Abstract geometrical computation for Black hole computation

Jérôme DURAND-LOSE

jerome.durand-lose@lifo.univ-orleans.fr
Laboratoire d'Informatique Fondamentale d'Orléans
Université d'Orléans, France

Outline

1. Black hole computation
2. Cellular automata to Abstract geometrical computation
3. Signal machine and restriction
4. Turing-computing power
5. Black hole effect
6. Conclusion and extension

Black hole computation

Black hole model

1. Observer at the "edge"

Black hole model

1. Observer at the "edge"
2. Machine sent into the black hole infinitely accelerated

Black hole model

1. Observer at the "edge"
2. Machine sent into the black hole infinitely accelerated
3. Message sent by the machine received by the observer within a bounded delay

Malament-Hogarth space-time

Observer's life-line

Message indicates the result of the computation
After the delay, the observer knows whether the computation stops
Any recursively enumerable problem can be decided!

Related models

Main idea: infinitely many "iterations" on a sub-time-scale

Can be achieved with a transfinite ordinal scale as in:
Infinite time Turing machines
[Hamkins 02]

Or with a "Zeno" sub-scale as in:
Piecewise constant derivative systems
[Asarin \& Maler 95, Bournez 99]

We use the last approach

Cellular automata to

Abstract geometrical computation

Basis

Well-known Model for parallelism, biology, physics...

Discrete time and space

Basis

Well-known Model for parallelism, biology, physics...

Discrete time and space
Locally finitely many states

Basis

Well-known Model for parallelism, biology, physics...

Discrete time and space
Locally finitely many states
Local interaction

Basis

Well-known Model for parallelism, biology, physics...

Discrete time and space
Locally finitely many states
Local interaction
Uniform in space and time

Turing-universal model

Space-time diagrams understanding

(a)

(b)

FIG. 7. The four different (out of 14 possible) interaction products for the $\alpha+\beta$ interaction

FIG. 7. Rule 54. (a) Annibilation of the radiating partie. (b) The same as (a) with the mapping defined in Fig. 6.

[Boccara, Nasser \& Roger 91]

Observation of discrete lines \rightsquigarrow keys to dynamic

Space-time diagrams designing

[Fischer 65]

[Varshavsky et al. 70]

[Varshavsky et al. 70]

Easily generated discrete lines \rightsquigarrow special purposes CA design

Continuous abstraction

Signal: important notion, often used in literature

- to describe
- to design

Space (\mathbb{Z})

Signal machine and restriction

Model definition

$\mathbb{R} \times \mathbb{R}^{+}$

Space

Model definition

$\mathbb{R} \times \mathbb{R}^{+}$
Signal
Position
(Meta-signal, position)
Meta-signal
$\mu=(\iota, \nu)$

Space

Model definition

$\mathbb{R} \times \mathbb{R}^{+}$

Signal
Position
(Meta-signal, position)

Space

Rule

$$
\left\{\mu_{i}^{-}\right\}_{i} \rightarrow\left\{\mu_{j}^{-}\right\}_{j}
$$

1

Properties and examples

- Finite number of values \& rules
- Light cone
- Local interaction
- Uniform in space and time
- Continuous space and time

Strange space-time diagrams

Zeno artifact

Unwanted cases

Unwanted because

- The number of signals is bursting to infinity
(free creation of mater/energy)
- Difficulty (if not impossibility) to define continuation there

Restriction

- Energy : $\mu \longrightarrow E(\mu) \in \mathbb{N}^{*}$
- $\forall \rho=\left\{\mu_{i}^{-}\right\}_{i} \rightarrow\left\{\mu_{j}^{+}\right\}_{j}, \quad \sum E\left(\mu_{i}^{-}\right) \geq \sum E\left(\mu_{i}^{+}\right)$
- $E($ configuration $)=\sum E($ existing signals $)$
- Total energy quantified and bounded
- The total number of signals is bounded

All energies equal
\rightsquigarrow the number of signals is preserved by a collision

Turing-computing power

Simulating 2-counter automata

2 non-negative counters $\times 3$ operations
Encoding positions of counters

Encoding of configurations

	$a=0$	$0<a$
$b=0$		\%
$0<b$	ot ouba	¢

Implementation of A--

Some Examples

be1:A--
IF A!=0 be
pa: B--
A++

$$
\mathrm{IF} \mathrm{~B}!=0 \mathrm{pa}
$$

$$
\text { IF } A!=0 \text { be }
$$

im: B--

$$
A++
$$

A++

$$
\text { IF B }!=0 \quad \mathrm{im} 1
$$

$$
\text { IF A }!=0 \text { be }
$$

im1: B--
A++
A++
A++

$$
\text { IF } B!=0 \quad \mathrm{im} 1
$$

$$
\text { IF } A!=0 \text { be }
$$

$$
\begin{aligned}
& \text { be: B++ } \\
& \text { A-- } \\
& \text { IF } A!=0 \text { be1 } \\
& \text { IF } B!=0 \text { im }
\end{aligned}
$$

$a=1 \quad b=0$

$a=3 \quad b=0$

$a=5 \quad b=0$

Handling the halt

Restriction is always satisfied but. . .
what about halting?

The instruction turns into a yes/no signal leaving on the left

Black hole effect

Providing a strain

Providing a shrinking

Two consecutive strains with the same directions coefficient $1 / 2$ on one direction then the other

Iterating possible if spatially bounded

Iterating shrinking

(For a spatially bounded computation)

Bounding delay

Simulation \& iterated shrinking construction satisfy the restriction

Bounding signals indicate when it is too late to get any answer

Conclusion and extension

Conclusion

- Turing computation power in a continuous space and time model
- Geometric model where geometric constructions allow Zeno effects
- Similarity with the Black hole model
- Rational numbers are enough to get all this (i.e. distinction lies in continuity and not in cardinality)

Extension

- Second (and higher) accumulation could be generated by lifting the restriction (hierarchy climbing)
- Real values
- could be used as oracles
- analog model

