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Black hole computation
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Black hole model

Observer

[Hogarth 94 & 00]

[Etesi & Nemeti 02]

1. Observer at the “edge”

2. Machine sent into the black hole infinitely accelerated

3. Message sent by the machine received by the observer
within a bounded delay
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Malament-Hogarth space-time

Maximum delay

Machine infinite time ahead of it

Possible messages

Black hole

Observer’s life-line

Message indicates the result of the computation

After the delay, the observer knows whether the computation stops

Any recursively enumerable problem can be decided!
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Related models

Main idea: infinitely many “iterations” on a sub-time-scale

Can be achieved with a transfinite ordinal scale as in:

Infinite time Turing machines
[Hamkins 02]

Or with a “Zeno” sub-scale as in:

Piecewise constant derivative systems
[Asarin & Maler 95, Bournez 99]

We use the last approach
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Cellular automata to

Abstract geometrical computation
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Basis

Well-known Model for parallelism, biology, physics. . .

Discrete time and space

Locally finitely many states

Local interaction

Uniform in space and time

Turing-universal model

Space

Time
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Space-time diagrams understanding

[Boccara, Nasser & Roger 91]

[hordijk-shalizi-crutchfield01]

Observation of discrete linesÃ keys to dynamic
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Space-time diagrams designing

[Fischer 65]

[Varshavsky et al. 70] [Varshavsky et al. 70]

Easily generated discrete linesÃ special purposes CA design
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Continuous abstraction
Signal: important notion, often used in literature

to describe

to design

Space (Z)

T
im

e
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Signal machine and restriction
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Model definition

Z× N R× R
+

T
im

e

Space

Signal

(Meta-signal, position)

Collision
(Rule, position)

Position
(x, t)

Meta-signal

µ = (ι, ν)

Rule
{µ−

i }i → {µ
−

j }j

– p. 13/29



Model definition

Z× N R× R
+

T
im

e

Space

Signal

(Meta-signal, position)

Collision
(Rule, position)

Position
(x, t)

Meta-signal

µ = (ι, ν)

Rule
{µ−

i }i → {µ
−

j }j

– p. 13/29



Model definition

Z× N R× R
+

T
im

e

Space

Signal

(Meta-signal, position)

Collision
(Rule, position)

Position
(x, t)

Meta-signal

µ = (ι, ν)

Rule
{µ−

i }i → {µ
−

j }j

– p. 13/29



Properties and examples
Finite number of values & rules

Light cone

Local interaction

Uniform in space and time

Continuous space and time
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Strange space-time diagrams

Zeno artifact Unwanted cases

Unwanted because

The number of signals is bursting to infinity
(free creation of mater/energy)

Difficulty (if not impossibility) to define continuation there
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Restriction

Energy : µ −→ E(µ) ∈ N
∗

∀ρ = {µ−

i }i → {µ
+

j }j ,
∑

E(µ−

i ) ≥
∑

E(µ+

i )

E( configuration ) =
∑

E( existing signals )

Total energy quantified and bounded

The total number of signals is bounded

All energies equal
Ã the number of signals is preserved by a collision
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Turing-computing power
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Simulating 2-counter automata

be:B++
A--
IF A!=0 be1
IF B!=0 im

be1:A--
IF A!=0 be

pa:B--
A++
IF B!=0 pa
IF A!=0 be

im:B--
A++
A++
IF B!=0 im1
IF A!=0 be

im1:B--
A++
A++
A++
IF B!=0 im1
IF A!=0 be

2 non-negative counters× 3 operations

Encoding positions of counters

ze
ro

on
e a

0

a

1

a

2

a

3

a

. . .

b

0

b

1

b

2

b

3

b

. . .

Encoding of configurations
a = 0 0 < a

b=0 ze
ro

on
e a b

←−n

ze
ro

on
ea b

←−n

0<b ze
ro

on
e ab

←−n

ze
ro

on
ea b

←−n

ze
ro

on
eab

←−n
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Implementation of A--
ze

ro

on
e

a = 0

tim
e

←−n+1

a

←−n

−→n

ze
ro

on
e

0 < a

1

1
1

3

1
3

←−n+1

←−n

−→n

←−
n’

−→
n’

a

−→a

a
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Some Examples

be:B++
A--
IF A!=0 be1
IF B!=0 im

be1:A--
IF A!=0 be

pa:B--
A++
IF B!=0 pa
IF A!=0 be

im:B--
A++
A++
IF B!=0 im1
IF A!=0 be

im1:B--
A++
A++
A++
IF B!=0 im1
IF A!=0 be

6

a=1 b=0

6

a=3 b=0

6

a=5 b=0
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Handling the halt

Restriction is always satisfied but. . .

what about halting?

The instruction turns into a yes/no signal leaving on the
left
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Black hole effect
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Providing a strain

×2 ×1

×2

×2
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Providing a shrinking

Two consecutive strains with the same directions
coefficient 1/2 on one direction then the other

Iterating possible if spatially bounded
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Iterating shrinking

(For a spatially bounded computation)

– p. 25/29



Bounding delay

Simulation & iterated shrinking construction satisfy the restriction

computation

YY

Accepts

computation

NN

Rejects

computation

Does not stop

Bounding signals indicate when it is too late to get any answer
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Conclusion and extension
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Conclusion

Turing computation power in a continuous space and
time model

Geometric model where geometric constructions allow
Zeno effects

Similarity with the Black hole model

Rational numbers are enough to get all this
(i.e. distinction lies in continuity and not in cardinality)
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Extension

Second (and higher) accumulation could be generated
by lifting the restriction (hierarchy climbing)

Real values

could be used as oracles

analog model
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