's, but it meets all of them as it an be seen on Fig. 1.18.---�� ot+1bi�1ai�1et�2 ---�� otaibiet�1 ---�� ot�1bi+1ai+1et ---�� ot�2ai+2bi+2et+1ot+1bi�1biet�1 otaiai+1et ot�1bi+1bi+2et+1M.A. ---��ot+ia0b0et�i�1 : : :: : :: : :: : : : : :: : :: : :: : :---�� ot+2ai�1bi�1et�1 ---�� ot+1biaiet ---�� otai+1bi+1et+1 ---�� ot�1bi+2ai+2et+2ot+2ai�1aiet ot+1bibi+1et+1 otai+1ai+2et+2M.A. ---��ot+i+1b0a0et�i : : :: : :: : :: : : : : :: : :: : :: : :---�� ot+3bi�1ai�1et ---�� ot+2aibiet+1 ---�� ot+1bi+1ai+1et+2 ---�� otai+2bi+2et+3ot+3bi�1biet+1 ot+2aiai+1et+2 ot+1bi+1bi+2et+3M.A. ---��ot+i+2a0b0et�i+1 : : :: : :: : :: : : : : :: : :: : :: : :Fig. 1.18. Automaton, units and wiring for three suessive iterations.Let us deompose the exeution of an order, �rst the test and branh andthen hanging the value of a ounter.If the ounter A (B) is null, the automaton knows it sine a0 (b0) is inits inputs. It an test and branh diretly.



18 Durand-LoseIf the automaton wants to subtrat one from a null ounter, the automatonjust goes to the next instrution. If it wants to add one to a null ounter, itsets a0 (or b0) to 1 and goes to the next instrution.Let us onsider that ounter A is not null (it works exatly the same forounter B). To make an operation op (op is 1 for addition, 0 for subtration)overA the automaton sends a signal o = (1; op) synhronized with a0. Thenit waits till it reeives a the signal e equal to 1 indiating that the operationwas performed. After that the automaton goes on to the next operation.The order o is reeived and treated by the register units as follows. Re-member that ounters are enoded in a unary form. The signal o travels andmeets suessively all the pairs (ai; ai+1), whih are equal to (1;1), until itreahes the end of the meaning part of the ounter ((ai; ai+1) equal (1;0)). Ifop is 1 (addition) then the output value (ai; ai+1) is (1;1), otherwise (sub-tration) it is (0;0). The signal o is set to (0;1) and moves endlessly to theright. The signal e is set to 1 and moves bak to the automaton and indiatesthat the operation was arried out. The next operation an start.The exeution time is proportional to the value of the ounter.Going bakward in time, the register unit, whih performs the operation,is de�ned by the meeting of the e equal to 1 and the �rst o equal to (0;1).The performed operation is de�ned by the value of (ai; ai+1).It should be noted that to build a n-ounters automaton, one just has toenlarge the distane between register units and add new trapped signals.Lemma 4. The BBM is able to simulate any two-ounters automaton.Sine there exist universal two-ounters automata we have the following:Theorem 2. The BBM is universal.The universality of the BBM was proved using reversible tehniques. Forthe register units, reversibility was designed abstratly before it was imple-mented. This is a general strategy in a reversible ontext and an be trans-lated to other reversible models.1.5 Intrinsi Universality of the BBMAs we already know the BBM an ompute any omputable funtion. Can itdo something more sophistiated? If yes, to what extent? The BBM an beprogrammed very easily on any omputer. The real omputer is less powerfulthan a Turing mahine, beause omputer memory is �nite. Does it ontraditto the universality of the BBM?No, it does not sine the on�guration of the BBM are in�nite and only�nite on�gurations an be simulated in a omputer. The BBM handles in�-nite on�gurations and these on�gurations may well not be periodi or just



1 Computing Inside the Billiard Ball Model 19reursive. Turing universality deals with �nite inputs and �nite modi�ation.The BBM, as well as CA and BCA, handles in�nite data. Partiularly, CAorrespond exatly to all the funtions over SZd that are ontinuous for theprodut topology [9,22℄, and an automaton an hange the state of every ellin a single transition step. There lies a omputing ability whih is beyond aTuring omputability.The question is whether the BBM an apture all the omputing abilityof CA over C. Another way to understand this is to remember that a Turingmahine is universal if it is able to simulate any Turing mahine. We say thata CA (resp. R-CA) is intrinsially universal if it is able to simulate any CA(resp. R-CA) over any on�guration (�nite or not).De�nition 4. A mahine is intrinsially universal inside a lass of mahineif it is able to simulate any mahine of this lass for any on�guration. Fora given mahine, the way the simulation is arried out must be the same forevery on�guration.In this setion, we shall prove that the BBM is intrinsially universal forR-CA with our usual understanding of simulation. Then if simulation is takenin a wider way, namely spae-time simulation [6℄, the BBM is intrinsiallyspae-time universal for CA.We introdue another sub-lass of CA whih is used throughout this se-tion: partitioned CA (PCA). This model was proposed by Morita et al. [15℄.The model, like BCA, was introdued to study and manage reversible \las-sial" CA.1.5.1 Partitioned Cellular AutomataPartitioned ellular automata (PCA) imply mapping over the same set ofon�gurations as BCA and CA. They also perform loal, parallel and uniformupdates of on�gurations, but the on�guration updating is done di�erently.Instead of partitioning the array, we partition the ells themselves. Aell state is partitioned into as many sub-states as there are neighbors. Atransition is done by exhanging these parts with the neighbors and thenupdating the state. An intermediate state is onstituted with the part whihis left and the parts whih are reeived. Updating is done by using a mapping� from states to states, just as BCA use the mapping from bloks into bloks.A PCA is totally de�ned by the tuple (d;N; (Si)i2N ; �). The state is par-titioned in suh a way that there is a piee orresponding to every neighbor.The �rst part of the transition is to send all these piees to the orrespondingells. Eah ell reeives one and only one sub-state of eah part. One a fullstate is reonstruted, the state is hanged aording to the loal funtion� : (Si)i2N ! (Si)i2N.This is illustrated for NvN = f (0; 0); (0; 1); (0;�1); (�1; 0); (1; 0) g, thevon Neumann neighborhood, (the sub-states are denoted , n, s, e and w)



20 Durand-Loseon Fig. 1.19. On the right part, it is indiated whih parts of the neighboringells are onsidered for � for updating.
nse w x;ywx-1;y ex+1;ynx;y-1

sx;y+1 � 0x;yn0x;ys0x;ye0x;y w0x;y
Fig. 1.19. Deomposition of a PCA ell and parts onsidered for �.Partitioned CA have one thing in ommon with the onservative logi,disussed in the Subset. 1.3.1: there is no dupliation { eah sub-state issent to one and only one ell and it is not kept anymore by the ell.The following lemma is the PCA ounterpart of Lemma1.Lemma 5. A PCA P is reversible if and only if its transition funtion � isa bijetion.Proof. The exhange of sub-states is reversible. Eah sub-state goes to oneand only one ell, there is no dupliation. Then, the global funtion of thePCA is reversible if and only if � is one-to-one and onto.Let us denote that the inverse of PCA is not exatly a PCA sine theinverse of � is applied before the sub-states are sent. Anyway, it is still a CA.1.5.2 Intrinsi Universality of the BBM among R-CAThere exist R-CA and R-PCA that are able to simulate any R-CA (andR-PCA and R-BCA) over any on�guration. We refer to the paper [5℄ for afull onstrution. The design, o�ered in [5℄, is based on simulation of R-CAby R-PCA and then the onstrution of an intrinsially universal R-PCA.This onstrution relies on binary enoding of states, enoding the transitionfuntion inside the on�guration and using a reversible signal approah totest and update.Theorem 3. [5℄ Any R-CA an be simulated by a R-PCA and there existintrinsially universal R-CA (and R-PCA).



1 Computing Inside the Billiard Ball Model 21Moreover, the simulating R-CA use the von Neumann neighborhood. Toprove that the BBM is intrinsially universal, we shall prove that it is able tosimulate a R-PCA with this neighborhood. Two things must be taken are of.They are exhanging the sub-states and omputing the transition funtion.Exhanging information is not a problem here beause all the neessary wiringis present.Sine the PCA is reversible, the transition funtion is reversible (Lemma5)as well. Thanks to Lemma2, it is possible to implement a orresponding gatewhih does not need feeding nor disposal. Figure 1.20 presents the unit andshows how units are interonneted. This pattern is repeated over all the on-�gurations so that in�nite on�gurations and unbounded orbits are handled.
's n

s new ew ' ' '' ' '' ' '
Fig. 1.20. Proessing unit and interonnetion for PCA.Theorem 4. The BBM is able to simulate any R-PCA.The following orollary follows from the Theorems 3 and 4 and the tran-sitivity of simulation.Corollary 1. The BBM is intrinsially universal for reversible R-CA(R-BCA and R-PCA).This only works inside the subset of reversible ellular automata. It isknown [1℄ that there exist CA that are intrinsially universal (for CA) butnot reversible. This is an open problem to investigate whether any irreversibleCA an be simulated by a reversible one (in terms of the De�nition 2). Theproblem is takled in the next setion. There the simulation relation onsidersorbits and not just isolated on�gurations. In this partiular ontext, we angive a positive answer.



22 Durand-Lose1.5.3 Spae-time SimulationFollowing the De�nition 2 of a simulation, a simulated on�guration is to-tally enoded in a simulating on�guration. This is a natural idea when onethinks about a dynamial system whih goes from one on�guration to thenext one. Another point of view is to onsider that single on�gurations arenot important and that only the orbit, as the whole, is relevant. The nextde�nition tries to apture this idea: the whole simulated spae-time diagramis enoded in the simulating spae-time diagram.This de�nition is quite new. As far as we know, it was �rst introduedin [6℄.De�nition 5. Let G be the global transition funtion of some CA A and abe A's on�guration. The spae-time diagram A : Zd� N ! S assoiated toA and a is de�ned by A tx = (Gt(a))x. It is denoted by (G; a) or (A; a).In other words, a spae-time diagram is the sequene of the iterated imagesof on�gurations of a CA. A spae-time diagram B is embedded into anotherspae-time diagram A when it is possible to \reonstrut" B from A and theway that B is embedded into A .The reovering of an embedded B-on�guration is done in the followingway. An A-on�guration is onstruted by taking eah ell at a given iteration.This A-on�guration is deoded to get an iterated on�guration for B. Henewe an use the following de�nition.De�nition 6. A spae-time diagram B = (B; b) is embedded into anotherspae-time diagram A = (A; a) when there exist three funtions � : Zd�N !N, � : CB ! CA and � : CA ! CB suh that:- a = �(b);- 8(x; t) 2 Zd�N, let t be the on�guration of A suh that tx = A �(x;t)x ;- 8t 2 N, GtB(b) = �(t).The on�guration b is enoded into a with respet to �. To reover aniterated image of b, the funtion � indiates whih iteration is to be onsideredfor eah ell and � deodes the generated on�guration. The generation of tand then GtB(b) is illustrated in Fig. 1.21.De�nition 7. A CA A spae-time simulates another CA B if and only ifany spae-time diagram of B an be embedded inside a spae-time diagramof A.The funtions �, � and � must be as minimal as possible beause oth-erwise the funtions ould implement all the omputation and A ould bealmost any CA.The spae-time simulation is still under investigation and more naturalnotion of embedding might appear.
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simulatingA = (A;�(b)) t = 0t = 1t = 2t = 3...�(b)
t

1 2 3 4 5 6� 1 2 3 4 5 6? ? ? ? ? ?Fig. 1.21. Spae-time diagram B is embedded into A .1.5.4 Intrinsi Spae-Time Universality of the BBM among CAWe use the following result:Theorem 5 ([6℄). There exist R-PCA whih are spae-time intrinsiallyuniversal for CA.In the onstrution of [6℄, the simulated on�gurations are \bent" inparabola inside the simulating spae-time diagram. The spae between para-bola is used to store the information generated for implementation of thereversibility.Among these R-PCA some have the von Neumann neighborhood. Againusing Theorem4 we draw the following orollary:Corollary 2. The BBM is spae-time intrinsially universal for reversibleCA (BCA and PCA) with the spae-time simulation.Altogether, this shows that the BBM has a strong omputing apability,it is omplete for reversible CA and, onsidering the spae-time simulation,omplete for CA.1.6 Unomputable PropertiesWe already mentioned earlier that Turing mahines, two-ounters automata,ellular automata, and most omputing languages apture the notion of om-putability. They ompute all and only omputable funtions. What an besolved/omputed in one arhiteture/language is exatly the same that anbe solved in other.All results of this setion ome diretly from the lassial halting problem.



24 Durand-LoseTheorem 6 (Halting problem). There is no Turing mahine (two-oun-ters automaton, reursive funtion, C++ program, et. that, given the odeof a Turing mahine et. as entry, stops and indiates whether or not theode would stop on an empty entry.For the following results, it is only skethed how to transform any Turingmahine T (or two-ounters automaton et.) to a BBM on�guration so thatit has the desired property if and only if T stops when it is started with anempty tape.For other results on omplexity and alulability of deision problems inthe evolution of CA see [27℄.1.6.1 Reahing a Stable or Periodi Con�gurationSine the BBM employs the \onto" mapping, any on�guration has in�nitehain of pre-images. It is possible to get any on�guration after any num-ber of iterations, provided the BBM is started in the proper predeessor-on�guration. Moreover, sine the inverse of the BBM is known and is verysimple | BBM with the inverted order of the partitions | one an omputea on�guration looking random but orresponding to the nth pre-image of avery regular image, e.g., a bottle or a fae.Sine the BBM is reversible, it is not possible to reah a stable or periodion�guration from outside the orresponding orbit.There are periodi orbits. Some an be built very easily as shown inSubset. 1.3.1. Aperiodi on�gurations an be built also without problems:just let a single ball move on forever. If the underlying lattie is a �nite (e.g.a torus), then all on�gurations belong to yles for the same reason.1.6.2 Reahing a (Sub-)Con�gurationOne an build a simulation of a two-ounter automaton suh that its stopsignal orresponds to a dual signal. The value of the state is given by thepassing of a signal to a given path between ativation of the automaton.Sine it is not possible to predit (deide) if a two-ounter automaton willstop, it is not possible to predit the passing of a signal in a given loation.Lemma 6. It is undeidable if a ball will ever ross some given part of theon�guration.More generally, we have the following:Corollary 3. It is undeidable if a given part of the on�guration will everbe in a given sub-on�guration.
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