Available at

www.ElsevierComputerScience.com Information
POWERED BY SCIENCE @DIRECT“ ProceSSlng
Letters

ELSEVIER Information Processing Letters 89 (2004) 237-245

www.elsevier.com/locatefipl

A Kleene theorem for splitable signals

Jérdme Durand-Losé

2 Laboratoire de |’ Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, 46, Allée d' Italie, 69364 Lyon Cedex 07, France
b Université de Nice-Sophia Antipolis, France

Received 24 January 2003; received in revised form 24 November 2003

Communicated by L. Boasson

Abstract

In this paper, we consider timed automata for piecewise constant signals and prove that they recognize exactly the languages
denoted by signal regular expressions with intersection and renaming. The main differences from the usual timed automata
are: time elapses on transitions (passing through a state is instantaneous), sighals may be split on a run on an automaton an
constraints on transitions correspond to unions of open intervals but should be satisfied on closed intervals. This makes exact
rendez-vous impossible. The paper stresses on the similarities and differences from the usual model.

00 2003 Elsevier B.V. All rights reserved.

Keywords: Timed automata; Piecewise constant signal; Signal regular expression; Formal languages

Classical automata deal with sequences of events, but they do not provide any explicit notion of time (e.g., delay
between or duration of) and thus are of little use for, e.g., the verification of real-time systems. Timed automata
were introduced to manipulate time explicitly [3]. They are classical automata enhanced with clocks such that
each transition must satisfy a constraint over clocks and may reset some clocks. The two most popular semantics
for timed automata are time event (sequence of action labels with time stamps) and signals (piecewise constant
mappings from time intervals to labels). For both semantics, each transition is instantaneous and its constraint has
to be satisfied when the transition occurs; corresponding clocks are reseted simultaneously. In this model, time
elapses only on states while only transitions are constrained.

Signals, as inputs, are considered in [3] and a Kleene theorem is proved in [1,2]. But signals correspond to
remaining in a state for some time (not in a transition) and splitting and splicing of signals are not addressed.
In [7], it is considered that consecutive elementary signals with the same label can be split or spliced and then
correspond to 1, 2 or more transitions; in contrast with the time event model, 2 consecutive identical inputs always
correspond to 2 transitions. Splitting or splicing add non-determinism in the way a signal can be read by a signal
automaton.

E-mail address: Jerome.Durand-Lose@ens-lyon.fr (J. Durand-Lose).
URL: http://www.i3s.unice.fr/~jdurand.

0020-0190/$ — see front mattér 2003 Elsevier B.V. All rights reserved.
d0i:10.1016/;.ipl.2003.11.010

238 J. Durand-Lose / Information Processing Letters 89 (2004) 237—245

We consider here that everything has a duration and that time measurements and synchronizations cannot hav
infinite precision. This leads to the choices in the next paragraphs: non-instantaneous actions, constraint valid
throughout a transition and constraints corresponding to open intervals.

The first difference is that actions are not instantaneous. Time elapses on transitions and passing through a
state is instantaneous. Inputs are piecewise constant (pre-)signals, i.e., sequences of labels/symbols with duration:
Splitting and splicing are considered as in [7] and a signal is an equivalence class for these operations.

The second difference is that any transition constraint has to be satisfied during the whole transition (closed
time interval); clocks are reset at the end of it. In previous works, time elapses on states but no condition exists
for remaining in a state (even if this can be handled with extra states and constraints on entering and leaving
transitions). Having time elapse on transitions allows to constrain directly atomic durations.

The third difference is that, in the constraints, only open intervals of time are considered: constraints are finite
unions of products of open intervals over clocks; constraints correspond to open sets. This means that instantaneou
passing through a state correspond to an (intersection of) open time interval; thus it is impossible to build an
automaton such that this corresponds exactly to a given date. Thus, no exact rendez-vous/synchronization can b
set. Nevertheless, since these intervals can be made as small as wanted, approximations of dates can be achievi
up to any given constant.

Although the signal automata presented here differ in many ways from the classical timed automata, they can
mostly be manipulated the same way. Signal regular expressions like the ones of [1,2] are defined. We prove
that they denote the same languages as signal automata up to renaming. The constructions presented here are r
optimal, but the aim of this paper is to stress on the difference from the usual model. No formal proofs are given,
they are straightforward from the constructions.

The paper is articulated as follows. All the definitions are gathered in Section 1. The inductive construction
from a signal regular expression to a signal automaton is given in Section 2. The computation of a signal regular
expression and a renaming corresponding to the language accepted by a signal automaton is given in Section 3. Thi
is done in two phases: splitting the automaton into 1-clock automata and then considering each 1-clock automaton
independently. A brief conclusion is presented in Section 4.

1. Definitions

Let X be afinite set of symbols. pre-signal is defined as a sequence of symbols associated with durations. Itis
denoteds; 05?2 ..., where allo; belong toX and allz; to R-o. Its durationis |m| = Y"!_, 7;. Any pre-signal
can besplit by replacing some factar™ by 6072 as long asr; + 72 = . The inverse operation (merging two
factors with the same symbol) is calledlicing. Two pre-signals arequivalent if one can go from one to the
other by a finite sequence of splittings and splicingsighal is an equivalence class of pre-signals. It admits a
canonical pre-signal representation, its non-stuttering normal form obtained by making all possible splicings on
any pre-signal of the class. A pre-signal is a sub-split of m if m’ can be obtained from: by splitting. Any
two pre-signals represent the same signal iff they have a common sub-split. The empty signal is denpiisd by
duration is 0. Arelementary signal is just a constant signal (som®). For exampleg®’a%3c1c1-5¢! andalclSc?
are equivalent and the non-stuttering normal form associated to their cldss tsanda®’a%3¢1c%5¢1ct is one of
their common sub-splits. Pre-signals can also be represented as partial mappin@s fyamx with finitely many
discontinuity (where the value is a symbol if it is the same on both side, otherwise it is undefined) as illustrated
by Fig. 1. Concatenation is defined as usual. Let us note that, for splicing reasons, the location of concatenation
may be lost (e.gg'.a® = a*). This splitting/splicing property justifies the exponent notation and the equivalence
relation.

Clocks and constraints. A clock, z, is a mapping from the absolute timB %) to non-negative real numbers.
Its value regularly increases as time elapses. The only operations available on a clock are comparisons to rationa

J. Durand-Lose/ Information Processing Letters 89 (2004) 237-245 239

ck-—m—m-- ct-—t+—-- bt
bp—————————— e 7 e ———
apb——-———————- apb——-—————-—- apFH-————————
0 1 45 01 45 01 45

al 03.5 al Cl.5 C2 a0.7 a0.3 Cl Cl.5 Cl

Fig. 1. Non-stuttering normal form and sub-splittings.

constants and resetting to 0. Létbe a finite set of clocksZ, denotes the clocks valuation at timand Z, + d
meansd added to each clock valuation.
A constraint over Z is a logical formula using the connectorsand A over atomic formulae of the form< ¢
or ¢ < z wherez is a clock and: is a constant irQ..g. The set of all constraints is denotéd Z). It is possible
to construct a constraint always satisfied, it is dendteé or just left blank. Since atomic formulae denote open
intervals (ofR.), and only intersection and union are used, each formula represents a finite union of products
(over possible values of clocks) of open intervals, thus an open subRe€t,oftheren is the number of clocks. It
is impossible to create a constraint equivalenttoc or z < c.

Sgnal automata. A signal automaton is defined by: an alphabigt a finite set ofstates, Q, a set ofinitial

states, I C Q, a set ofaccepting states, F C Q, a finite set ofclocks, Z, and a finite set oftransitions

AC QO x X x®(Z)x2% x Q. A transitions is denoted(q, o, ¢, p,g’) and is represented as in Fig. @ (s

the constraint ang is the set of the clocks that have to be reseted at the end of the transition). The niRgsping

from clock valuations and a set of clocks to clocks valuations, resets to zero all the valuations of the clocks in the
set, other valuations are unaffected. When no clock is reset, this is indicagedrbgft blank.

)
<) o/¢/p @ jbi@(Z)
pCZ

Fig. 2. Representation of transiti@g, o, ¢, o, p).

A transition is valid fromy to ¢ if the input iso on (¢, ¢") (open) and the clock constraigtis satisfied orjz, ¢']
(closed!). This means that for each clagkz;, z; + (' — £)] has to be included in a finite union of products of
open intervals, which means strictly included and away from the bounds.

Let A= (X, 0Q,1,F, Z, A) be a signal automaton amd a signal. Sincen can be split/spliced in infinitely
many ways, it is useless to consider some precise representation for it; instsazhnsidered to be the piecewise
constant function fronf0, |m|) to ¥ U {L} (L stands for undefined) corresponding to its non-stuttering normal
form. Let m; be the value ofn at timet. A run of m over A is a finite sequence of transitions and strictly
increasing datef(6;, #;) }1<i<n- Letto =0 ands; = (¢;, oy, ¢i, pi, pi). A run must satisfy:

(1) Zo = 0 (initialization),
(2) Vi, 1<i < n (passing through a transition)
(@) vt € (ti—1, 1), m; =0,
(b) V6 € [0, t;—t;—1], $i(Z;,_, + b) is satisfied,
(3) Vi, 1<i < n (passing through a state)
(@) gi+1=pi,

240 J. Durand-Lose / Information Processing Letters 89 (2004) 237—245

(b) Z;, =Reset(Z;,_, +ti—ti—1, pi),
(4) t, = |m| (complete reading of:).

Let us note that (3)(a) the value mfatz; is not considered whereas (2)(b) clock constrajintg and¢; have to be
satisfied at; (before resetting the clocks fgx_1 and after resetting fap;). The pre-signal corresponding to this
In—lp—1

runisosto? .. .oy . A run isaccepting iff g1 € I andp, € F. Thelanguage accepted by A, £L(A), is the
set of all signals for each of which there exists an accepting run for a pre-signal of its class.

Sgnal regular expressions. They are defined inductively, over an alphaBgtusinge, o, p1V2, 0p1A@2, ¢1 - @2,
¢* and(p);, s.t.o € ¥ andy, ¢1, 2 are signal regular expressions ani$ an open interval ok >0, either(d, d")
or (d, o) s.t.d,d € Q and 0< d < d'. The semantic of regular expressions is:

(1) [e] ={e},

(2) [e] ={o" |r €R-0},

() 1V @2] = [ea] U [e2],

(@) o1~ @2] = [ea] N [e2],

(5) o1 - 92] = {m1.mz|ma € [p1] Amz € [g2]},

©6) []=U2o(e']D st.[¢%] ={e}. ot=0p, p"Tt=0¢" o,
(7) ey] ={mele] | Im| eI}

Let X and X’ be two alphabets, @naming function, A, is a function fromX to X’. It is extended to pre-signals
in the following way:A(o;052...0,") = A(61)™A(02)™...A(07)™ and to sets of signals pointwisely (it is not
possible to do it inductively on rational expressions because of the intersection).

All these operations are compatible with the equivalence relation.

2. From regular expressionsto automata

We show that basic regular expressions correspond to automata and then that the languages accepted by automa
are closed for the corresponding operators. All is done following usual constructions for un-timed and timed
automata. Emphasis is made on substantially different constructions: the automata product nsgmplitings
induced by an automaton have to be considered) and duration restrictions. Fig. 3 shows the construetions for

anda.
0O 00

Fig. 3. Automata foe anda.

If more than one automaton are considered, the sets of states as well as sets of clocks are assumed to be disjoit
(renaming is used if necessary) but the alphabets are identical (or the union is considered). In the pictures, the
dotted parts are discarded in the constructions, the dashed parts are preserved but are not relevant and the dash
boxes delimit automata.

Since automata are non-deterministic, the automaton for an union is very easy to built: just gather the automata
as in Fig. 4.

Intersection. The classical way to make an intersection is to make a product of automata and then to restrain initial
and accepting states. The problem is that accepting runs may be differenile341b? on one automaton and
a*h?b! on the other. These pre-signals both represéht and have infinitely many common sub-splits (e.g.,

J. Durand-Lose/ Information Processing Letters 89 (2004) 237—245 241

rFr————_————— — — — — — — 9

L e =2

rFr——————————— — — — — 9

Fig. 4. Automaton forL (A1) U L(A2).

a'a®piptpl), but it may happen that none of them corresponds to an accepting run on both automata. Each
automaton is transformed in order that any sub-split of an accepting run also corresponds to an accepting run.
This is done by adding for each transition 3 transitions and 1 new state as depicted on Fig. 5. The generated
automaton accepts exactly the same language and, any sub-split of any pre-signal corresponding to an acceptin
run also corresponds to an accepting run.

a/¢/

) o/6/p © ()

Fig. 5. Full split of transitiors = (¢, o, ¢, p, p).

With thisfull split form, it is easy to construct the product automaton and then the intersection. Fig. 6 shows the
product of transitions; of course only and all pairs of transitions with the same symbol are considered. The set of
initial (accepting) states is the product of initial (accepting) states. If mis accepted bylbathd A, split asm1
andmy, then any sub-split2” common to bothn1 andm, corresponds to an accepting run in the product of the
full split automata. If mis not accepted b4s (A>), then neither it is by the full split form afl; (A2) and nor by
the product.

5
I

Fig. 6. Product of transitiongy1, o, ¢1, p1, p1) and(gz, o, ¢2, p2, p2).

242 J. Durand-Lose/ Information Processing Letters 89 (2004) 237-245

Concatenation and iteration. Concatenation of4; and.4, is done by doubling each transition to an accepting
state of.A; to an initial state ofdy; these copies reset all the clocks.d$ as illustrated in Fig. 7. The initial
(accepting) states are the onesff (A).

Fig. 7. Transition added fof (A1) - L(A5).

For the finite iteration (or Kleene star), copies of each transition to a final state are made to each initial state;
these copies reset all the clocks. An automaton recognizisgadded for zero iteration. This is summed up in
Fig. 8.

Fig. 8. Transitions and state added fog.A)*.

Duration restriction. It cannot be added directly to transitions leading to accepting states because it might be
satisfied at the end of the last transition but not during the whole transition. This is handled by adding an extra
state and adding for each transition leading to an accepting state one new state and two consecutive new transition
(corresponding to one extra split in the run); the duration restriction is only present in the last constraint as depicted
on Fig. 9. A new clockzg is added,; it only appears in, and in every, final transitiopoas I (remembet is open

and its bounds are). Sincezg is zero when the run starts and is never reset, it corresponds to the duration of
the part already read; thus the total duration of any accepted input has td be in

Fig. 9. Automaton fofL(.A));.

Finally, by induction:
Lemma 1. The signal languages described by signal regular expressions are accepted by signal automata.

If a renaming function is applied t6(¢), it should be applied to every transition. This is not a problem since
intersections are encoded inside the automaton structure.

J. Durand-Lose/ Information Processing Letters 89 (2004) 237—245 243

3. From automatato regular expressions

The construction is done in two steps: first separatingbock automatomd into n 1-clock signal automata, one
for each clock{A,}.cz, and a renaming functioh. These 1-clock automata are then considered independently.

Separating the clocks. Various manipulations are made in order to finally get an automdtofor each clock;
such that the intersection of the accepted languages is the one acceptatplig some renaming.

(1) Alldisjunctions are removed. First all constraints are presented in normal disjunctive form. No transition can
be simply separated in two transitions because the disjunction may be satisfied during the whole duration while

no single term is. Transitions (and pre-signals) are split and disjunction are disposed of as in Fig. 14;where
andg¢2 may still containv.

(>0/¢1\/¢>2/P

Fig. 10. Removing disjunction i = (q, o, ¢1 Vv ¢2, p, p).

(2) Allloops are removed by putting an extra state (and split) in each loop.

(3) The automaton is made deterministic by replacing each transition symbol by a new symbol appearing only in
this transition. Each run corresponds to a run where transitions are indicated. The original run/pre-signal is

recovered by projecting the transition symbols on the original symbols. This projection is dénoted

(4) One copy of the automaton is made for each clock, setting to true atomic constraints over other clocks. From
the deterministic association of symbols to transitions, any run on one automaton can only correspond to one

run (the same) for each copy. If a signal is acceptedibthen it is accepted by all copies (constraints are only

conjunctive). Conversely, if a signal is accepted by all copies, then it has to be with the same run which is also

accepting ford (conjunctions of constraints satisfied for all clocks).

The automatord is thus transformed int@A4,},cz and a renaming function such that:

L(A) = A(N £(Az>), (1)

zeZ

and copies can be treated independently.

From one-clock automaton to regular expression. Let A, be a signal automaton with only one clock.4; =
(X,0,1,F,{z},A). Letrp=0<11 <12 < --- < 7, < 741 = 00 be the list of all the constants that appear in at
least one clock constraint id (plus 0 and>o). Since constraints are conjunctions over atomic formglaer; or

T; <z, they correspond ta, < z < 74 (or to false and are removed), singe= 0 (transitions have strictly positive
durations) and;,+1 = oo all kinds of intervals are covered. Constraints are “constant” on éach 1), either
satisfied or not.

Let A1 be the subset of reset-less transitionglgfand A, the subset of transitions resettingA = A1 U Ay).

One-clock automaton without reset. Only the transitions inA1 are considered here. Lét(q, p, i) denote the
un-timed language corresponding to the runs fipito p using only transitions whose constraints are satisfied

244 J. Durand-Lose/ Information Processing Letters 89 (2004) 237-245

on (t;, ti+1). There is an un-timed regular expression fofg, p,i). Let Lq_w denote the signal language
corresponding to the runs from to p of total durations strictly less than. The Lq_”, can be computed
recursively:

L, ,=(L(g, p,0) g, (Uleifqa=pr}),)
Titl ; ,
Lq:p—L;—)p < U <L:]_)r>(fa 00)" 0>
(r,0, 14 <z<78.0,p)€AL (Ti-1,Ti+1)
To <T;<Tg
o U (), i) ®
@ (73,00) (0,7i11)
(r,0,ta<z<78,0,5)€AL s Tit1
To <T;<Tg

Beforets, the automaton is “constant”, classical language theory gives an un-timed expression which only needs to
have its duration restrained (2). The empty word has to be added because its duration is zero. Eq. (3) holds becaus
duration could be less thap, or 7; could be during the last transition (possibly finishing;ator during a previous
one. Eq. (2) directly gives a signal regular express{@nuses concatenation, finite union and regular expression.
By induction, aIILq_>,7 correspond to signal regular expressions.

LetL,_, , denote the language corresponding to all the runs yamp: L,_, , = Lg‘;p = Lf]'i},,
One-clock automata with reset. The resetting transitions, i.e., the onesdp, are now considered, together with
the ones inA1. Let Ay = {81, 82, ..., 8¢} and g = (g, ok, Ty < z < Tp,, {2}, pr). Let Lf}(;{'"’sk be the language
corresponding to the runs starting fromusing only resetting transitiords, §z, ..., ¢ and ending by; (I < k).
The following recurrence equations are satisfied:

61 *
Ls,51 - <<L‘Y_)ql>(’a1’°°)'Gl>(o,rﬁl)'<<<Lpl_)q1>(fa1'°°)'al>(0,rﬁl)> ’)
81,...,0k k-1
Lo (<<L PR BV VA (N MY)
Ok — 6 —
S,0k Sk (Tgy, ,00) 0,7, 1<L1J<k 5,07 PI=> Gkl (tgy, oo) ©,75,)
*
k-1
(L .ok> u] ™ < >) , 5
<<< l’k_”Ik)(fak,OO) 0,74 l<Lle Pk 5/ 171—>qA>(rak 00y ©.75,) ®)
01,40k 81,000y 0p—1 81yeees Sk 7 015eees (—1
Ls’lél =L, 5 =y leék k ka 5 G (I <k). (6)

Resetting transitiod; has to be done at least once, then the run can go back through it any number of times (4).
The same holds for a run ending By, it has to be done once, and the run can go back through it, each time other
allowed resetting transitions may be used or (@t A run ending bys; does not usé,. after the last passage, if

any, throughs; (6).

L(A;) = U (st Y U Lsél 1—>1> @)
sel, teF 1<i<k

All these equations use signal regular expressions and their inductive operators. So, the set of signal language:
accepted by one-clock signal automata is included in the set of signal languages described by signal regular
expressions. From (1) and (7) comes:

Lemma 2. The signal languages accepted by signal automata can be described by signal regular expressions and
renaming.

J. Durand-Lose/ Information Processing Letters 89 (2004) 237—245 245

4. Conclusion
Altogether, we have proved that:

Theorem 3. The set of signal languages accepted by signal automata is equal to the one described by signal
regular expressions and renaming.

Renaming seems to be unavoidable as proved in the usual model [8]. We believe that regular expressions for
signals like the ones of [6] can also provide a Kleene theorem. We also believe that there is some algebraic context
like in [4,2] and that infinite duration and Zeno configurations can be approached with techniques as in [5].

It should also be interesting to investigate the consequences of choosing for the transitions open interval
constraints that should be verified on closed intervals.

Acknowledgement

We wish to thank the anonymous referee for stressing out the importance of pre-signals.

References

[1] E. Asarin, P. Caspi, O. Maler, A Kleene theorem for timed automata, in: Proc. 12th Annual IEEE Symp. on Logic in Computer Science,
Warsaw, Poland, 1997, pp. 160-171.

[2] E. Asarin, P. Caspi, O. Maler, Timed regular expressions, J. ACM 49 (2) (2002) 172—-206.

[3] R. Alur, D.L. Dill, A theory of timed automata, Theoret. Comput. Sci. 126 (2) (1994) 183-235.

[4] E. Asarin, Equations on timed languages, in: T.A. Henzinger, S. Sastry (Eds.), Hybrid Systems: Computation and Control, HSCC '98, in:
Lecture Notes in Comput. Sci., vol. 1386, Springer-Verlag, Berlin, 1998, pp. 1-12.

[5] B. Bérard, C. Picaronny, Accepting Zeno words: a way towards timed refinements, Acta Inform. 37 (1) (2000) 45-81.

[6] P. Bouyer, A. Petit, A Kleene/Blichi-like theorem for clock languages, J. Autom. Lang. Comb. 7 (2) (2002) 167-186.

[7] C. Dima, Real-time automata and the Kleene algebra of sets of real numbers, in: STACS ’00, in: Lecture Notes in Comput. Sci., vol. 1770,
2000, pp. 279-290.

[8] Ph. Herrmann, Renaming is necessary in timed regular expressions, in: FSTTCS '99, in: Lecture Notes in Comput. Sci., vol. 1738, Springer-
Verlag, Berlin, 1999, pp. 47-59.

