Abstract geometrical computation for Black hole computation

Jérôme DURAND-LOSE

jerome.durand-lose@lifo.univ-orleans.fr

Laboratoire d'Informatique Fondamentale d'Orléans Université d'Orléans, France

Outline

- 1. Black hole computation
- 2. Cellular automata to Abstract geometrical computation
- 3. Signal machine and restriction
- 4. Turing-computing power
- 5. Black hole effect
- 6. Conclusion and extension

Black hole computation

Black hole model

1. Observer at the "edge"

Black hole model

- 1. Observer at the "edge"
- 2. Machine sent into the black hole *infinitely accelerated*

Black hole model

- 1. Observer at the "edge"
- 2. Machine sent into the black hole *infinitely accelerated*
- 3. Message sent by the machine received by the observer within a bounded delay

Malament-Hogarth space-time

Message indicates the result of the computation

After the delay, the observer knows whether the computation stops

Any recursively enumerable problem can be decided!

Related models

Main idea: infinitely many "iterations" on a sub-time-scale

Can be achieved with a transfinite ordinal scale as in: Infinite time Turing machines

[Hamkins 02]

Or with a "Zeno" sub-scale as in:

Piecewise constant derivative systems [Asarin & Maler 95, Bournez 99]

We use the last approach

Cellular automata to

Abstract geometrical computation

Well-known Model for parallelism, biology, physics...

Discrete time and space

Basis

Well-known Model for parallelism, biology, physics...

Discrete time and space Locally finitely many states

Basis

Well-known Model for parallelism, biology, physics...

Discrete time and space Locally finitely many states Local interaction

Basis

Well-known Model for parallelism, biology, physics...

Discrete time and space Locally finitely many states Local interaction Uniform in space and time

Turing-universal model

Space-time diagrams understanding

[hordijk-shalizi-crutchfi eld01

[Boccara, Nasser & Roger 91]

Observation of discrete lines ~> keys to dynamic

Space-time diagrams designing

[Varshavsky et al. 70]

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
0	-						1			0									1					-	-	1	-	1
1									0	0	0																	T
2								0	D		0	0																1
3							0	D					0															
4						0	D		D					0														
5					0	D	1	Þ	1					0	0											1		
6			-	0	D	1	D	1	D		0				0	0							1					-
7			0	D		D		D	1			0				D	0							-	-	1		
8		0	D	-	D	-	D	-	D			-					0	0					1					-
9		D	-	D	-	D	-	Þ	-		-	0			-	4		0	0							-		-
10	ŏ		D	-		-	D	-	D		0	-	0		0		\triangleleft	-		0	-					1		-
11	ŏ	Ā		D	-	D	-	D	-		-	0	-		-	4		\triangleleft		0	0							-
12	ŏ				D	-	D	-	D								0				0	0			-			-
13	õ	Ē	-	Ā		D	-	D	-		-	0	-	4		0		0	1	0	-		0			-	-	-
14	ŏ	Ē	0		D		D	-	D		0	-	0		0	-	0	-	0		0		0	0				-
15	õ	V	õ		-	0		D	-		-	0	-	0	-	4	-	0	-	0	-	0		V	0	-	-	-
16	õ	ñ	ŏ	-	0	-	D		D		4	-	4	-	0	-	0	-	4		0	-		-	0	0		-
17	õ	H	ŏ	0	-		-	0			-	0	-	0	-	4	-	0		4	-	0		0	4	1	0	
18	ě	늼	-	Ē		-	0	-	D		4	-	0	-	4	-	0	-	4	-	0	-		-	0	4	0	
19	ě	H	-	H		<	-		-	'n	D	1	-	1		<	-	<	-	<	-	1	-	<	-	1		ě
20		H		H	1	4				Н	1	1	1	-	<	-	<	-	<	-	<	-	1	-	<			ě
21		H			Õ						Õ			<	4	<	-	<		<	-	<	4	<		1	'n	ě
22	-	H	1	-	ŏ	-			<	4	ŏ	-		1	<	-	<	-	<	-	1	-	1		D	4	H	ě
23		1	Õ	-	ŏ			<	4		õ	1	-		D	<	1	<	-	<	-	<		1	-	D	H	ě
24	ě		ŏ	-	ŏ	-	1	4	-		9		-	-		1	1	4	1	4	1		D	4	-	0		ě
25	-	늼	×	-	×	1	~	-	-	-	-	H	-		-		D	1	4	1		1	-	D		X	h	ž
26	ě	늼	×	-	4			-	-		-	님	1		-		-	1	1		D	4		-	D	×	님	ž
27	-	늼	×	-		님	-	-	-		-		0	-	-	1	-			1	-	D	-	-	h	9	님	ž
28		늼	H	-		님		-			1	7	X		1	-	-	-	D	-	-	~		-	늼	-	늼	-
20		늼	H	-		늼	-	-	-	1	~	-	X	1	~	-		1	-			-	~		늼	-	님	ž
30		늼	X	-		님			1	-	-	-	9		-			4	-	-	D	-		6		-	늼	ž
21		늼	X	-	-	늼	-	1	7	-	-			님			-		-		-			X	4		늼	2
22		늼	H	-		님	1	7	-	-	-	-	-			-		-	N	-	-	~		X	-	2	H	-
32		늼	台	-		-	2	-	-		-	-		-			-	-	-		-	-	F	4	-	S	2	
24		늼		-	1	7	X		-		-			*				-	-	-		-	H	-	-	X	님	
25		믬		1	4	-	X	-	-	-			H	-			-		-	-	4		H	-	-	X	님	~
35		님	4		-	-	S	-	-	-		V	吕	-	-	늼	-	-		-	-	2	2	-	-	S		
30			-	님	-	-	8	-			2	-	님	-		님	-	2			-	2	D	~	_	2		
3/1			-	님	-	-	8			4	-	2		-	-			-				X	-	2		8		
38		믬	-	님	-	-		-	2		-	2	R	-	-			-	1	~				-		9		
39		님	-	님	-	-	-	-		V	~		님	-	-		X	1	V			-		-		_	님	
40		님	-	님			-	-		-		4	님	-	-		4				-	-	-		님	-	님	-
41			-				-	-	7			-		-	-		-					-	V			-		-
42					2	H			님	P	2		님					2	2				님					-
43																		0										
44									-		-												-		-			-
	_						_	_	_		_	_										_	_	_			_	_

			r	NOT	atio	n			
Α	в	С	С	D	D	E ₁	E2	R	F
	••		•		Ø	0		•	

[Varshavsky et al. 70]

Easily generated discrete lines ~>>> special purposes CA design

Continuous abstraction

Signal: important notion, often used in literature

- to describe
- to design

Signal machine and restriction

Model definition

Model definition

Position

(x,t)

Meta-signal

 $\mu = (\iota, \nu)$

Model definition

 $\mathbb{R}\times\mathbb{R}^+$ **Position** Signal (x,t)(Meta-signal, position) Meta-signal $\mu = (\iota, \nu)$ Collision IIMe (Rule, position) Rule $\{\mu_i^-\}_i \to \{\mu_j^-\}_j$ Space

Properties and examples

- Finite number of values & rules
- Light cone
- Local interaction
- Uniform in space and time
- Continuous space and time

Strange space-time diagrams

Zeno artifact

Unwanted cases

Unwanted because

The number of signals is bursting to infinity (free creation of mater/energy)

Difficulty (if not impossibility) to define continuation there

Restriction

• Energy :
$$\mu \longrightarrow E(\mu) \in \mathbb{N}^*$$

•
$$\forall \rho = \{\mu_i^-\}_i \to \{\mu_j^+\}_j, \quad \sum E(\mu_i^-) \ge \sum E(\mu_i^+)$$

- $E(\text{ configuration }) = \sum E(\text{ existing signals })$
- Total energy quantified and bounded
- The total number of signals is bounded

All energies equal

 \rightsquigarrow the number of signals is preserved by a collision

Turing-computing power

Simulating 2-counter automata

Implementation of A--

Some Examples

 $a = 1 \ b = 0$

 $a=3 \ b=0$

 $a=5 \ b=0$

Handling the halt

Restriction is always satisfied but...

what about halting?

The instruction turns into a $\mathtt{yes/no}$ signal leaving on the left

Black hole effect

Providing a shrinking

Two consecutive strains with the same directions coefficient 1/2 on one direction then the other

Iterating possible if spatially bounded

Iterating shrinking

(For a spatially bounded computation)

Bounding delay

Simulation & iterated shrinking construction satisfy the restriction

Bounding signals indicate when it is too late to get any answer

Conclusion and extension

Conclusion

- Turing computation power in a continuous space and time model
- Geometric model where geometric constructions allow Zeno effects
- Similarity with the Black hole model
- Rational numbers are enough to get all this
 (*i.e.* distinction lies in continuity and not in cardinality)

Extension

- Second (and higher) accumulation could be generated by lifting the restriction (hierarchy climbing)
- Real values
 - could be used as oracles
 - analog model