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Abstract. In the Cellular Automata (CA) literature, discrete lines in-
side (discrete) space-time diagrams are often idealized as Euclidean lines
in order to analyze a dynamics or to design CA for special purposes.
In this article, we present a parallel analog model of computation corre-
sponding to this idealization: dimensionless signals are moving on a con-
tinuous space in continuous time generating Euclidean lines on (continu-
ous) space-time diagrams. Like CA, this model is parallel, synchronous,
uniform in space and time, and uses local updating. The main difference
is that space and time are continuous and not discrete (i.e. R instead
of Z). In this article, the model is restricted to Q in order to remain
inside Turing-computation theory. We prove that our model can carry
out any Turing-computation through two-counter automata simulation
and provide some undecidability results.

Key-words: Abstract geometrical computation, Analog model of computation, Cellu-
lar automata, Geometry, Turing universality.

1 Introduction

Cellular automata (CA) form a well known and studied model of computation
and simulation. Configurations are Z-arrays of cells, the states of which belong
to a finite set. Each cell can only access the states of its neighboring cells. All
cells are updated iteratively and simultaneously. The main characteristics of CA
are: parallelism, synchrony, uniformity and locality of updating. The trace of a
computation, or the orbit starting from an initial configuration, is represented
as a space-time diagram: a coloring of Z x N with states.

Discrete lines are often observed on these diagrams. They can be the key
to understanding the dynamics and correspond to so-called particles or sig-
nals as in, e.g., [lla01, pp. 87-94] or [BNR91,DL98,HSCO01,JSS02]. They can
also be the tool to design CA for precise purposes and then named signals
and used for, e.g., prime number generation [Fis65], firing squad synchroniza-
tion [Got66,VMP70,LN90,Maz96] or reversible simulation [DL97,DL00]. These
discrete lines systems have also been studied on their own [DM02,MT99]. All the
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figures in cited papers exhibit discrete lines which are explicitly refereed to —and
are often idealized as Euclidean lines— for describing or designing. Many more
articles could have been cited, the cited ones were randomly chosen in order to
show the variety.

We want to consider this idealization: Euclidean lines on their own —not
as a passing point for analysis or conception— while remaining with the main
characteristics of CA. As Euclidean lines belong to Euclidean spaces and not
Z x N, the support of space and time is now R x RT. Configurations (at a
given time or the restriction of the space-time diagram to a given time) are not
mappings from Z to a finite set of states but partial mappings from R to the
union of a finite set of meta-signals and a finite set of collision rules, defined
for finitely many positions. The time scale is R* (not N), so that there is no
such thing as a “next configuration”. The following configurations are defined
by the uniform movement of each signal, the speed of which is defined by its
associated meta-signal. When two or more signals meet, a collision happens.
Each collision follows a collision rule, each of which is defined by a pair of sets of
meta-signals: (incoming meta-signals, outgoing meta-signals). There must be at
least two incoming meta-signals and all sets of incoming meta-signals must differ
(which means determinism). In the configurations following a collision, incoming
signals are removed and outgoing signals corresponding to the outgoing meta-
signals are added.

Due to the continuous nature of space and time and the uniformity of move-
ments, the traces of signals form Euclidean lines on the space-time diagrams,
which we freely call signals. Each signal corresponds to a meta-signal which
indicates its slope. Since there are finitely many meta-signals, there are finitely
many slopes. This limitation may seem restrictive and unrealistic, even awkward
as a finite quantification inside an analog model of computation. Let us notice
that, first, it comes from CA: once a discrete line is identified, wherever (and
whenever) the same pattern appears, the same line is expected, thus with the
same slope. Second, we give two pragmatic arguments: (1) laws to define the
new slopes from the previous ones in collisions are not so easy to design and
pretty cumbersome to manipulate; (2) there is already much computing power
(as presented in this paper and addressed in the conclusion).

Before presenting the results in this paper, we want to convince the reader
that it is not just “one more analog model of computation”. First, it does not
come “out of the blue” because of its CA origin (where it is often implicitly used).
Second, let’s do a brief tour of analog/super-Turing models of computation®. To
our knowledge, the closest model is the Mondrian automata of Jacopini and Son-
tacchi [JS90]. They also define dynamics and work on space-time diagrams which
are mappings from R™ xR to a finite set of colors. Their diagrams should be com-
posed of bounded finite polyhedra; we are only addressing lines —(hyper-)faces
are not considered— and our diagrams may be unbounded and accumulation
points may appear (they just forbid them; we address them in [DL05]). Another

L' A wider survey can be found in [DLO3, Chap. 2], unfortunately, there is no room
here for more on the subject.



close model is the piecewise-constant derivative system [AM95,Bou97,Bou99].
Continuous space is partitioned into finitely many polygonal regions. The tra-
jectory from a point is defined by a constant derivative on each region, thus an
orbit is a sequence of (Euclidean) line segments. This model is very different
from ours: it is sequential —there is only one “signal”’— and the hyper-faces that
delimit the regions are artifacts that do not exist in our model.

All the other models are based on totally different approaches. Some only
define mapping over R like recursive analysis (type 2 Turing machines) [Wei00]
or analog recursive functions [Moo96]. Many use a discrete iterative time like
the BSS model [BCSS98] or analog recurrent neural networks [SS95]. The mod-
els with continuous time mostly use differential equations, finite support (vari-
ables) with uncountably many possible values [Orp94,S001,PE74,Bra95]. To our
knowledge, our model is the only one that is a dynamical system with continuous
time and space but finitely many local values; this is also one of the few parallel
ones.

In this paper, space and time are restricted to rationals (this is possible since
all the operations used preserve rationality); this allows manipulation by, e.g.,
Turing machines, thus remaining in the classical discrete computation theory,
and is enough for Turing-computing capability. All intervals should be under-
stood over Q, not R. Extension to R is automatic but only the rational case is
addressed here?.

After formally defining our model in Sect. 2, we show that any Turing-
computation can be carried out through the simulation of two-counter automata
in Sect. 3. The counters are encoded in unary and the instructions are going forth
and back between the two groups of signals. The nature of space is used here:
any finite number of signals can be enclosed in a bounded interval of Q.

In Sect. 4, with simple reductions from the Halting problem, we prove that
the following problems are undecidable: finite number of collisions, collision with
a given signal, appearance of a given signal, and disappearance of all signals.

Conclusion, remarks and perspectives are gathered in Sect. 5.

2 Definitions

Our abstract geometrical computations are defined by the following machines:

Definition 1 A signal machine is defined by (M, S, R) where M is a finite set,
S is a mapping from M to Q, and R is a subset of P(M)xP (M) that corresponds
to a partial mapping of the subsets of M of cardinality at least 2 to the subsets
of M (both domain and range are restricted to elements of different S-images).

2 Qur personal opinion is that Q is indeed continuous —if not analog— even if it is
countable because (1) there are no next nor previous element, (2) any interval is
either empty, a singleton or infinite, and (3) its usual topology is not the discrete
one.



The elements of M are called meta-signals. Each instance of a meta-signal
is a signal which corresponds to a line segment in the space-time diagram. The
mapping S assigns rational speeds to meta-signals, i.e. the slopes of the segments.
The set R defines the collision rules, i.e. what happens when two or more signals
meet. It also defines the intersections /extremities of the segments. The signal
machines are deterministic because R must correspond to a mapping; if it were
just a relation, then the machine would be non-deterministic.

Definition 2 A configuration, ¢, is a partial mapping from Q to the union of
M and R such that the set { g € Q| c(q) is defined } is finite.

Let us define the dynamics:

A signal corresponding to a meta-signal p at a position ¢, i.e. ¢(q) = p, is
moving uniformly with constant speed S(u). A signal must start in the initial
configuration or be generated by a collision. It must end in a collision or in the
last configuration. This corresponds to condition 1. in Def. 3.

A collision corresponds to a collision rule p = (p~, pT), also noted as p~—p™.
All, and only, signals corresponding to the meta-signals in p~ (resp. p™) must end
(resp. start) in this collision. No other signal should be present. This corresponds
to condition 2. in Def. 3.

Definition 3 The space-time diagram, or orbit, issued from an initial configu-
ration ¢y and lasting for 7%, is a mapping ¢ from [0, 7] to configurations (i.e. a
partial mapping from Q x [0,7] to M U R) such that, V(q,t) € Q x [0,T] :

1. if ¢;(q)=p then 3t;, tr€[0, T with t;<t<ty or 0=t;=t<ts or t;<t=t;=T s.t.:
- Vt' e (tiatf)a Ct’(q + S(M)(tl —1) =n,
~ t; =001 ¢, (i) € R and 1 € (er, (g:))* where g; = g+ S(u)(t; — ),
—ty=Torc(qr) € Rand pu € (ct;(qp))~ where qp = g+ S(pu)(tf —t);
2. if ¢;(q) = p~—pT € R then 3¢, 0 < g, V' € [0,T],
—ift—e<t <tthenVu € p™, ci(q+ S(u)t' —t)) = p,
—ift <t' <t+ethen Vu € pt, ci(q+ S(u)(t' —t)) = u,
= 3o, 0< @, cpp—cpy([g — @, g+ a])=p~ and c(rp4([g — a, g + o )=p™.

The traces of signals represent line segments whose directions are defined by
(S(.),1) (1 is the temporal coordinate). Collisions correspond to the extremities
of these segments. Examples of space-time diagrams are provided by the various
figures. Time is always increasing upwards.

3 Turing-computation capability

We prove the Turing-computation power of our model by simulating any two-
counter automaton (a finite automaton couple with two counters, A and B).
Each automaton can only add/subtract 1 to a counter and branch if a counter

3 This definition can easily be extended to the case where T' = co.



is non-zero. It can be described with a six-operations (the three aforementioned
ones for each of the two counters) assembly language with branching labels as
on the left part of Fig.6 (see [Min67] for more on two-counter automata).

Definition 4 A two-counter automaton has two non-negative integer counters
(A and B). Its action is defined by a sequence of labeled instructions; the only
instructions available are:

- A++ : add 1 to the value of A,

- B++ : add 1 to the value of B,

- A--:if A is not at 0 then subtract 1 from its value,

- B--:if Bis not at 0 then subtract 1 from its value,

- A!'=0 m :if A is not at 0 then the next instruction is the one labeled m,

- B!'=0 m :if B is not at 0 then the next instruction is the one labeled m.

The simulation is carried out with both counters unary encoded. Configura-
tions are formed by, left to right: a left end-marking signal, a signals amounting
for the value of A, one signal encoding the current instruction, b signals for B
and a right end-marking signal. This is depicted on Fig. 1.

—

border a =6 nth instruction b = 2 border

Fig. 1. Configuration encoding.

The only active signal (no collision ever happens without this signal being
present) is the middle one; this signal both carries out the operation and encodes
the line number. It goes forth and back between the signals encoding A and B.
The end-markers are needed when the value is zero; in such a case, there would
be no other signal on the side and the active signal would drift away infinitely.
These end-markers also provide a simple way to test for non-zero: an end marker
is met if and only if the value of the corresponding counter is zero.

They are two kinds of meta-signals: five for the counters and end-markers
and the ones generated for the code as depicted on Fig. 2. The meta-signals of
the first kind are: border, a and b of speed 0 used to mark the borders and to
encode respectively A and B in unary, and aMv and bMv of speed 1/2 and —1/2
used to increment A and B. The use of bMv is explained in the presentation of
B++ (Fig. 5). For the second kind, each line n of the program is converted to 7’
and 7 of speed 1 and —1 (except for the test B # 0 which generates 7', 'y,
and 7 y). The program is encoded in the collision rules.

The full transformation of a program into a signal machine is given in Fig. 3.
We only detail the action of the collision rules generated for B!=0 and B++
instructions (at line n). All other instructions are carried out in a similar way.



Name Speed Name Speed
order 0 n 2
| bord n
\ a 0 =2
/an 1 Ty =2
| b 0 N =2
N.bMv -1
Fig. 2. The two kinds of meta-signals.
Instruction Rightwards Leftwards
n A++ n, border} — {n, border order, '} — {border, aMv, n+1
", bord n’, bord border, '’ border, aM
{7,b}— {7,b} {a,‘ﬁ}ﬁ{a,an,E}
{m,bMv} — {7, b} {aMv, 7'} — {a,aMv, n+1}
n B+ {7, border} — {0, bMv, border}| {border, '} — {border, n+1}
{7,b} — {7, bMv, b} {a, W} — {a,nt1}
{7, bMv} — {7, bMv, b} {aMv, 7} — {a,n+1}
n A-- {7, border} — {n, border} {border, 7w} — {%er, n+1}
{7,b} — {77, b} {a, T} — {nti}
{7, bMv} — {7, b} {aMv, T} — {n+1}
n B-- {7, border} — {n, border} {border, 7} — {boﬂ, n+1}
{7, b} —>{"n} {a,n} —{a,n+1}
{7 ,bMv} — {7} {aMv, '} — {a,n+1}
nA'=0 m | {7,border} — {7, border} {border, '} — {border, n41}
{7,b}— {7 ,b} {a,'n}—{a,m}
{7, bMv} — {7, b} {aMv, 7} — {a, 71}
nBl!=0 m {7, border} — {0 v, border} {border, 7 '} — {border, n41}
{7,b} = {7y, b} {a, n} —{a,n+}
{7, bMv} — {7y, b} {aMv, T} — {a,nt1}
{border, 'y } — {border, m }
SEeE
aMv, ny} —{a,m
{stop, border} — {stop, border}  |{border, stop} — {border}
{stop, b} — {stop, b} {a,stop} — {a}
{stop, bMv} — {stop, b} {aMv, stop} — {a}

In the space-time diagram of figures 4 and 5, we suppose that instructions at
lines n—1 and n+1 are not doing anything, except in the right cases where the

Fig. 3. Translation of instructions.

previous one is B++, so that there is some bMv to set in position.

The B !'=0 instruction is carried out very simply: the active signal goes right.
If it encounters border (counter B is zero) then it comes back as 7 y. Otherwise
(counter B is not zero), it encounters b or bMv and comes back as y. On the
left it meets border or a and turns to the next instruction (n+1) if it was 7 x or

the indicated jump (m) if it was 7y . This is all summed up in Fig. 4.




= 5 5
b
3
a 5 a b a
Ne}
//\\] //\\] /XX bMv

Fig. 4. Implementation of n B!'=0 m.

The B++ instruction is carried out by issuing a moving b signal (i.e. bMv)
that will be set in position by the next return of the active signal as depicted
on Fig. 5. The active signal is faster than bMv so that it can fix bMv before bMv
reaches the left side. Since space is continuous there is always room for more
signal in the middle. Each instruction sets the moving bMv (or aMv), if any.

//’%/b //‘/%/b //‘/*/b
\\,)(\ \\, > U >
b
bMv = bMv bMv
(]
a 'g a b a
Ne]
N N N

Fig. 5. Implementation of B++.

The instruction A++ is carried out similarly. The instructions A-- and B--
are just erasing exactly one corresponding signal, if any. The non-zero test for A
is done by simply noticing that the left border is met only if it is zero; branching
is done on the collision on the left side.

Figure6 provides three space-time diagrams associated to different initial
values. The pictures are strained vertically in order to fit.

A two-counter automaton stops when it should execute the instruction right
after the last one, i.e., when executing instruction ng+1 (ng is the number of

_— —— —
instructions). We call the instruction ng+1 (ng+1) stop and stop. These signals
fix any moving aMv or bMv as indicated at the bottom of Fig. 3.

This way, any two-counter automaton can be simulated by a signal machine.
Signal machines thus form a model of computation which has at least Turing-
computing capability.



beg: B++
A__
A'=0 begl
B!=0 imp
begl: A--
A'=0 beg
pair:B-—
A++
B!=0 pair
A'=0 beg
imp: B--
A++
A++
B!=0 impl
A'=0 beg
impl:B--
A++
A++
A++
B!=0 impl
A'=0 beg

. |

a=1 b=0 a=3 b=0 a=13 b=0

Fig. 6. A two-counter automaton and its simulations for three different initial values.

4 Undecidability results

Straight from the possibility to simulate Turing Machine comes a few unde-
cidability results. The proofs are not detailed, they are only sketched as they
correspond to classical reduction from the Halting problem.

In all the following problems, a signal machine is rational iff all its speeds
are rationals and all initials positions are rational. A direct recurrence shows
that all collisions take place at rational locations. This is needed for data to be
addressed in classical recursion theory.

[FINITE NUMBER OF COLLISIONS)]
Instance A rational signal machine, and an initial configuration.
Question Does the computation of the machine on the initial configuration
stop?

The undecidability comes from the ability of rational signal machine to sim-
ulate any two-counter automaton in a way that there is finitely many collisions
iff the simulation stops.

[APPEARANCE OF A GIVEN META-SIGNAL)]
Instance A rational signal machine, an initial configuration, and a meta-signal.
Question Does the computation of the machine on the initial configuration
ever generates a signal of this meta-signal?



The undecidability comes from the ability of rational signal machine to sim-
ulate any two-counter automaton in a way that a signal stop appears iff the
simulation stops.

[COLLISION WITH A GIVEN SIGNAL]

Instance A rational signal machine, an initial configuration, and a signal in
the initial configuration.

Question Is there any collision involving the given signal on the computation
of the machine on the initial configuration?

The undecidability comes from a slight modification of the machine: add a
second border signal on the right and make st*oT) pass the first one and collide
with the second. This second border takes part in a collision if and only if st*oT)
appears.

[DISAPPEARANCE OF ALL SIGNALS]

Instance A rational signal machine, and an initial configuration.

Question Does the computation of the machine on the initial configuration
stop on an empty configuration?

The undecidability also comes from the simulation: it is easy to modify it in
such that stop and stop erase everything.

5 Conclusion

As long as the model is restricted to rationals, there are finitely many sig-
nals present at any instant and there is no accumulation, the model is Turing-
universal and can be simulated by any Turing machine and is thus Turing-
equivalent. If the “finite number of signals” condition is lifted, but signals are
isolated, then this is a super-Turing model of computation following the “In-
finity principle” of [EWO03]. The analog power really appears when one of the
remaining two constraints is lifted.

Allowing real values for speeds or positions is simple. These real values can
be used as oracles and thus provide computing ability that goes beyond Turing-
computation.

With a careful “treatment of accumulations”, it is possible to access infi-
nite Turing computation or computation on ordinals [HL0O0,Ham02]. Our model
then becomes somehow similar to the black hole model [EN93,EN02] as done
in [DLO5].
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