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of exatly one token an be used to solve the mutual exlusion problem. One aleader is eleted, many other tasks an be solved using a entralized ontrol (forinstane, resoure alloation or synhronization).Self-stabilization is a framework for dealing with hannel or memory transientfailures. After a failure, the system is allowed to temporarily exhibit an inorretbehavior, but after a period of time (as short as possible) it must behave orretly,without external intervention. A self-stabilizing leader eletion or token irula-tion protool starting, for example, in a symmetri on�guration requires a way tobreak the symmetry. The id-based systems (every proessor has an unique identi-�er) prevent the existene of symmetri on�gurations. In anonymous systems (allproessors are idential), the symmetry an only be broken by randomization [?℄.Related works. Self-stabilization was introdued by Dijkstra in [?℄; three self-stabilizing deterministi token irulation algorithms for semi-uniform systems arepresented. In a semi-uniform algorithm, some spei� proessors do not performthe same algorithm as the other proessors. In [?℄, Israeli and Jalfon provide a tokenmanagement poliy and a graph traversal sheme (token routing sheme) yieldingself-stabilizing mutual exlusion for undireted (bidiretional) networks. In orderto break symmetry they use the random walks tehnique desribed by Aleliunaset al. in [?℄. Self-stabilizing token irulation algorithms oping with anonymoussystems are presented in [?, ?℄. These solutions are designed for direted (unidi-retional) rings. In [?℄, Herman presents an algorithm for odd size rings. In [?℄,Beauquier et al. present an algorithm whih ensures token irulation on diretedrings of any size. To guarantee the presene of a token in the ring the smallest nondivisor of n (n being the network size), snd(n) | the \magi" number as it wasde�ned in [?℄ | is used. Alstein et al. present in [?℄ two mutual exlusion algo-rithms for direted arbitrary networks with identi�ers requiring the preproessingof a spanning tree. Kakugawa and Yamashita present in [?℄ a self-stabilizing tokenirulation protool under unfair sheduler on rings. In [?℄, Durand-Lose reportsan original token management solution on undireted networks whih ensures theexistene of a single token in the network (the \magi number" is also used). Ran-dom walks are used for breaking symmetry. The spae omplexity of this protoolis O(D � log(snd(n))) where D is the maximal proessor's degree. In [?℄, Rosazpresents a randomized mutual exlusion algorithm in the message passing model.The solution has a polynomial stabilization time. Awerbuh and Ostrovsky presentin [?℄, a self-stabilizing leader eletion protool on undireted id-based networks.It requires log�(N) states per proessor (N is the network size). A basi protoolis given, requiring N states per proessor, and the result is obtained by using adata struture that stores distributively the variables. In an appendix of [?℄, Itkisand Levin use another data struture based on the Thue-Morse sequene, requiringO(1) bits per edge to store, in a distributed manner, variables having possibly Nvalues. These two last algorithms require undireted networks. Assuming that thedeadlok freedom property is guaranteed externally, Mayer et al. propose in [?℄ arandomized self-stabilizing leader eletion protool in the message passing model.In [?℄, Dolev et al. present two leader eletion protools in omplete networks. Theprotools are self-stabilizing under read/write atomiity. Using the sheduler-lukgame tehnique, polynomial bounds for the stabilization time are provided. In [?℄ adynami leader eletion algorithm under read/write atomiity is reported by Dolevet al.. Randomization is used for breaking symmetry but an unbounded memoryspae is required. Beauquier et al. propose in [?℄ a spae optimal leader eletion on2



the ring topology. The propose bound for the spae omplexity is O(log(snd(n))).Our Contributions. We propose a self-stabilizing token irulation algorithmand a leader eletion algorithm under an arbitrary sheduler for any anonymousdireted network : there is no requirement on the sheduler and on the networktopology (exept strong onnetivity). The optimality of the result is proven in[?℄ for the ring topology. Protools are based on a token management poliy thatguarantees the presene of at least one token. We also provide a token routingpoliy whih ensures the token irulation. The token routing poliy provides anupper bound for the number of steps exeuted by a proessor between two suessivesteps of any other proessor. This poliy is used in the automati onstrution ofAlgorithm 6.2 | self-stabilizing leader eletion under an arbitrary sheduler. Aprobabilisti version of token irulation (Algorithm 4.1) yields a mutual exlusionprotool. The spae omplexity of our algorithms is O((D++D�)�(log(snd(n))+2))bits per proessor where D+ and D� are the maximal out and in network degrees.It should be notied that snd(n) is onstant on the average and equals 2 on odd-sizenetworks. 2. MODELTransition System. A distributed system is a olletion of interommuniat-ing state mahines. We model a distributed system as a transition system TS =(�; C; T; I) where � is an alphabet, C is the set of system on�gurations, T � C�Cis the set of transitions and I � C is the set of initial on�gurations. Eah transi-tion of T is labeled with a symbol from �. A probabilisti distributed system is adistributed system where a probabilisti distribution is de�ned on transitions.A omputation e of TS starting in a on�guration 1 2 I is a maximal sequeneof transitions e = ((1; 2); (2; 3) : : :) suh that (i; i+1) 2 T , 8i � 1. The lengthof a �nite pre�x h of a omputation is denoted by length(h), the last on�guration inh is represented by last(h), and the �rst on�guration in h is first(h) (first an bealso used for an in�nite omputation). A omputation fator is a �nite sequene ofomputation steps. If h and x are omputation fators suh that first(x) = last(h)then hx denotes the fator orresponding to the sequene h followed by x.Let  be a system on�guration. A TS-tree rooted in , T ree(), is the tree-representation of all omputations starting from . Let nd1 be a node in T ree(),the �-branh rooted in nd1 is the set of all T ree() omputations starting in nd1having the �rst transitions labeled with � (a letter of �). The degree of nd1 isthe number of branhes rooted in nd1. A sub-TS-tree of degree 1 rooted in  is arestrition of T ree() in whih any node has the degree 0 (i.e. there is a deadlok)or 1. On a sub-tree of degree 1 of a probabilisti distributed system, the set of�rst transitions of a branh is the base set for a disrete probabilisti spae. Anytransition in this set has a positive probability and the sum of probabilities is 1 forevery node.Sheduler and strategy. A sheduler is usually presented in the literature (see[?℄, [?℄, [?℄) as an adversary for a distributed system whih \hooses" at eahon�guration the next transition. Classially, a sheduler is de�ned as a funtionover the distributed system exeutions whih, for a given on�guration, returns thenext transition. In the proess of hoosing a transition, a sheduler may have aess3
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p1,p4 p2,p3 p1,p3p2,p4 FIG. 1 The beginning of T ree() of the Algorithm 4.1to partial or total information on the system history. Note that some importantsheduler types annot be modeled as funtions over the �nite history of systemexeutions, like for instane the fair sheduler.In the model that we use, a sheduler is a prediate over the system omputa-tions. This de�nition opes up with any type of sheduler even with those havinga dynamial behavior, aording to the system evolution. In the sequel, we usethe k-bounded sheduler (during a system omputation, while a proessor is en-abled another proessor an perform at most k ations) and the distributed unfairsheduler (during a omputation, some enabled proessors may starve | they neverperform an ation).The interation between a sheduler and the distributed system generates whatwe all here strategies, de�ned as follows :Definition 1 (Strategy). Let TS be a transition system, let A be a shedulerand let  be a TS on�guration. A strategy rooted in  is a sub-TS-tree of degree1 of T ree() suh that any omputation of the sub-tree veri�es the sheduler A.In Figure 1, we present the beginning of the T ree() of the Algorithm 4.1 onthe 4-ring (p1, p2, p3 and p4). The Algorithm 4.1 provides a self-stabilizing tokenirulation.  is the on�guration where both proessor p1 and p3 have a token.Figure 2 presents the beginning of a spei� strategy of T ree() : at eah step, allproessors having a token perform their ation.Note that a T S tree an be deomposed in a in�nity of strategies.Let st be a strategy. An st-one Ch orresponding to a pre�x h is the set ofall possible omputations in st with the same pre�x h. The measure of an st-oneCh is the measure of the pre�x h (i.e., the produt of the probabilities of all thetransitions ourring in h). An st-one Ch0 is alled a sub-one of Ch if and only ifh0 = hx, where x is a omputation fator.In [?℄ it is proven, following the lassial theory of probabilisti automata (see[?℄), that for any strategy, it an be built a probabilisti spae having the strategyas a base set.Distributed system topology. Throughout this paper we onsider distributedsystems of n interommuniating omputing devies mapped as a strongly onnet-ed direted graph DG = (V;E) where V is the set of graph nodes and E the set ofdireted edges. Eah node represents a omputing devie, also alled proessor. If(p; q) 2 E then p is an in-neighbor of q and q is an out-neighbor of p (p may send4
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p1p3 p1p2p4p3p4 p1p2 p2p4 p1p2 p3p4p1p4 p3 p2p4 p2p3 p1p3p1p4p2p3p2p4FIG. 2 The beginning of a strategy from  of the Algorithm 4.1some data to q on (p; q), but q annot). In the sequel, the set of node p in-neighborsis denoted by In(p) and their number is denoted by D�(p). Similarly the set ofout-neighbors is denoted by Out(p) and the number of those neighbors by D+(p).Any node p in the network shares registers with its in and out neighbors. The nodep reads the shared registers with its in-neighbors (denoted Rpin[q℄; q 2 In(p)) and isallowed to freely perform write and read operations on the shared registers with theout-neighbors (denoted Rpout[z℄; z 2 Out(p)). For a node p all the edges oriented toits out-neighbors are alled outgoing edges and all the edges oriented towards p arealled inoming edges.Distributed algorithm. Any proessor in a distributed system exeutes an al-gorithm whih has two parts : a delarative part and a �nite set of guarded ationspart (i.e. label :: hguardi �! hstatementi). The values of loal variables and out-registers of a proessor de�ne the proessor urrent state. The guard of a proessorp is a boolean expression involving the state of p and the values of p's in-neighborsregisters. A guarded ation (also alled rule) is enabled if its guard is true. Weassume that for any proessor there is at most one enabled ation at a time. Aproessor having an enabled ation is also alled enabled proessor.Our model deals with all kinds of atomi step. For instane, our model dealwith the read/write atomiity ([?℄) where a proessor atomi step onsists of aninternal operation followed by either a read or a write operation (into a proessor'sout-register) but not both. The presented algorithms are designed for the model ofomposite atomiity where a proessor atomi step ontains both read and writeoperations : in one atomi step, a proessor evaluates its guards and exeutes thestatement of one enabled rule.When an algorithm ontains guarded ations with random outputs the algorithmis probabilisti (randomized) otherwise it is deterministi. The proessors exeutingprobabilisti algorithms are alled randomized proessors.5



Distributed system versus transition system. Let S be a distributed system. Wemodel the distributed system S by the transition system TS. A on�guration of TSis a vetor ontaining the states of all proessors from S. Let  be a on�gurationof TS, a transition from  is determined by the exeution of one atomi step from by one or several proessors. A loal on�guration is the part of a on�gurationthat an be \seen" by a proessor (i.e. its state and the state of its neighbors). Aon�guration is symmetrial if all proessors have the same loal on�guration.Probabilisti Self-Stabilizing Systems A probabilisti self-stabilizing system is aprobabilisti distributed system satisfying two properties : probabilisti onvergene(the system onverges to on�gurations satisfying a legitimay prediate) and or-retness (all the omputations starting from on�gurations satisfying a legitimayprediate satis�es the system spei�ation).A prediate P is losed for the omputations of a distributed system if and onlyif when P holds in a on�guration , P also holds in any on�guration reahablefrom .Notation 1. Let S be a system, A be a sheduler and st be a strategy satisfyingthe prediate A. Let CP be the set of all system on�gurations satisfying a losedprediate P (formally 8 2 CP;  ` P ). The set of omputations of st that reahon�gurations in CP is denoted by EPst and its probability by Prst(EPst).Definition 2 (Probabilisti Stabilization). A system S is self-stabilizing undera sheduler A for a spei�ation SP if and only if there exists a losed legitimayprediate L on on�gurations suh that in any strategy st of S under A, the twofollowing onditions hold :(i) The probability of the set of omputations of st, starting from , reahing in a�nite number of steps a on�guration 0, suh that 0 satis�es L is 1 (probabilistionvergene). Formally, 8st; P rst(ELst) = 1(ii) All omputations, starting from a on�guration 0 suh that 0 satis�es L, satisfySP (strong orretness). Formally, 8st;8e 2 st : e = e0e00 with last(e0) ` L thene00 ` SP .Note that this de�nition is stronger than the one used in [?, ?℄ where the systemorretness is probabilisti : for all strategies the probability of the set of ompu-tations reahing legitimate on�gurations and satisfying the system spei�ation is1. The probabilisti orretness will be alled in the sequel weak orretness andsystems satisfying a weak orretness will be alled weak self-stabilizing systems.Convergene of Probabilisti Stabilizing Systems Based on previous works onthe probabilisti automata (see [?℄, [?℄, [?℄) [?℄ presents a detailed framework forproving self-stabilization of probabilisti distributed systems. A key notion is lo-al onvergene denoted LC. The LC property is a progress statement as thosepresented in [?℄ (for the deterministi systems) and [?℄ (for the probabilisti sys-tems). Informally, the LC property for a probabilisti self-stabilizing system andtwo prediates P1 and P2 means that starting in a on�guration satisfying P1, thesystem will reah a on�guration whih satis�es a partiular prediate P2, in abounded number of omputation steps with positive probability. Formally the loalonvergene property is de�ned as follows :6



Definition 3 (Loal Convergene). Let st be a strategy, P1 and P2 be twoprediates on on�gurations, where P1 is a losed prediate. Let Æ be a positiveprobability and N a positive integer. Let Ch be a st-one with last(h) ` P1 andlet M be the set of sub-ones Ch0 of the one Ch suh that for every sub-oneCh0 : last(h0) ` P2 and length(h0) � length(h) � N . The one Ch satis�es LC(P1; P2; Æ;N) if and only if Prst(SCh02M Ch0) � Æ.Now, if in strategy st, there exist Æst > 0 and Nst � 1 suh that any st-one,Ch with last(h) ` P1, satis�es LC(P1; P2; Æst; Nst), then the main theorem of theframework presented in [?℄ states that the probability of the set of omputations ofst reahing on�gurations satisfying both P1 and P2 is 1. Formally :Theorem 1. [?℄ Let st be a strategy. Let P1 and P2 be losed prediates onon�gurations suh that Prst(EP1) = 1. If 9Æst > 0 and 9Nst � 1 suh thatany st-one Ch with last(h) ` P1, satis�es the LC (P1; P2; Æst; Nst) property, thenPrst(EP) = 1, where P = P1 ^ P2.Remark 1. If any strategy, st, of a distributed system satis�esLC(PR1; PR2; Æst; Nst)with PR1 the true prediate (veri�ed by any on�guration) and PR2 being the le-gitimay prediate then the system satis�es the probabilisti onvergene as de�nedin De�nition 2.3. TOKEN MANAGEMENT AND TOKEN ROUTING POLICYThe notions of token management and token routing poliies were introduedfor self-stabilizing systems in [?℄. In order to implement a token management, oneneeds to design a pattern that (i) allows a proessor to deide if it has a tokenthrough its loal information (its state, and the out-registers of its out-neighbors).But also, the pattern should ensure that there is always at least one token in thenetwork. In [?℄ it is suggested to use \the magi" number (the smallest non divisorof the network size) for solving this problem. [?℄ deals with undireted generalgraphs and direted rings. In this setion, we present a token management andtoken routing poliies for general direted graphs.3.1. Token management poliyA \token" is represented by a prediate. A proessor with the \token" predi-ate true is said to be \privileged". The self-stabilizing systems ahieving mutualexlusion or leader eletion needs to guarantee that in the system there is alwaysa privileged proessor. Desriptions of suh prediates an be found in [?℄ for di-reted rings and [?℄ for undireted networks. In the following, we de�ne the tokenprediate for direted networks.3.1.1. Token de�nitionWe de�ne tokens for direted networks and then, prove that there is at leastone token in any system on�guration.Notation 2. Let snd(n) be the smallest non divisor of n (the number of pro-essors). Let �Tp be the di�erene (modulo snd(n)) between the sum of in-register7



values and the sum of out-register values of a proessor p. Formally :�Tp = 0� Xq2In(p)Rpin[q℄� Xq2Out(p)Rpout[q℄1A mod snd(n) : (1)Definition 4. A proessor p holds a token if and only if �Tp 6= 1 . A proessorholding a token is a privileged proessor.Using the same reasoning as in [?℄ or [?℄, we �nd out that this onvention issuÆient to guarantee the presene of at least one token in any on�guration.Lemma 1. Let DS be a distributed system. In any DS on�guration there is atleast one privileged proessor.Proof. Suppose that there is no privileged proessor, hene �Tp = 1 for anyproessor p in the network. By summing the �Tp for all p, we get :Xp2V 0� Xq2In(p)Rpin[q℄� Xq2Out(p)Rpout[q℄1A = 0 = n mod snd(n) : (2)Equation (2) means that snd(n) divides n whih is impossible from the de�nitionof snd(n).3.1.2. Swith tehniquePassing a token from a proessor p to one of its out-neighbors is made aordingto the swith tehnique ([?℄). Suppose without loss of generality, that the outgoingedges of a proessor are labeled 0; 1; : : :D+(p) � 1. A proessor passes the tokensthat it reeives aording to this labeling : if the last token has been passed on theedge i then the next one will be passed on the edge (i+ 1) mod D+(p).Token passing. A proessor p passes a token to an adjaent proessor q 2Out(p) by modifying the value of Rout[q℄ in the following way : Rpout[q℄ = Rpout[q℄+�Tp � 1. Hene the new value of �Tq is inreased by �Tp � 1 and the new valueof �Tp is set to 1 : the token is passed from p to q.Tokens meeting. When two tokens are passed to the same proessor q, then�Tq is inreased twie. Either the tokens annihilate eah other, or they merge intoa single token. The same phenomenon happens when a proessor q having a tokenreeives another token.Remark 2. The number of tokens in a network does not inrease.3.2. Fair token routing poliyThe fair token routing poliy is provided by Algorithm 3.1 whih performs tokenirulation in deterministi networks. Due to the partiular enoding of a tokenone or more tokens are always present. A proessor holding a token sends it deter-ministially to one of its out-neighbors. The interesting property of the algorithmis that, even if the sheduler is unfair, in any omputation eah proessor reeivesin�nitely many often a token. Algorithm 3.1 will be used later, in a hierarhialomposition for ensure fairness from an unfair sheduler.8



Algorithm 3.1 Fair token routing algorithm for proessor pShared registers with the in-neighbors :RFTin [1::D�(p)℄ where RFTin [i℄2 [0; snd(n)� 1℄Shared registers with out neighbors :RFTout [1::D+(p)℄ where RFTout [j℄ 2 [0; snd(n)� 1℄Variables on p :diretionFT 2 [0; D+(p)� 1℄ (the outgoing diretion of the last sent fair token)Funtions :�FT = �Pq2In(p)RFTin [q℄�Pq2Out(p) RFTout [q℄� mod snd(n)Maros :New Dir Fair Token :: diretionFT := (diretionFT + 1) mod D+Pass Fair Token :: RFTout [diretionFT ℄ := (RFTout [diretionFT ℄ +�FT � 1) mod snd(n)Prediates :Fair Token � [ �FT 6= 1 ℄Ation :FA:: Fair Token �! New Dir Fair Token; Pass Fair TokenAlgorithm 3.1 desription. Desription is very simple. In any system on�g-uration there is a proessor holding a token aording to the De�nition 4. It anpass this token aording to the swith tehnique. The swith tehnique in enodedin the maro New Dir Fair Token(p) where the new destination for the token isomputed.Algorithm 3.1 analysis. The swith tehnique guarantees that in any ompu-tation, any proessor holds a token in�nitely many times (fairness of the tokenirulation). Moreover, the number of steps taken by the other proessors betweentwo suessive ations of a given proessor is bounded.Lemma 2. Let e be an arbitrary omputation of Algorithm 3.1 starting in aon�guration  with m tokens (1 � m � n). Let p be a proessor holding a tokenin . Any in-neighbor pj of p, pj 2 In(p), exeutes at most m � D+(pj) ationsbetween two onseutive ations of p in e.Proof. Let us onsider a fator f of omputation e suh that f starts by a pation, �nishes by a p ation too, and along the fator f the proessor p does notexeute any ation. Let us determine the maximal number of ations whih anbe done by pj in f . Every exeution of a pj ation produes a token passage toone of the pj out-neighbors hosen aording to the swith tehnique (diretionFTis inremented). Therefore after at most D+(pj) ations of pj a token will besent to the proessor p. Proessor p keeps the token until the end of f sine p isnot ativated. Assume that the proessor pj exeutes again D+(pj) ations heneanother token is sent to the proessor p. The proessor p may or not exeute it9



ation | in the �rst ase the fator f ends and the number of ations exeuted bypj in f is 2 �D+(pj). In the seond ase p keeps another token; thus, there are atmost m� 2 tokens that an freely move.After at most m �D+(pj) ations of pj in f the proessor p holds the only tokenin the network. Thus p is the only proessor whih an exeute an ation; the fatorf has to end. The maximal number of ations exeuted by pj in f is m �D+(pj).Let us onsider two proessors p and q. The distane between p and q (the lengthof a shortest direted path between p and q) is denoted dist(p; q). Shortest path(p; q)denotes the set of proessors on a shortest direted path from p to q.Lemma 3. Let e be an arbitrary omputation of Algorithm 3.1 starting in aon�guration with m tokens. For any two distint proessors, p and q, betweentwo ations of p the proessor q omputes at most Qdi=1m � D+(qi) where qi 2Shortest path(q; p) and dist(q; p) = d.Proof. We all the i-th proessor on the shortest past between q and p is qi,with q = q1. From Lemma 2, we know that between two ations of p the proessorqd exeutes at most m � D+(qd) ations; and between two ations of qd, the pro-essor qd�1 exeutes at most m � D+(qd�1). Therefore between two ations of pthe proessor at distane 2 of p exeutes its ations m2 �D+(qd) �D+(qd�1) times.Repeating the reasoning, between two ations of p the proessor q exeutes at mostQdi=1m �D+(qi) ations where qi 2 Shortest path(q; p).Let us denote by D+ the maximal out degree of the network proessors and byDiam the network diameter (Diam = maxp;qdist(p; q)).Corollary 1. In any omputation of Algorithm 3.1 starting in a on�gurationwith 1 � m � n tokens, where n is the network size, between two ations of aproessor any other proessor exeutes at most (m �D+)Diam ations under anysheduler.Lemma 4. Let e be a omputation of Algorithm 3.1 starting in a on�gurationwith 1 � m � n tokens, where n is the network size. In e, any proessor exeutesit ation within(n� 1) (m �D+)Diam + 1 omputation steps.Proof. Let p be an arbitrary proessor. From the Lemma 3 and the Corollary 1,between two ations of p another proessor exeutes at most (m �D+)Diam ations.The system size is n hene the proessor p exeutes it ation after at most (n �1) (m �D+)Diam omputation steps.Corollary 2. A proessor omputes the ations of Algorithm 3.1 in�nitelyoften.The following Corollary provides the bound for Algorithm 3.1 k-fairness de�nedas follows :Definition 5. A distributed algorithm is k-fair if and only if on every om-putation, the two following properties hold : (i) every proessor exeutes an ationin�nitely often and (ii) between any two ations of a proessor, at most k ationsare exeuted by any other proessor.Corollary 3. Algorithm 3.1 is an (n �D+)Diam-fair algorithm.10



Proof. The proof results from the diret appliation of the Corollaries 1 and2. The lemmas 4 provide also the bound for the length of a round in an arbitraryomputation e of Algorithm 3.1, de�ned as follows :Definition 6. Let e be a omputation of Algorithm 3.1. A round in e is afator of e in whih any proessor holds a token at least one.Corollary 4. In any omputation of Algorithm 3.1 the maximal bound for around length is B = (n� 1) � (n �D+)Diam + 14. MUTUAL EXCLUSION UNDER A K-BOUNDED SCHEDULERIn the sequel, we present a self-stabilizing mutual exlusion algorithm under ak-bounded sheduler (Algorithm 4.1). A sheduler is k-bounded i� while a givenproessor is enabled, another proessor an perform at most k times its ations.This algorithm uses the routing poliy previously presented but the token movesdepend on a oin tossing.4.1. Algorithm 4.1 desriptionThe main di�erene with the random walks presented by Israeli and Jalfon in[?℄ is the fat that randomization is used here to deide whether or not the tokenwill be sent (it is not used to deide to whih of the neighbors it will be sent). Thedestination out-neighbor is still determined by the swith tehnique. The randomwalks method opes only with the undireted networks. Our method also opeswith direted, strongly onneted networks.4.2. Algorithm 4.1 analysisWe prove Algorithm 4.1 weak self-stabilizing under a k-bounded sheduler forthe mutual exlusion spei�ation de�ned as follows :Definition 7. [Token irulation spei�ation - STC℄ In the network \thereis only one token" and any proessor in the network holds the token in�nitely often.Let us denote by LTC the following prediate over on�gurations : there isexatly one token. All the on�gurations of Algorithm 4.1 whih satisfy PrediateLTC are alled legitimate on�gurations.Aording to Remark 2, we have :Lemma 5. The prediate LTC is losed for Algorithm 4.1.Convergene proof. In the following we prove Algorithm 4.1 onvergene forLTC under a k-bounded sheduler. In order to show the system onvergene weprove that any system strategy st under a k-bounded sheduler veri�es the loalonvergene property of De�nition 3 for LTC .Definition 8. Let e be a omputation of Algorithm 4.1. A round in e is afator in whih a token visits all proessors.11



Algorithm 4.1 Routing protool for the probabilisti token for proessor pShared registers with the in-neighbors :RPTin [1::D�(p)℄ where RPTin [i℄ 2 [0; snd(n)� 1℄Shared registers with the out neighbors :RPTout [1::D+(p)℄ where RPTout [j℄ 2 [0; snd(n)� 1℄Variables :diretionPT 2 [0; D+(p)� 1℄ (the previous diretion of the probabilisti token)Funtions :�PT = �Pq2In(p)RPTin [q℄�Pq2Out(p) RPTout [q℄� mod snd(n)Maros :New Dir Probabilisti Token :: diretionPT := (diretionPT + 1) mod D+(p)Pass Probabilisti Token :: RPTout [diretionPT ℄ := (RPTout [diretionPT ℄ +�PT � 1) mod snd(n)Prediates :Probabilisti Token � [ �PT 6= 1 ℄Ations :A:: Probabilisti Token �!if (random(0, 1) = 0) then f New Dir Probabilisti Token;Pass Probabilisti Token gLemma 6. Let st be a strategy of Algorithm 4.1 under a k-bounded shed-uler. There exist � > 0 and N � 1 suh that any st-one veri�es the propertyLC(true;LTC ; �; N).Proof. Let Ch1 be an arbitrary st-one with last(h1) = 1. Assume that thenumber of tokens in 1 is m. Denote by (pi)i=1;:::;m the proessors holding thesetokens. Consider the following senario : the token held by proessor p1 (alledtoken t1) merges with the token held by the proessor p2 (alled token t2). Weprove that : ( i) the senario holds with positive probability and ( ii) the senariois repeated until there is only one token in the network.� We all h2 the omputation from last(h1) having the following properties :(1) when the sheduler hooses the proessor holding the token t1 the result ofoin tossing is 1 (hene the token irulates); (2) when the sheduler hoosesanother token the result of oin tossing is 0 (the token is frozen) (3) themoving token reahes p2 in the last on�guration of h2. In last(h1h2) thenumber of tokens is lesser than m� 1.The t1 token irulates \pseudo-deterministially" : when a proess holdingthe t1 token, performs an ation it releases the token. Therefore within Bomputation steps of t1, the t1 token has reahed all proessors.In the worst ase, the sheduler hooses t1 when it annot do another hoie :the other privileged proessors have performed k ations (the sheduler is k-12



bounded). Therefore, within k � (m � 1) + 1) � B omputation steps, the t1token reahed all proessors (i.e. has merged with another token). We have :Prst(Ch1h2) � Prst(Ch1)�( 12 )(k�(m�1)+1)�B and length(h2) � (k�(m�1)+1)�B.� By suessive appliations of the previous senario we built some sub-oneChm . In last(hm), the number of tokens is 1, Prst(hm) � Prst(h1)�( 12 )[(m�1)+ k�m�(m�1)2 ℄�Band length(hm) � [(m� 1) + k�m�(m�1)2 ℄ �BTherefore the property LC(true;LTC ; �; N) where � � ( 12 ) (k�n2+2�n)�B2 and N �(k�n2+2n)�B2 is veri�ed.Remark 3. The previous result holds only under a k-bounded sheduler. Underan unfair sheduler, the Algorithm 5.1 does not onverge to LTC . For example,on a diretional ring, an unfair sheduler may have the following strategy : seletsthe same privileged proessor till it passes its token; then selets another privilegedproessor till it passes its token, and so on. With this strategy, all the tokens moveat the same speed in the ring; they will never merge.Lemma 7. Algorithm 4.1 has a �nite expeted stabilization time.Proof. In order to establish the expeted stabilisation time we use the tehniquepresented in [?℄ and the � value showed in Lemma 6, � � ( 12 ) (k�n2+2�n)�B2 (B providedby Corollary 4). The expeted stabilisation times is bounded by 1� � 2 (k�n2+2�n)�B2 .Remark 4. Note that majorations used in proving Lemma 6 are brutal, henethe provided exponential bound for the stabilisation time.Lemma 8. Let st be a strategy of Algorithm 4.1 under a k-bounded sheduler.There exist RT > 0 and � > 0 suh that any st-one Ch with last(h) is a legitimateon�guration has a sub-one Chh0 with lenght(h0) � RT suh that h0 is a round andPrst(Chh0) � Prst(Ch) � �.Proof. Let h0 be the omputation from last(h) where the only token moves ateah omputation step until the token has visited all proessors. The probabilityof Chh0 is �1 � Prst(Ch)( 12 )B . As this senario is \pseudo-deterministi" the tokenreahes all proessors in at most B omputations steps, The length(h0) � B.From Lemmas 8 and Theorem 1, we get :Corollary 5. In any strategy of Algorithm 4.1 under a k-bounded shedulerthe probability of the set of omputations satisfying : (1) a legitimate on�gurationis reahed and (2) after reahing a legitimate on�guration there are an in�nitenumber of rounds, is 1.Corollary 6 (Corretness proof). In any strategy of Algorithm 4.1 the prob-ability of the set of omputations reahing a legitimate on�guration and satisfyingSTC is 1.Theorem 2. Algorithm 4.1 is weak self-stabilizing for the spei�ation STC .Proof. The weak orretness is provided by the Corollary 6, the onvergene isprovided by the Lemma 6 and the Theorem 1.Remark 5. Algorithm 4.1 satis�es only the weak orretness. It ould be easilytransformed in a strong self-stabilizing algorithm using the tehnique reported in[?℄. Clearly, the expeted steps of stabilisation is exponential.13



5. LEADER ELECTION UNDER A K-BOUNDED SCHEDULERInformally, a self-stabilizing distributed system whih solves the leader eletionproblem must satisfy the property that one the system is stabilized there is onlyone, unhanged leader. Formally, this spei�ation is de�ned as follows :Definition 9 (Leader eletion spei�ation - SLE). Let Leader Mark be a pred-iate over the loal on�gurations. Any omputation, e, of a self-stabilizing systemveri�es the leader eletion spei�ation if and only if the two following propertiesholds : (1) e reahes a on�guration, where the Leader Mark prediate is truefor one and only one proessor, p (also alled leader), and (2) in any on�gurationourring afterward in e, p is always the unique leader.In the following, we present an algorithm for leader eletion whih stabilizesunder a k-bounded sheduler.5.1. Algorithm 5.1 desriptionAlgorithm 5.1 has two distint layers of tokens. The �rst (respetively seond)layer ensures the irulation of Leader Mark (respetively Colored Token) tokensfollowing the routing poliy of Setion 4. One the algorithm is stabilized, theLeader Mark is frozen and the Colored Token keeps irulating.Colored Token and Leader Mark have a virtual \olor" attribute. Eah tokenhas a di�erent role and then olors are managed independently.A proessor holding a Leader Mark token is onsidered as a leader. The olorof the Leader Mark token is the olor of the proessor holding it.A Colored Token is used in order to detet the presene of some other leaders.The value of the olor attribute for Colored Token is the olor of the proessorhaving passed the token (an in-neighbor of the proessor holding the olored token).A proessor, p, keeps a opy of the previous values of its in-registers (in the variableOldCTin ), in order to �nd the sender of the olored token (only the sender hangedthe value of the orresponding out-register). When several olored tokens meet onthe same proessor, the olor of the resulting olored token is the olor of the �rstproessor (aording to the loal swithing order) that has sent a olor token.During its irulation a Colored Token olors all the non leader proessors withits olor (A3). A leader whih has sent a Colored Token waits until it returns. Atthat time, if the olor of Colored Token is the same as its olor, then it stays aleader but goes on heking by randomly seleting a new olor and starting a newirulation of the olored token (Ation A2). In this ase, it has no informationtelling it that it is not the single leader.Sine olor is randomly seleted, if there are several leaders in the network, aleader will eventually get a olored token that does not have its olor. In this ase,the leader passes its leadership and Colored Token with a new randomly hosenolor (Ation A1). In this ase it supposes that there are several leaders.One the algorithm is stabilized, there remains only one frozen leader and onlyone olored token whih may irulate.5.2. Algorithm 5.1 analysisLet us de�ne the following prediates over on�gurations :� LCT � there is exatly one olored token;14



Delaration 1 Registers, variables, prediates and maros for p exeuting Algo-rithm 5.1Shared registers with the in-neighbors :RLMin [1::D�(p)℄ where RLMin [i℄ 2 [0; snd(n)� 1℄ (for leader mark)RCTin [1::D�(p)℄ where RCTin [i℄ 2 [0; snd(n)� 1℄ (for olored token)Rolorin [1::D�(p)℄ where Rolorin [i℄ 2 f0; 1g (for the olor)Shared registers with out-neighbors :RLMout [1::D+(p)℄ where RLMout [j℄ 2 [0; snd(n)� 1℄ (for leader mark)RCTout [1::D+(p)℄ where RCTout [j℄ 2 [0; snd(n)� 1℄ (for olor token)Rolorout [1::D+(p)℄ where Rolorout [j℄ 2 f0; 1g (for the olor)Variables :diretionPT 2 [0; D+(p)� 1℄ (the previous diretion of a probabilisti token)OldCTin [1::D�(p)℄ (the old values from the registers RCTin )olor is a boolean : 0 = red and 1 = green (the olor of the proessor p)Funtions :�LM = �Pq2In(p)RLMin [q℄�Pq2Out(p) RLMout [q℄� mod snd(n)�CT = �Pq2In(p)RCTin [q℄�Pq2Out(p) RCTout [q℄� mod snd(n)Maros :New Dir Probabilisti Token :: diretionPT := (diretionPT + 1) mod D+(p)Pass Leader Mark :: RLMout [diretionPT ℄ := (RLMout [diretionPT ℄ +�LM � 1) mod snd(n)Pass Colored Token :: RCTout [diretionPT ℄ := (RCTout [diretionPT ℄ +�CT � 1) mod snd(n)Update Old :: 8i 2 [1::D�(p)℄OldCTin [i℄ := RCTin [i℄Randomly Change Color :: olor := random(red; green);8j 2 [1::D+(p)℄; Rolorout [j℄ := olor;Change Color :: olor := Rolorin [i℄, where i 2 [1::D�(p)℄ suh thatOldCTin [i℄ 6= RCTin [i℄; 8j 2 [1::D+(p)℄; Rolorout [j℄ := olor;Prediates :Leader Mark � [ �LM 6= 1 ℄Colored Token � [ �CT 6= 1 ℄Same Color � [ olor = Rolorin [j℄ where j 2 [1::D�(p)℄ suh thatOldCTin [j℄ 6= RCTin [j℄ ℄
15



Algorithm 5.1Randomized leader eletion algorithm under a k-bounded shedulerAtions :A1:: Leader Mark ^ Colored Token ^ :Same Color �!if (random(0, 1) = 0) thenf Randomly Change Color; Update(Old);New Dir Probabilisti Token; Pass Leader Mark;Pass Colored Token gA2:: Leader Mark ^ Colored Token ^ Same Color �!if (random(0,1) = 0) thenf Randomly Change Color; Update(Old);New Dir Probabilisti Token; Pass Colored Token gA3:: Colored Token ^ :Leader Mark �!if (random(0; 1) = 0) thenf Change Color; Update(Old);New Dir Probabilisti Token; Pass Colored Token g� LColor � (i) on any proessor, for any value j 2 [1::D+(p)℄, we have :Rolorout [j℄ = olor and (ii) on any proessor, exept the proessor having theolored token p, we haveOldCTin = RCTin ; and on p, for any value j 2 [1::D�(p)℄,exept one, we have : OldCTin [j℄ = RCTin [j℄.� LLM � there is exatly one leader mark;� Same Color � the unique leader mark and the unique olored token have thesame olor.Definition 10. Let us denote by LLE the prediate whih is true when thefollowing four prediates hold : (1) LCT , (2) LColor, (3) LLM , and (4) Same Color.A legitimate on�guration for Algorithm 5.1 is a on�guration satisfying theprediate LLE .Remark 6. Prediates LCT and LLM are losed.Lemma 9. Let st be a strategy of Algorithm 5.1 under a k-bounded sheduler.We have Prst(LCT ) = 1.Proof. The olored token follows the routing poliy as it was de�ned in thesetion 4. Aording to the Lemma 6 : 9Æst > 0 and 9nst � 1 suh that any st-onesatis�es the LC (true;LCT ; Æst; nst) property. We get Prst(LCT ) = 1 by Theorem1. Lemma 10. Let st be a strategy of Algorithm 5.1; Prst(LCT ^ Lolor) = 1.Proof. Let Ch be an arbitrary one of the strategy st suh as last(h) satis�esthe prediate LCT . Let Chh0 be an arbitrary sub-one of Ch. Let p be a proessorthat has performed an ation in h0. After the p's ation, p satis�es (i) for any valuei 2 [1::D+(p)℄, we have : Rolorout [j℄ = olor and (ii) OldCTin = RCTin until one of its in-neighbor gives it the olored token. In this ase, on p, for any index j 2 [1::D+(p)℄,but one (alled l), OldCTin [j℄ = RCTin [j℄. RCTin [l℄ is the in-register of p orrespondingto the proessor that has given the olored token to p.16



We all h00 the omputation from last(h) where the olored token moves at eahomputation step until all proessors have got the olored token. The on�gurationlast(xh00) veri�es the prediate LCT ^ LColor. The probability to obtain the oneChh00 is �1 � Prst(Ch)( 12 )B . The length(h00) � B.Lemma 11. Prediates LCT ^ LColor ^ LLM and LCT ^ LColor are losed forAlgorithm 5.1.Proof. Let e be an arbitrary exeution of Algorithm 5.1. Let  be a on�gurationsatisfying the prediate LCT ^ LColor in e. In , only the proessor p that has theolored token has an index l suh that OldCTin [l℄ 6= RCTin [l℄. Only p may perform anation. In all ases, after the ation of p, the olor out-register of p has the samevalue as its olor variable. After this ation, either no variable value is hanged :the prediate LCT ^ LColor is still veri�ed. Or p updates the variable Old andgives the olored token to a neighbor q : now only the proessor q has an index l0suh that OldCTin [l0℄ 6= RCTin [l0℄ (RCTin [l0℄ being the out-register of p shared with q).Therefore, the next on�guration in e is a on�guration verifying LCT and LLM .Remark 7. On a on�guration  verifying the prediate LCT ^LColor, only A-tion A1 or A2 may hange the olor of the olored token.Notation 3. Let us denote by NLead() the number of leader marks in theon�guration .Lemma 12. Let st be a strategy of Algorithm 5.1 under a k-bounded sheduler.There exist � > 0 and N � 1 suh that any one of st, Ch with last(h) ` LCT ^LColor, satis�es Loal Convergene (LCT ^LColor; LLM ; �; N).Proof. Assume that last(h) does not satisfy the prediate LLM . HeneNLead(last(h)) =m with m > 1 and there is only one olored token in last(h). The proof has thefollowing informal steps : (1) we prove that with positive probability the oloredtoken meets for the �rst time a proessor holding a leader mark, let us denote thisleader mark by lm1, (2) with positive probability the leader mark, lm1 irulatesin the network until it merges with another leader mark. And we repeat the steps(1) and (2) until there is exatly one leader mark in the network.Assume that in last(h) the olored token is not on a leader. We all h0 theomputation from last(h) where the olored token moves at eah omputation stepuntil it reahes a leader (Ation A3). Aording to this senario, the olored to-ken is \pseudo-deterministi" : it moves at eah omputation step. The stepsnumber to reah a leader is at most the length of a round of Algorithm 3.1. Theprobability of eah omputation step is ( 12 )B . The probability of the one Chh0 is�1 � Prst(Ch)( 12 )B . The length(h0) � B where B is the bound stated in Corollary4. One the olored token and the leader mark are on the same proessor, thereare two ases : (a) the olored token and the leader token have the same olor, or(b) they have di�erent olors (hh0 is now alled H).� a ase - Only Ation A2 an be performed (by the leader having the olortoken - p). Let us alled q the next leader that the olored token will meet. Westudy the history h00 where (1) p does not \hoose" the olor of q and (2) theolored token moves at eah omputation step until it reahes q. At the end,of this history, the ase b is reahed : the olored token and the leader markare on the same proessor, and they have di�erent olors. The probability ofthe one CHh00 is �2 � Prst(Ch)( 12 )2B+1. The length(h0h00) � 2B. Now, Hh00is alled H . 17



� b ase - Only Ation A1 an be performed (by the proessor having the olortoken - p). The probability that the proessor p passes the both tokens toan out-neighbor q (having the olor ol) and olors the olored token witha olor di�erent of ol is 14 . q is the same state as the p state before themove. q has the both tokens, but the olor of the leader mark is not theolor of the olored token. We all h1 the omputation from last(H) wherethe olored token and the leader mark move together until they meet anotherleader mark. The probability of the sub-one CHh1 of the one CH whereNLead(last(Hh1)) = m� 1 is �3 � Prst(CH)( 12 )2B and length(h1) � B.The probability of the one ChH1 where NLead(last(hH1)) = m � 1 is �01 �Prst(Ch)( 12 )4B+1. The length(H1) � 3B.The probability of the one ChHm�1 where NLead(last(hHm�1)) = 1 is �0m�1 �Prst(Ch)( 12 )(m�1)(4B+1). Nm�1 = length(Hm�1) � 3(m � 1)B. Therefore, theproperty Loal Convergene(LCT ^ LColor; LLM ; �m�1; Nm�1) is satis�ed.Aording to the Theorem 1, we have :Corollary 7. Let st be a strategy of Algorithm 5.1 under a k-bounded shed-uler. We have Prst(LCT ^ LColor ^ LLM ) = 1.Lemma 13. The prediate LCT ^LColor ^LLM ^Same Color is a losed pred-iate for Algorithm 5.1.Proof. Let  be a on�guration satisfying the prediate LCT ^ LColor ^ LLM ^Same Color. In , there is a unique leader mark and only one olored token. Bothhave the same olor. Only Ation A2 may hange the olor of the olored token.After that ation, the both tokens have the same olor.Lemma 14. Let st be a strategy of Algorithm 5.1 under a k-bounded sheduler.There exist � > 0 and N � 1 suh that any one of st, Ch suh that last(h) ` LCT^LColor^LLM , satis�es Loal Convergene(LCT ^LColor^LLM ; Same Color; �;N).Proof. Assume that last(h) does not satis�es the prediate Same Color. Thereare two ases; in the �rst ase the leader mark and the olored token are on di�erentproessors, while in the seond one the olored token and the leader mark are onthe same proessor.In the �rst ase, let h0 be the omputation from last(h) where the oloredtoken irulates until it reahes the leader. The probability of the one Chh0 is � �Prst(Ch)( 12 )B . The length(h0) � B. Now both tokens are on the same proessor.Assume now that the proessors have di�erent olors. The probability that p givesthe both tokens to an out-neighbor q and olors the olored token with the q's oloris 14 . After that, q is a leader, q has the olored token; and the olored token hasthe q's olor.Therefore the probability of one Chh00 with last(hh00) `LCT ^ LColor ^ LLM ^Same Color is � � Prst(Ch)( 12 )B+2 and length(h00) � B + 1.Lemma 15. Algorithm 5.1 has a �nite stabilisation time.Proof. Using Lemmas 6, 10, 12 and 14 the expeted stabilisation time is boundedby 1� where � � ( 12 ) kn2+10nB+2n+4B+42 (B provided by Corollary 4). Therefore theexpeted stabilization time of Algorithme 5.1 is �nite.18



Lemma 16. Any omputation of Algorithm 5.1 starting in a legitimate on�g-uration satis�es the spei�ation SLE.Proof. Let e be a omputation starting in a legitimate on�guration  | theprediate LLE is satis�ed by . The only appliable rules are those where the leadermark is not moved (A2 and A3), hene the problem spei�ation is satis�ed.Theorem 3. Algorithm 5.1 is self-stabilizing for the spei�ation SLE.Proof. The onvergene is given by Corollary 7, Lemmas 13 and 14 and Theorem1. The orretness is given by Lemma 16.6. TOKEN BASED ALGORITHMS UNDER AN UNFAIR SCHEDULERIn this setion, we extend Algorithms 4.1 and 5.1 to ope up with unfair shed-uler. For this purpose, the idea of ross-over omposition (introdued in [?℄) isused to ompose Algorithms 4.1 and 6.2 with a k-fair algorithm (see De�nition 5).Algorithm 3.1 is an (n � D+)Diam-fair algorithm under any unfair sheduler. Theross-over omposition guarantees that a stabilizing algorithm for spei�ation SP ,that works under the k-bounded sheduler omposed with a k-fair algorithm underan arbitrary sheduler, is stabilizing under any unfair sheduler for spei�ationSP .The ross-over omposition ombines two algorithms |the weaker and thestronger| to get a new algorithm. The algorithms are onsidered stronger orweaker aording to their properties toward the sheduler. When an algorithmneeds a speial sheduler then it is onsidered \weaker". By ontrary, when thealgorithm is preserving its properties even under an unfair sheduler then it playsthe \stronger" role.In this paper, the stronger (Algorithm 3.1) supports the stronger adversary(unfair sheduler), while the weaker (Algorithms 4.1 or 5.1) provides its spei�ation(token irulation or leader eletion) under a weaker adversary (the k-boundedsheduler).Algorithm 6.1, the result of ross-over omposition between Algorithm 3.1 andAlgorithm 4.1, has the following ations [A is the label of Algorithm 4.1 rule andFA is the label of Algorithm 3.1 rule℄ :B1::< guard A > ^ < guard FA > �! < statement A >;< statement FA >B2::: < guard A > ^ < guard FA > �! < statement FA >Algorithm 6.1 Randomized token irulation algorithm under unfair shedulerAtions :B1:: Fair Token ^ Probabilisti Token �!New Dir Fair Token; Pass Fair Token;if (random(0, 1) = 0) then f New Dir Probabilisti Token;Pass Probabilisti Token gB2:: Fair Token ^ :Probabilisti Token �!New Dir Fair Token; Pass Fair Token;Algorithm 6.2, the result of ross-over omposition between Algorithm 3.1 andAlgorithm 5.1, has the following ations [(Ai)i=1;4 are the labels of the rules of19



Algorithm 5.1℄ :C1::< guard A1 > ^ < guard FA > �! < statement A1 >;< statement FA >C2::< guard A2 > ^ < guard FA > �! < statement A2 >;< statement FA >C3::< guard A3 > ^ < guard FA > �! < statement A3 >;< statement FA >C4::: < guard A1 > ^: < guard A2 > ^: < guard A3 > ^ < guard FA > �! <statement FA >Algorithm 6.2 Randomized leader eletion algorithm under unfair shedulerAtions :C1:: Fair Token ^ Leader Mark ^ Colored Token ^ :Same Color �!New Dir Fair Token; Pass Fair Token;if (random(0, 1) = 0) thenf Randomly Change Color; Update(Old);New Dir Probabilisti Token; Pass Leader Mark;Pass Colored Token gC2:: Fair Token ^ Leader Mark ^ Colored Token ^ Same Color �!New Dir Fair Token; Pass Fair Token;if (random(0, 1) = 0) thenf Randomly Change Color; Update(Old);New Dir Probabilisti Token; Pass Colored Token gC3:: Fair Token ^ :Leader Mark ^ Colored Token �!New Dir Fair Token; Pass Fair Token;if (random(0, 1) = 0) thenf Change Color; Update(Old); New Dir Probabilisti Token;Pass Colored Token gC4:: Fair Token ^ :Colored Token ^ :Leader Mark �!New Dir Fair Token; Pass Fair Token;Algorithms 6.1 and 6.2 desription. Algorithms 6.1 and 6.2 are the result ofross-over omposition between Algorithms 5.1 (the weaker) and 3.1 (the stronger).The omposed algorithm ontaines an extra layer whih ensures the algorithm on-vergene under any unfair sheduler.Algorithm 6.1 and 6.2 analysis. In [?℄, it is proven that the ross-over om-position between a probabilisti algorithm self-stabilizing for a spei�ation SPunder a k-bounded sheduler, playing the weaker role, and a deterministi algorith-m satisfying the k-fairness property, playing the stronger role, is a self-stabilizingalgorithm for SP under any unfair sheduler.Theorem 4. Algorithms 6.1 and 6.2 are self-stabilizing for the spei�ationsSTC and SLE respetively under an unfair sheduler.Lemma 17. The stabilization time for Algorithms 6.1 and 6.2 is �nite.Proof. The expeted stabilization time for Algorithms 6.1 and 6.2 is boundedby the values provided by Lemmas 7 and 15 with k = (n �D+)Diam and B =(n� 1) � (n �D+)Diam + 1 (orollaries 3 and 4).20



7. CONCLUSIONThis work fouses on token based self-stabilizing algorithms. The onsiderednetworks are anonymous and direted. We present for this type of networks, atoken management and routing poliy as solutions to the open problem proposedby Israeli and Jalfon in [?℄. Note that the urrent paper propose the �rst gener-al solution for this problem. Moreover, we present self-stabilizing algorithms formutual exlusion and leader eletion on anonymous, direted networks based onthis poliies. In order to break the symmetry we use randomization. One of theproposed algorithms is weak self-stabilizing for the mutual exlusion spei�ation,another one is self-stabilizing for the leader eletion spei�ation under any unfairdistributed sheduler. Finally, we present a probabilisti analysis for the proposedalgorithms.All the results are summarized in the following table :Spei�ation Alg. Sheduler Corretness Spae Complexity (states)Fair token ir. 3.1 unfair deterministi n � D+ � sndD+Mutual exlusion 4.1 k-bounded weak prob. n � D+ � sndD+Leader eletion 5.1 k-bounded strong prob. n � D+ � 2D++1 � snd2�D++D�Mutual exlusion 6.1 distrib. unfair weak prob. n � D+2 � snd2�D+Leader eletion 6.2 distrib. unfair strong prob. n � D+2 � 2D++1 � snd3�D++D�The spae omplexity of our algorithms is O((D++D�) � (log(snd(n))+2)) bitsper proessor. Note that snd(n) (the smallest non divisor of n) is onstant in theaverage and equals 2 for odd size networks.Notie that our algorithms are spae optimal for the ring topology as it wasproven in [?℄. REFERENCES[1℄ R. Aleliunas, R.M.Karp, R. Lipton, L. Lovasz, and C. Rako�, Random walks,universal traversal sequenes and the omplexity of the maze problem, in\FOCS'79, Proeedings of the 20st Annual IEEE Symp. on Foundation ofComputer Siene," pp. 218{223, 1979.[2℄ D. Alstein, J.H. Hoepman, B. Olivier, and P. Put, Self-stabilizing mutualexlusion on direted graphs, Tehnial Report 9513, CWI Amsterdam, 1995.[3℄ D. Angluin, Loal and global properties in networks of proessors, in \S-TOC'80, Proeedings of the 12th Annual ACM Symp. on Theory of Comput-ing," pp. 82{93, 1980.[4℄ B. Awerbuh and R. Ostrovsky, Memory-eÆient and self-stabilizing networkreset, in \PODC'94, Proeedings of the 13th Annual ACM Symp. on Priniplesof Distributed Computing," pp. 254{263, 1994.[5℄ J. Beauquier, S. Cordier, and S. Dela�et, Optimum probabilisti self-stabilization on uniform rings, in \WSS'95, Proeedings of the Seond Work-shop on Self-Stabilizing Systems", pp. 15.1{15.15, 1995.21
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