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Abstract

In this paper, we consider timed automata for piecewise constant signals and prove that they recognize exactly the
denoted by signal regular expressions with intersection and renaming. The main differences from the usual timed
are: time elapses on transitions (passing through a state is instantaneous), signals may be split on a run on an auto
constraints on transitions correspond to unions of open intervals but should be satisfied on closed intervals. This ma
rendez-vous impossible. The paper stresses on the similarities and differences from the usual model.
 2003 Elsevier B.V. All rights reserved.
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Classical automata deal with sequences of events, but they do not provide any explicit notion of time (e.
between or duration of) and thus are of little use for, e.g., the verification of real-time systems. Timed au
were introduced to manipulate time explicitly [3]. They are classical automata enhanced with clocks su
each transition must satisfy a constraint over clocks and may reset some clocks. The two most popular s
for timed automata are time event (sequence of action labels with time stamps) and signals (piecewise
mappings from time intervals to labels). For both semantics, each transition is instantaneous and its cons
to be satisfied when the transition occurs; corresponding clocks are reseted simultaneously. In this mo
elapses only on states while only transitions are constrained.

Signals, as inputs, are considered in [3] and a Kleene theorem is proved in [1,2]. But signals corres
remaining in a state for some time (not in a transition) and splitting and splicing of signals are not add
In [7], it is considered that consecutive elementary signals with the same label can be split or spliced a
correspond to 1, 2 or more transitions; in contrast with the time event model, 2 consecutive identical inputs
correspond to 2 transitions. Splitting or splicing add non-determinism in the way a signal can be read by
automaton.
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We consider here that everything has a duration and that time measurements and synchronizations cannot have
infinite precision. This leads to the choices in the next paragraphs: non-instantaneous actions, constraint valid
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The first difference is that actions are not instantaneous. Time elapses on transitions and passing t

state is instantaneous. Inputs are piecewise constant (pre-)signals, i.e., sequences of labels/symbols with
Splitting and splicing are considered as in [7] and a signal is an equivalence class for these operations.

The second difference is that any transition constraint has to be satisfied during the whole transition
time interval); clocks are reset at the end of it. In previous works, time elapses on states but no conditio
for remaining in a state (even if this can be handled with extra states and constraints on entering and
transitions). Having time elapse on transitions allows to constrain directly atomic durations.

The third difference is that, in the constraints, only open intervals of time are considered: constraints a
unions of products of open intervals over clocks; constraints correspond to open sets. This means that insta
passing through a state correspond to an (intersection of) open time interval; thus it is impossible to b
automaton such that this corresponds exactly to a given date. Thus, no exact rendez-vous/synchronizati
set. Nevertheless, since these intervals can be made as small as wanted, approximations of dates can b
up to any given constant.

Although the signal automata presented here differ in many ways from the classical timed automata,
mostly be manipulated the same way. Signal regular expressions like the ones of [1,2] are defined. W
that they denote the same languages as signal automata up to renaming. The constructions presented h
optimal, but the aim of this paper is to stress on the difference from the usual model. No formal proofs ar
they are straightforward from the constructions.

The paper is articulated as follows. All the definitions are gathered in Section 1. The inductive const
from a signal regular expression to a signal automaton is given in Section 2. The computation of a signa
expression and a renaming corresponding to the language accepted by a signal automaton is given in Sect
is done in two phases: splitting the automaton into 1-clock automata and then considering each 1-clock au
independently. A brief conclusion is presented in Section 4.

1. Definitions

LetΣ be a finite set of symbols. Apre-signal is defined as a sequence of symbols associated with duration
denotedσπ1

1 σ
π2
2 . . . σ

πl

l where allσi belong toΣ and allπi to R>0. Its duration is |m| = ∑l
i=1πi . Any pre-signal

can besplit by replacing some factorσπ by σπ1σπ2 as long asπ1 + π2 = π . The inverse operation (merging tw
factors with the same symbol) is calledsplicing. Two pre-signals areequivalent if one can go from one to th
other by a finite sequence of splittings and splicings. Asignal is an equivalence class of pre-signals. It admi
canonical pre-signal representation, its non-stuttering normal form obtained by making all possible splic
any pre-signal of the class. A pre-signalm′ is a sub-split of m if m′ can be obtained fromm by splitting. Any
two pre-signals represent the same signal iff they have a common sub-split. The empty signal is denotedε; its
duration is 0. Anelementary signal is just a constant signal (someσπ ). For example,a0.7a0.3c1c1.5c1 anda1c1.5c2

are equivalent and the non-stuttering normal form associated to their class isa1c3.5 anda0.7a0.3c1c0.5c1c1 is one of
their common sub-splits. Pre-signals can also be represented as partial mappings from(0, t) toΣ with finitely many
discontinuity (where the value is a symbol if it is the same on both side, otherwise it is undefined) as illu
by Fig. 1. Concatenation is defined as usual. Let us note that, for splicing reasons, the location of conca
may be lost (e.g.,a1.a3 = a4). This splitting/splicing property justifies the exponent notation and the equiva
relation.

Clocks and constraints. A clock, z, is a mapping from the absolute time (R�0) to non-negative real number
Its value regularly increases as time elapses. The only operations available on a clock are comparisons t
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Fig. 1. Non-stuttering normal form and sub-splittings.

constants and resetting to 0. LetZ be a finite set of clocks;Zt denotes the clocks valuation at timet andZt + d

meansd added to each clock valuation.
A constraint overZ is a logical formula using the connectors∨ and∧ over atomic formulae of the formz < c

or c < z wherez is a clock andc is a constant inQ>0. The set of all constraints is denotedΦ(Z). It is possible
to construct a constraint always satisfied, it is denotedtrue or just left blank. Since atomic formulae denote op
intervals (ofR>0), and only intersection and union are used, each formula represents a finite union of p
(over possible values of clocks) of open intervals, thus an open subset ofRn

>0 wheren is the number of clocks. I
is impossible to create a constraint equivalent toz = c or z � c.

Signal automata. A signal automaton is defined by: an alphabetΣ , a finite set ofstates, Q, a set ofinitial
states, I ⊆ Q, a set ofaccepting states, F ⊆ Q, a finite set ofclocks, Z, and a finite set oftransitions
∆ ⊆ Q × Σ × Φ(Z) × 2Z × Q. A transitionδ is denoted(q, σ,φ,ρ, q ′) and is represented as in Fig. 2 (φ is
the constraint andρ is the set of the clocks that have to be reseted at the end of the transition). The mappingReset,
from clock valuations and a set of clocks to clocks valuations, resets to zero all the valuations of the clock
set, other valuations are unaffected. When no clock is reset, this is indicated by∅ or left blank.

Fig. 2. Representation of transition(q,σ,φ,ρ,p).

A transition is valid fromt to t ′ if the input isσ on (t, t ′) (open) and the clock constraintφ is satisfied on[t, t ′]
(closed!). This means that for each clockz, [zt , zt + (t ′ − t)] has to be included in a finite union of products
open intervals, which means strictly included and away from the bounds.

Let A = (Σ,Q, I,F,Z,∆) be a signal automaton andm a signal. Sincem can be split/spliced in infinitely
many ways, it is useless to consider some precise representation for it; instead,m is considered to be the piecewi
constant function from(0, |m|) to Σ ∪ {⊥} (⊥ stands for undefined) corresponding to its non-stuttering no
form. Let mt be the value ofm at time t . A run of m over A is a finite sequence of transitions and stric
increasing dates{(δi, ti )}1�i�n. Let t0 = 0 andδi = (qi, σi , φi, ρi ,pi). A run must satisfy:

(1) Z0 = �0 (initialization),
(2) ∀i, 1� i � n (passing through a transition)

(a) ∀t ∈ (ti−1, ti), mt = σi ,
(b) ∀δ ∈ [0, ti−ti−1], φi(Zti−1 + δ) is satisfied,

(3) ∀i, 1� i < n (passing through a state)
(a) qi+1 = pi ,
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(b) Zti = Reset(Zti−1 + ti−ti−1, ρi),
(4) tn = |m| (complete reading ofm).
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Let us note that (3)(a) the value ofm at ti is not considered whereas (2)(b) clock constraintsφi−1 andφi have to be
satisfied atti (before resetting the clocks forφi−1 and after resetting forφi ). The pre-signal corresponding to th
run isσ

t1
1 σ

t2−t1
2 . . . σ

tn−tn−1
n . A run is accepting iff q1 ∈ I andpn ∈ F . Thelanguage accepted by A,L(A), is the

set of all signals for each of which there exists an accepting run for a pre-signal of its class.

Signal regular expressions. They are defined inductively, over an alphabetΣ , usingε, σ , ϕ1∨ϕ2, ϕ1∧ϕ2, ϕ1 ·ϕ2,
ϕ∗ and〈ϕ〉I , s.t.σ ∈ Σ andϕ,ϕ1, ϕ2 are signal regular expressions andI is an open interval ofR�0, either(d, d ′)
or (d,∞) s.t.d, d ′ ∈ Q and 0� d < d ′. The semantic of regular expressions is:

(1) ❏ε❑ = {ε},
(2) ❏σ ❑ = {σ r | r ∈ R>0},
(3) ❏ϕ1 ∨ ϕ2❑ = ❏ϕ1❑∪ ❏ϕ2❑,
(4) ❏ϕ1 ∧ ϕ2❑ = ❏ϕ1❑∩ ❏ϕ2❑,
(5) ❏ϕ1 · ϕ2❑ = {m1.m2 | m1 ∈ ❏ϕ1❑∧ m2 ∈ ❏ϕ2❑},
(6) ❏ϕ∗❑= ⋃∞

i=0(❏ϕ
i❑) s.t.❏ϕ0❑= {ε}, ϕ1 = ϕ, ϕn+1 = ϕn · ϕ,

(7) ❏〈ϕ〉I ❑ = {m ∈ ❏ϕ❑ | |m| ∈ I }.

Let Σ andΣ ′ be two alphabets, arenaming function, λ, is a function fromΣ to Σ ′. It is extended to pre-signa
in the following way:λ(σπ1

1 σ
π2
2 . . . σ

πl

l ) = λ(σ1)
π1λ(σ2)

π2 . . .λ(σl)
πl and to sets of signals pointwisely (it is n

possible to do it inductively on rational expressions because of the intersection).
All these operations are compatible with the equivalence relation.

2. From regular expressions to automata

We show that basic regular expressions correspond to automata and then that the languages accepted b
are closed for the corresponding operators. All is done following usual constructions for un-timed and
automata. Emphasis is made on substantially different constructions: the automata product used for∧ (splittings
induced by an automaton have to be considered) and duration restrictions. Fig. 3 shows the constructiε

anda.

Fig. 3. Automata forε anda.

If more than one automaton are considered, the sets of states as well as sets of clocks are assumed to
(renaming is used if necessary) but the alphabets are identical (or the union is considered). In the pict
dotted parts are discarded in the constructions, the dashed parts are preserved but are not relevant and
boxes delimit automata.

Since automata are non-deterministic, the automaton for an union is very easy to built: just gather the a
as in Fig. 4.

Intersection. The classical way to make an intersection is to make a product of automata and then to restra
and accepting states. The problem is that accepting runs may be different, e.g.,a1a3b1b2 on one automaton an
a4b2b1 on the other. These pre-signals both representa4b3 and have infinitely many common sub-splits (e
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Fig. 4. Automaton forL(A1) ∪L(A2).

a1a3b1b1b1), but it may happen that none of them corresponds to an accepting run on both automat
automaton is transformed in order that any sub-split of an accepting run also corresponds to an accep
This is done by adding for each transition 3 transitions and 1 new state as depicted on Fig. 5. The g
automaton accepts exactly the same language and, any sub-split of any pre-signal corresponding to an
run also corresponds to an accepting run.

Fig. 5. Full split of transitionδ = (q,σ,φ,ρ,p).

With this full split form, it is easy to construct the product automaton and then the intersection. Fig. 6 sho
product of transitions; of course only and all pairs of transitions with the same symbol are considered. Th
initial (accepting) states is the product of initial (accepting) states. If mis accepted by bothA1 andA2 split asm1
andm2, then any sub-splitm′ common to bothm1 andm2 corresponds to an accepting run in the product of
full split automata. If mis not accepted byA1 (A2), then neither it is by the full split form ofA1 (A2) and nor by
the product.

Fig. 6. Product of transitions(q1, σ,φ1, ρ1,p1) and(q2, σ,φ2, ρ2,p2).
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Concatenation and iteration. Concatenation ofA1 andA2 is done by doubling each transition to an accepting
state ofA1 to an initial state ofA2; these copies reset all the clocks ofA2 as illustrated in Fig. 7. The initial

al state;
in

ight be
n extra
ransitions
epicted

tion of

ince
(accepting) states are the ones ofA1 (A2).

Fig. 7. Transition added forL(A1) ·L(A2).

For the finite iteration (or Kleene star), copies of each transition to a final state are made to each initi
these copies reset all the clocks. An automaton recognizingε is added for zero iteration. This is summed up
Fig. 8.

Fig. 8. Transitions and state added forL(A)∗ .

Duration restriction. It cannot be added directly to transitions leading to accepting states because it m
satisfied at the end of the last transition but not during the whole transition. This is handled by adding a
state and adding for each transition leading to an accepting state one new state and two consecutive new t
(corresponding to one extra split in the run); the duration restriction is only present in the last constraint as d
on Fig. 9. A new clock,z0 is added; it only appears in, and in every, final transition asz0 ∈ I (rememberI is open
and its bounds are inQ). Sincez0 is zero when the run starts and is never reset, it corresponds to the dura
the part already read; thus the total duration of any accepted input has to be inI .

Fig. 9. Automaton for〈L(A)〉I .

Finally, by induction:

Lemma 1. The signal languages described by signal regular expressions are accepted by signal automata.

If a renaming function is applied toL(ϕ), it should be applied to every transition. This is not a problem s
intersections are encoded inside the automaton structure.
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3. From automata to regular expressions
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The construction is done in two steps: first separating an-clock automatonA inton 1-clock signal automata, on
for each clock,{Az}z∈Z, and a renaming functionλ. These 1-clock automata are then considered independen

Separating the clocks. Various manipulations are made in order to finally get an automatonAz for each clockz
such that the intersection of the accepted languages is the one accepted byA up to some renaming.

(1) All disjunctions are removed. First all constraints are presented in normal disjunctive form. No transiti
be simply separated in two transitions because the disjunction may be satisfied during the whole durati
no single term is. Transitions (and pre-signals) are split and disjunction are disposed of as in Fig. 10 wφ1
andφ2 may still contain∨.

Fig. 10. Removing disjunction inδ = (q,σ,φ1 ∨ φ2, ρ,p).

(2) All loops are removed by putting an extra state (and split) in each loop.
(3) The automaton is made deterministic by replacing each transition symbol by a new symbol appearing

this transition. Each run corresponds to a run where transitions are indicated. The original run/pre-s
recovered by projecting the transition symbols on the original symbols. This projection is denotedλ.

(4) One copy of the automaton is made for each clock, setting to true atomic constraints over other clock
the deterministic association of symbols to transitions, any run on one automaton can only correspon
run (the same) for each copy. If a signal is accepted byA, then it is accepted by all copies (constraints are o
conjunctive). Conversely, if a signal is accepted by all copies, then it has to be with the same run which
accepting forA (conjunctions of constraints satisfied for all clocks).

The automatonA is thus transformed into{Az}z∈Z and a renaming functionλ such that:

L(A) = λ

( ⋂
z∈Z

L(Az)

)
, (1)

and copies can be treated independently.

From one-clock automaton to regular expression. Let Az be a signal automaton with only one clock z,Az =
(Σ,Q, I,F, {z},∆). Let τ0 = 0 < τ1 < τ2 < · · · < τι < τι+1 = ∞ be the list of all the constants that appear in
least one clock constraint inA (plus 0 and∞). Since constraints are conjunctions over atomic formulaez < τi or
τj < z, they correspond toτα < z < τβ (or to false and are removed), sinceτ0 = 0 (transitions have strictly positiv
durations) andτι+1 = ∞ all kinds of intervals are covered. Constraints are “constant” on each(τi, τi+1), either
satisfied or not.

Let ∆1 be the subset of reset-less transitions ofAz and∆2 the subset of transitions resettingz (∆ = ∆1 ∪ ∆2).

One-clock automaton without reset. Only the transitions in∆1 are considered here. LetL(q,p, i) denote the
un-timed language corresponding to the runs fromq to p using only transitions whose constraints are satis
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on (τi, τi+1). There is an un-timed regular expression forL(q,p, i). Let L
τi
q→p denote the signal language

corresponding to the runs fromq to p of total durations strictly less thanτi . The L
τi
q→p can be computed

eeds to
s because

sion.

th

es (4).
other
if

nguages
l regular
recursively:

Lτ1
q→p = 〈

L(q,p,0)
〉
(0,τ1)

(∪{ε} {if q = p }
)
, (2)

L
τi+1
q→p = Lτi

q→p ∪
〈 ⋃
(r,σ,τα<z<τβ ,∅,p)∈∆1

τα<τi<τβ

〈
Lτi

q→r

〉
(τα,∞)

.σ

〉
(τi−1,τi+1)

∪
〈 ⋃
(r,σ,τα<z<τβ ,∅,s)∈∆1

τα<τi<τβ

〈〈
Lτi

q→r

〉
(τα,∞)

.σ
〉
(τi ,∞)

.L(s,p, i + 1)

〉
(0,τi+1)

. (3)

Beforeτ1, the automaton is “constant”, classical language theory gives an un-timed expression which only n
have its duration restrained (2). The empty word has to be added because its duration is zero. Eq. (3) hold
duration could be less thanτi , or τi could be during the last transition (possibly finishing atτi ) or during a previous
one. Eq. (2) directly gives a signal regular expression,(3) uses concatenation, finite union and regular expres
By induction, allLτi

q→p correspond to signal regular expressions.
Let Lq→p denote the language corresponding to all the runs fromq to p: Lq→p = L∞

q→p = L
τi+1
q→p .

One-clock automata with reset. The resetting transitions, i.e., the ones in∆2, are now considered, together wi
the ones in∆1. Let ∆2 = {δ1, δ2, . . . , δκ} andδk = (qk, σk, ταk < z < τβk , {z},pk). Let Lδ1,...,δk

s,δl
be the language

corresponding to the runs starting froms, using only resetting transitionsδ1, δ2, . . . , δk and ending byδl (l � k).
The following recurrence equations are satisfied:

L
δ1
s,δ1

=
〈〈
Ls→q1

〉
(τα1,∞)

.σ1

〉
(0,τβ1)

.
(〈〈

Lp1→q1

〉
(τα1,∞)

.σ1

〉
(0,τβ1)

)∗
, (4)

L
δ1,...,δk
s,δk

=
(〈〈

Ls→qk

〉
(ταk ,∞)

.σk

〉
(0,τβk )

∪
⋃

1�l<k

L
δ1,...,δk−1
s,δl

.
〈〈
Lpl→qk

〉
(ταk ,∞)

.σk

〉
(0,τβk )

)

.

(〈〈
Lpk→qk

〉
(ταk ,∞)

.σk

〉
(0,τβk )

∪
⋃

1�l<k

L
δ1,...,δk−1
pk,δl

.
〈〈
Lpl→qk

〉
(ταk ,∞)

.σk

〉
(0,τβk )

)∗
, (5)

L
δ1,...,δk
s,δl

= L
δ1,...,δk−1
s,δl

∪ L
δ1,...,δk
s,δk

.L
δ1,...,δk−1
pk,δl

(l < k). (6)

Resetting transitionδ1 has to be done at least once, then the run can go back through it any number of tim
The same holds for a run ending byδk , it has to be done once, and the run can go back through it, each time
allowed resetting transitions may be used or not(5). A run ending byδl does not useδk after the last passage,
any, throughδk (6).

L(Az) =
⋃

s∈I, t∈F

(
Ls→t ∪

⋃
1�l�κ

L
δ1,...,δκ
s,δl

.Lpl→t

)
. (7)

All these equations use signal regular expressions and their inductive operators. So, the set of signal la
accepted by one-clock signal automata is included in the set of signal languages described by signa
expressions. From (1) and (7) comes:

Lemma 2. The signal languages accepted by signal automata can be described by signal regular expressions and
renaming.
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4. Conclusion
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Altogether, we have proved that:

Theorem 3. The set of signal languages accepted by signal automata is equal to the one described by signal
regular expressions and renaming.

Renaming seems to be unavoidable as proved in the usual model [8]. We believe that regular expres
signals like the ones of [6] can also provide a Kleene theorem. We also believe that there is some algebrai
like in [4,2] and that infinite duration and Zeno configurations can be approached with techniques as in [5]

It should also be interesting to investigate the consequences of choosing for the transitions open
constraints that should be verified on closed intervals.
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