
Abstract geometrical

computation 1 :

embedding Black hole

computations with

rational numbers

Jérôme Durand-Lose

Université d’Orléans, LIFO

Rapport No 2005-05

Abstract geometrical computation 1:

embedding Black hole computations with rational

numbers∗

Jérôme Durand-Lose†

Laboratoire d’Informatique Fondamentale d’Orléans,
Université d’Orléans,

B.P. 6759, F-45067 Orléans Cedex 2.

jerome.durand-lose@univ-orleans.fr

December 2, 2005

Abstract

The Black hole model of computation provides super-Turing computing power
since it offers the possibility to decide in finite (observer’s) time any recursively
enumerable (R.E .) problem. In this paper, we provide a geometric model of com-
putation, conservative abstract geometrical computation, that, although being based
on rational numbers (and not real numbers), has the same property: it can simulate
any Turing machine and can decide any R.E . problem through the creation of an
accumulation. Finitely many signals can leave any accumulation, and it can be
known whether anything leaves. This corresponds to a black hole effect.

key-words

Abstract geometrical computation, Black hole model, Energy conservation, Malament-
Hogarth space-time, Super-Turing computation, Turing universality, Zeno phenom-
ena.

Disclaimer: None of the physicist aspects of this paper is to be considered as
definitely true. The author, being a computer scientist with little knowledge on the
matter, would not feel insulted if one would consider these mere inventions/illusions.
However, we do not pretend to explain or describe black holes, but just to provide
a computer scientist insight and model mostly directed to the computer science
community. This paper could have been presented as a model of computation with
special features, but since so much similarities exist, we stress on the correspondence
with the Black hole model.

∗An extended abstract version of this paper (proofs were only schetched) was published in [DL05].
†This research was partly done while the author was member of LIP, ÉNS Lyon and of Université de

Nice-Sophia Antipolis, France.

2

1 Introduction

Theoretical physicists picture the universe as a gigantic information processor/computer.
They address the limits of the Church-Turing thesis as they get insights of possible
space-times abiding Einstein’s equations but providing super-Turing computing power
[Hog94, LN04]. The idea is to have the possibility to use an infinite amount of time on
a separate future endless curve to try solving a recursively enumerable (R.E .) problem,
such that the result, or the absence of any result, can be retrieved in finite time in
the main curve. For the theoretical computer scientist, this is related to infinite Turing
computation or computation on ordinals [HL00, Ham02].

Malament-Hogarth space-times [Hog00, EN02] provides this. Roughly speaking, the
idea is the following. General relativity permits space-times in which time runs with
different “speeds” in different regions. The life-lines of the computer and the observer
are arranged in such a way that the machine has an infinite amount of time ahead of
it; but any signal it returns is received by the observer within a bounded local delay
(measured on the observer’s clock). After this finite delay, the observer knows whether
the computation ever stopped (by noticing whether anything was received) and what the
answer is. It is thus possible to decide any R.E . problem in “finite time”.

We present a new computing model of computation that has the same capability
through a similar approach: Abstract geometrical computation. This model considers
Euclidean lines. The support of space and time is thus R. Computations are produced
by signal machines which are defined by a finite set of meta-signals and a finite set of
collision rules. Signals are atomic information, corresponding to meta-signals, moving at
constant speed thus generating Euclidean line segments on space-time diagrams. Collision
rules are pairs (incoming meta-signals, outgoing meta-signals), that define a mapping
(which means determinism) over sets of meta-signals. They define what happens when
signals meet, i.e. at the extremities of the line segments.

A configuration (at a given time or the restriction of the space-time diagram to a
given time) is a mapping from R to meta-signals, collision rules, and two special values:
void (i.e. nothing there) and accumulations (amounting for black holes). There should be
finitely many positions not mapped to void. The time scale is R+, since time is continuous,
there is no such thing as a “next configuration”. The following configurations are defined
by the uniform movement of each signal, the speed of which is defined by its associated
meta-signal. When two or more signals meet, this produces a collision defined by a
collision rule. In the configurations following a collision, incoming signals are removed
and outgoing signals corresponding to the outgoing meta-signals are added.

Zeno like acceleration and accumulation can be constructed as on the left of Fig. 2.
This provides the black hole-like artifact for deciding R.E . problems. But accumulations
can lead to an uncontrolled burst of signals producing infinitely many signals in finite
time (as in Fig. 3). In order to avoid this, we impose a conservativeness condition on the
rules: a positive energy is defined for every meta-signal, the sum of these energies must
be conserved by each rule. Thus no energy creation is possible, and the number of signals
is bounded.

Each signal corresponds to a meta-signal which indicates the slope of its trace on
the space-time diagram. Since there are finitely many meta-signals, there are finitely
many slopes. This limitation may seem restrictive and unrealistic, even awkward as a

3

quantification inside an analog model of computation. Let us notice that, first, it comes
from cellular automata (CA) (as explained below): once a discrete line is identified,
wherever (and whenever) the same pattern appears, the same line is expected, thus with
the same slope. Second, we give two pragmatic arguments: (1) laws to compute new
slopes in collisions are not so easy to design and pretty cumbersome to manipulate; (2)
there is already much computing power.

Abstract geometrical computation comes from the common use, in the literature on
CA, of Euclidean lines to model discrete lines in (discrete) space-time diagrams of CA to
access dynamics or to design. Cellular automata form a well known and studied model
of computation and simulation. Configurations are Z-arrays of cells the states of which
belong to a finite set. Each cell can only access the states of its neighboring cells. All cells
are updated iteratively and simultaneously. The main characteristics of CA, as well as
abstract geometrical computation, are: parallelism, synchronicity, uniformity and locality
of updating. The space-time diagrams of CA are colorings of Z×N with states as on the
left part of Fig. 1. Discrete lines are often observed on these diagrams and idealized as
continuous lines as on the right part of Fig. 1. They can be the keys to understanding the
dynamics and correspond to so-called particles, soliton or signals as in, e.g., [Ila01, pp.
87–94] or [BNR91, HSC01, JSS02, Siw01]. They can also be the tool to design CA for pre-
cise purposes and then named signals and used for, e.g., prime number generation [Fis65],
Turing machine simulation [LN90], firing squad synchronization [Got66, VMP70, Maz96b]
or reversible simulation [DL97]. These discrete line systems have also been studied on
their own [Maz96a, MT99, DM02]. All these papers, and many more, implicitly use
abstract geometrical computation.

Space (Z)

T
im

e
(N

)

T
im

e
(R

+
)

Space (R)

Figure 1: Space-time diagram of a cellular automaton and its signal machine counterpart.

Before presenting our results, we want to convince the reader that it is not just “one
more model of computation”. First, it does not come “out of the blue” because of its
CA origin. Second, to our knowledge1, it is the only model that is a dynamical system
with continuous time and space but finitely many local values. The closest model we
know of is the Mondrian automata of Jacopini and Sontacchi [JS90]. Their space-time
diagrams are mappings from Rn to a finite set of colors. They should be bounded finite
polyhedra; we are only addressing lines –faces are not considered– and our diagrams may
be unbounded and accumulation may happen (they just forbid it). Another close model

1A brief tour of analog/super-Turing models of computation can be found in [DL03, Chap. 2].

4

is the piecewise-constant derivative system [AM95, Bou99]: Rn is partitioned into finitely
many polygonal regions; the trajectory is defined by a constant derivative on each region,
thus an orbit is a sequence (possibly over an ordinal) of (Euclidean) line segments. This
model is sequential –there is only one “signal”– and the faces that delimit the regions
are artifacts that do not exist in our model. Nevertheless, it also uses accumulations to
decide R.E . problems.

In this paper, space and time are restricted to rational numbers. This is possible
since all the operations used preserve rationality. All quantifiers and intervals should be
understood over Q, not R. Extending the definitions to real values is automatic but only
the rational case is addressed here. Let us note that rational numbers can be implemented
exactly on a computer while this is not possible for real numbers.

After formally defining our model in Sect. 2, we prove that any Turing-computation
can be carried out through the simulation of 2-counter automata in Sect. 3. The val-
ues of the counters are encoded by positions (fixed signals indicates the scale) and the
instructions are going forth and back between them. The continuous nature of space is
used here: all {1/2n}n∈N positions do exist.

In Sect. 4, we show how to modify a signal machine so that it can dynamically
scale by 1/2 the rest of the computation. With an automatic and infinite iteration of
this shrinking process, it is possible to bound temporally a computation that is already
spatially bounded. This method is constructive and relies on the assumption that space
and time are continuous. The construction generates an accumulation.

We explain how to use this accumulation for deciding R.E . problems in Sect. 5. Con-
clusion, remarks and perspectives are gathered in Sect. 6.

2 Definitions

Abstract geometrical computations are defined by the following machines:

Definition 1 A signal machine is defined by (M, S, R) where M (meta-signals) is a finite
set, S (speeds) is a mapping from M to Q, and R (collision rules) is a partial mapping
from the subsets of M of cardinality at least 2 into the subsets of M (sets in both domain
and range must not contains two elements of identical speeds).

The elements of M are called meta-signals. Each instance of a meta-signal is a signal
which corresponds to a line segment in the space-time diagram. The mapping S assigns
rational speeds to meta-signals, i.e. the slopes of the segments. The collision rules,
denoted ρ−→ρ+, define what happens when two or more signals meet. It also defines the
extremities of the segments. Since R is a mapping, the signal machines are deterministic.

The extended value set, V , is the union of M and R plus two symbols: one for void,
�, and one for an accumulation (or black hole) ❊. A configuration, c, is a total mapping
from Q to V such that the set { x ∈ Q | c(x) 6= �} is finite.

A signal corresponding to a meta-signal µ at a position x, i.e. c(x) = µ, is moving
uniformly with constant speed S(µ). A signal must start in the initial configuration or
be generated by a collision. It must end in a collision or in the last configuration. This
corresponds to condition 2. in Def. 2.

5

At a ρ−→ρ+ collision, all, and only, signals corresponding to the meta-signals in ρ−

(resp. ρ+) must end (resp. start). No other signal should be present. This corresponds
to condition 3. in Def. 2. A black hole corresponds to an accumulation of collisions and
disappears without a trace. This corresponds to condition 4. in Def. 2.

Let Smin and Smax be the minimal and maximal speeds (i.e. the extrema of S). The
causal past, or light-cone, arriving at position x and time t, J−(x, t), is defined by all the
positions that might influence the information at (x, t) through signals, formally:

J−(x, t) = { (x′, t′) | (0 ≤ Smax(t−t′)− x+x′) ∧ (0 ≤ x−x′ − Smin(t−t′)) } .
Before formally defining the dynamics by space-time diagrams, we want to point out

the black hole formation example of Fig. 2. This example is so simple (i.e. 4 meta-signals
and 2 collision rules) that such a situation cannot be excluded.

(x, t)

J−(x, t)

Figure 2: Black hole and light-cone.

Definition 2 The space-time diagram, or orbit, issued from an initial configuration c0

and lasting for T , is a mapping c from [0, T] to configurations (i.e. a mapping from
Q× [0, T] to V) such that, ∀(x, t) ∈ Q× [0, T] :

1. ∀t∈[0, T], { x ∈ Q | ct(x) 6= �} is finite,

2. if ct(x)=µ then ∃ti, tf∈[0, T] with ti<t<tf or 0=ti=t<tf or ti<t=tf=T s.t.:

• ∀t′ ∈ (ti, tf), ct′(x + S(µ)(t′ − t)) = µ ,

• ti = 0 or cti(xi) ∈ R and µ ∈ (cti(xi))
+ where xi = x + S(µ)(ti − t) ,

• tf = T or ctf (xf) ∈ R and µ ∈ (ctf (xf))
− where xf = x + S(µ)(tf − t) ;

3. if ct(x) = ρ−→ρ+ ∈ R then ∃ε, 0 < ε, ∀t′ ∈ [t−ε, t+ε] ∩ [0, T], ∀x′ ∈ [x− ε, x + ε],

• ct′(x
′) ∈ ρ−∪ρ+ ∪ {�},

• ∀µ ∈M , ct′(x
′)=µ ⇒

∨

{

µ ∈ ρ− and t′ < t and x′ = x + S(µ)(t′ − t)) ,
µ ∈ ρ+ and t < t′ and x′ = x + S(µ)(t′ − t)) ;

4. if ct(x) = ❊ then

• ∃ε > 0, ∀(x′, t′) /∈ J−(x, t), (|x−x′|<ε and |t−t′|<ε) ⇒ ct′(x) = � ,

• ∀ε > 0, { (x′, t′) ∈ J−(x, t) | t−ε<t′<t ∧ ct′(x
′) ∈ R } is infinite.

6

On space-time diagrams, the traces of signals represent line segments whose directions
are defined by (S(.), 1) (1 is the temporal coordinate). Collisions correspond to the
extremities of these segments. Examples of space-time diagrams are provided by the
various figures. Time is always increasing upwards. This definition can easily be extended
to the T =∞ case.

The three space-time diagrams of Fig. 3 provide examples of possible but unwanted
cases. They are not compatible with Def. 2 if the time at the accumulation is to be con-
sidered. In each case, the number of signals is bursting to infinity and black holes are not
isolated. This is unwanted because on the one hand it corresponds to the free apparition
of energy, and on the other hand we fell that black holes should be dimensionless points.
The other space-time diagrams of Fig. 3 provide even more unwanted cases: in the center
one, they accumulate on a Cantor set; and in the right one, there is an accumulation of
signals that forms a everlasting discontinuity. To prevent this as well as many others, we
introduce the following restriction. It corresponds to the conservation of some energy.

Figure 3: Unwanted phenomena.

Definition 3 A signal machine is conservative when an atomic positive energy is defined
for all meta-signals (E : M → N∗) such that the total energy of the system is preserved,
i.e. the sum of all the energy of existing signals is a constant of the system. This is
equivalent to accept only rules that preserve this energy, i.e. the sum of the energy of
incoming meta-signals equals the sum of outgoing ones.

Allowing only integer values for the energy is not restrictive since there are finitely
many meta-signals and rules.

Conservativeness is straightforward if the condition on rules is satisfied. If it is not
satisfied, it is very easy to built a configuration such that the only rule involved is not
conservative and then the energy is not preserved.

Property 4 Given a conservative signal machine and an initial configuration, the num-
ber of signal in any following configuration, as well as the number of accumulations, is
bounded (by the total energy divided by the least atomic energy).

Energy can only be lost in “black hole” formation, i.e. accumulation. A sub-case of
conservativeness is when all the meta-signals have the same energy and the number of

7

in and out meta-signals are always equal. This is the case in the rest of this paper. We
chose to present a more complex notion since it is much less restrictive and better suits
the notion of the energy conservation.

3 Turing-computation capability

In this section, we deal with the computing power of signal machines and prove the
following:

Theorem 5 Conservative signal machines are able to carry out any Turing-computation.

The demonstration is carried out through the simulation of any 2-counter automaton.
A 2-counter automaton is a finite automaton coupled with two counters, A and B. The
possible actions on any counter are add/subtract 1 and branch if non-zero. These ma-
chines can be described with a six-operations (the three aforementioned ones for each of
the two counters) assembly language with branching labels as on the left part of Fig. 9
(see [Min67] for more on 2-counter automata).

3.1 Construction

The simulation is carried out with both counters encoded by relative positions according
to two fixed signals zero and one. These two signals form a scale on the diagram. The
counter A (resp. B) is encoded by a single signal a (b) at position xA2−a (xB2−b) as in
Fig. 4. The parameter xA and xB are rational numbers such that

1 < xA < xB < 2 ; (1)

this ensures that the signal a (b) is between zero and one unless its value is zero and in
such a case it is on the other side of one. Let us note that the values of xA and xB prevent
the signals from occupying the same place and from being on the scale signals. As can
be easily checked on the constructions in the rest of this section, they also prevent that
any collision happens with an unconcerned signal.

ze
ro

on
e

a

0

a

1

a

2

a

3

a

. . .

b

0

b

1

b

2

b

3

b

. . .

Figure 4: Encoding positions of counters.

The current instruction (e.g. n) is encoded as the signal ←−n . It moves back to zero,
bounces, carries out the operation and returns as the next operation. The five possible
configurations are given in Fig. 5.

The fact that a signal encoding a counter is on the other side of one only for the value
0 provides an easy way to test whether the counter is zero for branching or subtracting
1: going rightward one is encountered first if and only if the value of the counter is 0.

There are two kinds of meta-signals: 8 for the counters and borders, and the ones
generated for the program. The meta-signals of the first kind are: zero, one, a and b of

8

a = 0 0 < a

b=0 ze
ro

on
e

a b

←−n

ze
ro

on
e

a b

←−n

0<b ze
ro

on
e

ab

←−n

b<a ze
ro

on
e

a b

←−n

a<b ze
ro

on
e

ab

←−n

Figure 5: Encoding of configurations.

speed 0 used to mark the borders and to encode A and B, and ←−a (
←−
b) and −→a (

−→
b) of

speed −1 and 1 used to increment/decrement A (B). For the second kind, each line n of

the program is converted into −→n and ←−n of speed 2 and −2, and possibly
−→
n’ and

←−
n’ of

speed 3 and −3 to carry out increment and decrement as explained below. In the first

kind, we distinguish the a family {a,←−a ,−→a } and the b family {b,
←−
b ,
−→
b }. We call the

second kind the instruction family.
First, any instruction bounces on zero to be on the left of any other signal and thus

be in the right position to start carrying out any instruction. This is achieved by the
following rule:

{zero,←−n } → {zero,−→n }.

The full transformation of a program into a signal machine is given in Fig. 8. We only
detail the collision rules generated for the most complicated case: a A-- instruction (at
line n). The rules are the following:

{−→n , one} → {
←−−
n+1, one}, {−→n , a} → {

←−
n’ ,−→a },

{zero,
←−
n’} → {zero,

−→
n’}, {

−→
n’ ,−→a } → {

←−−
n+1, a}.

All other rules with −→n ,
−→
n’ or

←−
n’ are blank, i.e., the same signals are regenerated. The

effect of above rules is shown in the space-time diagrams of Fig. 7. The relative position
of one and a is very important because a counter already at zero is not decremented. If
such is not the case, the distance between zero and a is multiplied by 2 as it can easily
be geometrically checked on Fig. 6 where the slopes are indicated with dashed lines.

The instruction A++ does exactly the same thing but in reverse and the zero case
does not have to be considered. The non-zero conditional branching is done by simply
noticing that one is met before a if and only if A is zero. This is illustrated by the last
two space-time diagrams of Fig. 7.

All the instructions on B are carried out similarly. All the rules are detailed in Fig. 8.
Figure 9 provides the code of a 2-counter automaton and three simulations associated

to different initial values. The pictures are strained vertically in order to fit.
The only thing left to consider is the end of the computation, i.e. the treatment of

the halt. It is not possible to just make the instruction signal disappears since this would
yields a non conservative rule. To cope with this, one can choose to let the instruction
signal leaves on the left (but this signal could interfere with the rest of the computation),

9

z
e
ro

o
n
e

2

1

ti
m

e

←−−n+1

a

←−n

−→n

(a) a = 0 case.

z
e
ro

o
n
e

1

1

1

3

1
3

←−−n+
1

←−n

−→n

←−
n’

−→
n’

a

−→a

a

(b) 0 < a case.

Figure 6: Implementation of A--.

z
e
ro

1

1
1

3 o
n
e

←−−n+1

←−n

−→n

←−
n’

−→
n’

a

←−a

a

(a) A++

z
e
ro

o
n
e

←−−n+1

−→n a

←−n

(b) a = 0
z
e
ro

o
n
e

←−m

−→n

a

←−n

(c) 0 < a

Figure 7: Implementations of A++ and n : IF A!=0 m.

Line
number

Instruction Generated rules

n any {zero,←−n }→{zero,−→n } {zero,
←−
n’}→{zero,

−→
n’}

n A++ {−→n , a}→{
←−
n’ ,←−a } {

−→
n’ ,←−a }→{

←−−
n+1, a}

n B++ {−→n , b}→{
←−
n’ ,
←−
b } {

−→
n’ ,
←−
b }→{

←−−
n+1, b}

n A-- {−→n , one}→{
←−−
n+1, one} {−→n , a}→{

←−
n’ ,−→a } {

−→
n’ ,−→a }→{

←−−
n+1, a}

n B-- {−→n , one}→{
←−−
n+1, one} {−→n , b}→{

←−
n’ ,
−→
b } {

−→
n’ ,
−→
b }→{

←−−
n+1, b}

n IF A != 0 m {−→n , one}→{
←−−
n+1, one} {−→n , a}→{←−m , a}

n IF B != 0 m {−→n , one}→{
←−−
n+1, one} {−→n , b}→{←−m , b}

If n = N , replace
←−−
n+1 by

←−−
stop. All other rules are blank.

Figure 8: List of all transcriptions.

or to let it bounce indefinitely between zero and one; in both cases, the number of signals
is preserved.

3.2 Correction of the simulation

Let the configuration of a 2-counter automaton be denoted (n, a, b) where n is the current
line number, a (resp. b) is the value of counter A (resp. B), or (stop, a, b) if the compu-

10

beg: B++

A--

IF A != 0 beg1

IF B != 0 imp

beg1: A--

IF A != 0 beg

pair: B--

A++

IF B != 0 pair

IF A != 0 beg

imp: B--

A++

A++

IF B != 0 imp1

IF A != 0 beg

imp1: B--

A++

A++

A++

IF B != 0 imp1

IF A != 0 beg

6

a=1 b=0

6

a=3 b=0

6

a=5 b=0

Figure 9: A 2-counter automaton and its simulations for three different initial values.

tation has stopped. To prove the correctness of the simulation, we prove the following:

Lemma 6 Starting with the configuration (1, a0, b0), the following properties are verified:
1. there is only one zero and one one signals in each configuration and they are always

at the same positions (and theses positions are different and are hereafter used as
a scale);
there is always exactly one signal from each of the a family, the b family and the
instruction family;
altogether there are always exactly five signals: one zero and one one signals, and
one of each of the three families;

2. let us number, starting from 0, the collisions of a ←−n signal on zero (such collisions
are refereed as timing collisions); right before timing collision i, the signal machine
encodes the configuration of the 2-counter automaton after i iterations;

3. if the computation of the automaton never stops, there will be infinitely many timing
collisions;

4. if the computation of the automaton stops in k iterations, then the k+1th timing
collision generates

←−−
stop and the final values of the counters are encoded as usual.

Proof

11

1. Signals zero and one are always regenerated after a collision and no other collision
generates them; so that their numbers remains unchanged. Since their speed is
zero, they do not move. In the initial configuration there are exactly one zero and
one one signals at different positions. Similarly, a direct inspection of the rules and
the initial configuration shows that there is always one and only one signal of each
of the a, b and instruction families.

2. Property 2. is proved by induction. It is true at the first timing collision, which
is the very first collision, because of the encoding of the initial configuration. It
remains to carry the proof for the implementations of the six operations.
Let first ignore the presence of the unaddressed counter for the three basic opera-
tions. Let denote x the (relative to zero and one) position of the signal corresponding
to the addressed counter; without loss of generality let assume that it is A.
If the operation is IF A != 0 m, then everything happens exactly as in the center
or the right part of Fig. 7. The position of the collision is either x or 1. If it is 1,

then this means that 1 < xA2−a; since 1<xA<2 from (1), a = 0;
←−−
n+1 –or

←−−
stop– is

rightfully generated. Similarly, if it is x then 0 < a; and ←−m is generated. The value
of the counter is unaffected (the signal remains in the same position). The time
between the ith and i+1th timing collision is up bounded by 2.
If the operation is A ++, then everything happens exactly as in the left part of
Fig. 7. From the speed of the signals, the positions of the collisions are x, 0 and
x/2; the final position of a is x/2. Since x is xA2−a, the next position correspond to
the next value of the counter: xA2−(a+1); the ++ operation was carried out on the
counter. The time between the ith and i+1th timing collision is up bounded by 2x

and 2x<2xA<4 from (1). The right
←−−
n+1 or

←−−
stop is generated.

If the operation is A --, then everything happens exactly as in Fig. 6. If the counter
holds 0 then 1 < x and this is the left scenario. If the counter does not hold 0 then
x < 1 and this is the right scenario. From the speed of the signals, the positions
of the collisions are 1, or x, 0 and 2x; the final position of a is x or 2x. Since x is
xA2−a, the next position corresponds to the next value of the counter: xA2−(a+1);
the -- operation was carried out on the counter. The time between the ith and

i+1th timing collision is up bounded by 2x and 2x < 2xA < 4. The right
←−−
n+1 or

←−−
stop is generated.
Let us consider now the presence of a signal for the other counter. Above collisions
can only take place at coordinate 0, x/2, x, 2x or 1. From (1), 1<xA<xB<2, if
x = xA2−a (resp. xB2−b) then xB2−b (resp. xA2−a) cannot be at any of these
location. Thus the other signal does not interfere with the main collisions and only
participates in blank collisions, not affecting anything.

3. If the computation of the automaton never stops, then there is also infinitely many
timing collisions (the delay between two consecutive timing collisions is up bounded
by 4).

4. if the computation of the automaton stops in k iterations the
←−−
stop will be normally

generated in time less than 4k.

Q.E.D.

All together, any 2-counter automaton can be simulated by a conservative signal
machine; in fact, any finite number of counters can be included and treated similarly.

12

Signal machines thus form a model of computation which has at least Turing-computing
capability.

4 Contraction

4.1 Principle

It is possible to partially strain any space-time diagram as schematized on Fig. 10. The
idea is to decompose the upper part according to two non-collinear vectors. One vector
is used as a frontier (here the one of speed β). A change of scale is done on the second
one (here multiplication by 3 on the axis corresponding to speed α). This is a strain of a
given ratio about the second axis. On Fig. 10, the dotted lines indicate how the images
of two points are computed. The grey parts indicate the ongoing computation.

This geometrical transformation is easily implemented inside our model: by switching
to strained versions of the signals on the frontier, all ongoing computations mimic the
unstrained one. The following meta-signals are added: one for the frontier, and one
strained meta-signal for each initial meta-signal. All the collision rules are duplicated so
that strained signals behave exactly as unstrained ones. Collisions of the form {frontier
and unstrained}→{frontier and strained} are added. New rules are created to account for
the possibility of the frontier to pass exactly on a collision. Conservativeness is preserved
by setting identical energies to corresponding strained meta-signals.

α β
1 1

3α

3

Figure 10: Strain principle.

With this construction, it is possible to build a structure that scales by one half the
rest of the computation as illustrated on Fig. 12. The two directions used correspond to
v0 and 4v0, where v0 is big enough. In the left picture, nothing happens. In the middle
picture, the lower signal is the frontier and a strain of ratio 1/2 is done about to the
upper signal. In the right picture, a second strain takes place: the role of the directions
are exchanged, and the ratio is still 1/2. After the two strains, the computation is scaled
by 1/2 on both directions, thus on any direction. The whole computation is scaled by
1/2 and the original meta-signals can be used again since the computation undergoes no
strain after the second one. This makes it possible to iterate the shrinking, as shall be
done after providing and proving the construction for a single shrinking.

13

4.2 Construction

Let β be the speed of the frontier/toggle signal; the coefficient of the strain is 1 on
the direction (β, 1). Let α be the other speed and k be the coefficient of the strain on
the direction (α, 1). There are some limitations on the possible values of theses three
parameters as explained below, at first it is only required that α 6= β and 0 < k.

Let us compute the speed on the strained part, ν ′, from the speed on the un-strained
part, ν:

(ν, 1) = a(α, 1) + b(β, 1) ,

λ(ν ′, 1) = ka(α, 1) + b(β, 1) ; (2)

the coefficient λ is needed for normalization. This leads to:

λ(ν ′, 1) =

(

(kα− β)ν + αβ(1− k)

α− β
,
(k − 1)ν + α− kβ

α− β

)

,

λ =
(k − 1)ν + α− kβ

α− β
,

(ν ′, 1) =

(

(kα− β)ν + αβ(1− k)

(k − 1)ν + α− kβ
, 1

)

. (3)

The renormalization coefficient must be strictly positive. Any signal meeting the
frontier must cross it; i.e. if it comes from below (from above) must go on above (below);
this means that β < ν ⇔ β ′ < ν. To simplify the equality case, we also request that
ν 6= β. It is now possible to state all the constraints on α, β and k:

0 < k,
α 6= β ,

∀ν ∈ S(M),

ν 6= β ,

0 < λ =
(k − 1)ν + α− kβ

α− β
,

β < ν ⇔ β < ν ′ =
(kα− β)ν + αβ(1− k)

(k − 1)ν + α− kβ
.

(4)

This condition is indeed satisfiable. For example, the conditions are easily verified
when

0 < k ∧ α < min(S(M)) ≤ max(S(M)) < β (5)

since there are only finitely many signals. This represents quite a wide range of values.

4.3 Correctness of the strain

Lemma 7 Let M be any signal machine and M′ be the one produced by the algorithm
on Fig. 11 for some valid values of α, β, and k. Let c be any (finite) initial configuration
for M and c′ be a initial configuration of M′ equals to c except for an additional toggle
signal on the far left (i.e. it is the leftmost signal). Let us take its position as origin
on the spacial axis. Let D be the space-time diagram issued from c, we suppose that this
diagram does not have any accumulation (i.e. no ❊). The space-time diagram issued
from c′ is as follows:

14

Input:

1: M: signal machine
2: α: rational { speed of the strained direction }
3: β: rational { speed of the frontier }
4: k: rational { coefficient of the strain }

Require:

5: Equation (4) holds
Do:

{ Meta-signals addition }
6: toggle ← M.add meta-signal of speed(β)
7: for all µ meta-signal of M do

8: µ′ ← M.add meta-signal of speed(((kα−β)ν + αβ(1−k)) / ((k−1)ν + α− kβ))
9: M.add rule({ toggle, µ } → { toggle, µ′ })

10: M.add rule({ toggle, µ′ } → { toggle, µ })
11: end for

{ Rules addition }
12: for all rule {µ−i }i → {µ

+
j }j ofM do

13: M.add rule({µ−i
′}i → {µ

+
j
′}j)

14: M.add rule({toggle}∪{µ−i }µ−

i .ν<β
∪{µ−i

′}
µ−

i .ν>β
→ {toggle}∪{µ+

j }µ+

j .ν>β
∪{µ+

j
′}

µ+

j .ν<β
)

15: M.add rule({toggle}∪{µ−i
′}µ−

i .ν<β∪{µ
−
i }µ−

i .ν>β → {toggle}∪{µ
+
j
′}µ+

j .ν>β∪{µ
+
j }µ+

j .ν<β)

16: end for

Output:

17: toggle: toggling meta-signal

Figure 11: Algorithm to build a strain.

1. the trace of toggle is the straight line of equation t = βx (except for collisions);
2. all signals on the left of toggle are strained while all the signals on its right are

unstrained;
3. the part at the right of this line is the same as the space-time diagrams issued from

c;
4. the part at the left of this line is the same as the space-time diagrams issued from

c strained with coefficients (1, k) in the basis ((1, β), (1, α)).

Before proving this lemma, let us indicate that the space-time diagram on the frontier
line (t = βx) should corresponds to both left and right part, except for the presence of
toggle. It should also be noted that the construction on Fig. 11 only add meta-signals
and rules; nothing already present is modified, so that as long as no strained signal nor
toggle is concern, nothing changes.

Proof The lemma is proved by induction on the dates of collisions. Let us first consider
the time between any two collisions, before the first one or after the last one (if any).

Away from collisions, signals undergo uniform movement. Let us suppose that the
conditions are verified and prove that they remain satisfied until the next collision. Signals
cannot go from one side of toggle to the other without colliding with toggle so that
each side can be considered independently. On the right side, unstrained signals follow
unstrained dynamic, so that things go as in D. On the left side, the speed of each strained

15

signal has been calculated so that its trace matches the strained trace of the corresponding
unstrained signal.

Let us consider a collision. If it is (strictly) on the right of toggle, then everything
happens exactly as in the original case for the collision and outgoing signals. If it is
(strictly) on the left of toggle, then everything happens exactly as in the original case,
except for the position (by continuity, it is at the strained location), strained version
of in-coming signals are replaced by strained versions of out-going signals following the
original unstrained rule (each and only such rules are generated on line 13).

Let us consider the last and more complex case: toggle is involved in the collision. If
there is only one other signal involved: a (un)strained signal from the left (right). This
first sub-case is handled by the rules generates by line 10 (line 9) – again, each and every
such rules is generated. The strained signal must come from the left, then its speed
satisfies β < ν ′, then, by condition (4), β < ν. This means that the unstrained version of
the signal is generated and because of its greater speed it goes on the right of toggle. It
passed the frontier rightward and get unstrained. Because the frontier is also the place
where the two parts of the diagram agrees, the lemma is verified afterwards. The same
holds for the leftward (straining) crossing.

The last sub-case is when more than one signal are involved in a collision with toggle.
There are strained in-coming signals on the left (each of their speeds is such that β < ν ′)
and unstrained in-coming signals on the right (each of their speeds is such that ν < β).
The rule used has been generated by line 14 according to the totally unstrained toggle-less
original rule. The outgoing signals are the same as in D except for the regeneration of
toggle and the strain of the signals on its left.

Since there is no accumulation, there is either finitely many collisions or infinitely
many but finitely many during any finite duration (otherwise, since all the configurations
are inside the light-cone of the initial configuration, there would be infinitely many col-
lisions in a bounded part of the space-time diagram). This means that the induction on
the dates of the collisions covers all times.

Q.E.D.

The same holds when toggle is the rightmost signal. If there is an accumulation, little
can be said about what happens in the light-cone issued from it: for conservative signal
machine, on the one hand, if the accumulation is away from toggle, then since nothing
comes out of it in the conservative case, then everything works fine; on the other hand, if
it is located on the path of toggle, it erases it and undefined collisions between strained
and unstrained signals might happen. Nevertheless, the same holds (and is proved alike)
outside of the light-cone issued from an accumulation on toggle.

Figure 12: Shrinking principle.

16

4.4 Shrinking

Theorem 8 It is possible to scale by 1/2 after some time a space-time diagram.

Proof The idea is to do two consecutive strains such that afterwards the space-time
diagram is scaled by 1/2, the doubly strained meta-signals are the same as the unstrained
ones, and the toggle signals are drifting away from the other signals after the shrinking.
This is done very simply: the coefficient is 1/2 for each strain and the roles of α and β are
exchanged so that altogether the two strains combine into a 1/2 following each axis, thus
on any direction and ν ′′ = ν which allows to turn back to the unstrained meta-signals.
The critical point is the selection of α and β. We leave to the reader to check that any
α and β such that:

k =
1

2
∧ max(S(M)) < β ∧ 1 < β ∧ α = 4β (6)

satisfy condition (4). Since α and β are both greater than any speed of both strained
and unstrained meta-signals (and positive), it is sure that starting on the far left, they
will eventually meet all signals and then drift away on the right.

Q.E.D.

Since unstrained (but shrunk) space-time diagram is regenerated, if another pair of
toggle signals are added sufficiently far on the left, the space-time diagram is shrunk
again, this time to scale 1/4. In the next subsection, this idea is put into practice with
extra signals in charge of generating an endless wave of such pairs of toggle signals.

4.5 Iteration

From now on, only spatially bounded space-time diagrams without accumulation are
considered.

The idea is to embed a space-time diagram into the shrinking structure on the left part
of Fig. 14. The right picture represents the application of this structure to a simulation
of a 2-counter automaton. The spacial boundedness of the space-time diagram ensures
that the computation remains inside the structure when shrinking is iterated.

The shrinking structure is generated by adding extra signals and rules to restart
the shrinking each time as detailed in Fig. 13. The straining frontiers are scaleHi and
scaleLo. The speed ν0 is chosen positive and strictly greater than any speed present in
the machine. The signals back and backSlow must cross the space-time diagram without
interfering with it; this is done by adding rules as in the line 9 of the algorithm of Fig. 11,
it is more simple since straining is not addressed.

In each space-time diagrams of Fig. 14, there is an accumulation point: there are
infinitely many collisions accumulating to the upper angle of the triangle. This is a “Zeno
effect”: finite (continuous) duration but infinitely many (discrete) instants. All collisions
are in the light-cone ending there (and there is nothing out of it). This corresponds to
the accumulation/black hole of Cond. 4 in Def. 2.

17

sc
al
eH

i

scaleL
o

back

backSlow

b
ord

erR
i

backSlow

back

b
ord

erR
i

sc
al
eH

i

scaleL
o

back

backSlow Meta-Signal Speed

back −2ν0

backSlow −ν0

borderRi 0
scaleHi ν0

scaleLo 4ν0

{scaleLo, borderRi}→{back, backSlow}
{scaleHi, back}→{backSlow, borderRi}

{borderRi, backSlow}→{back, borderRi}
{backSlow, back}→{scaleHi, scaleLo}

Figure 13: Structure, meta-signals and rules for the iterated shrinking.

Figure 14: Iterated shrinking: the structure and an example.

5 Black hole formation

We consider the simulation of a 2-counter automata such that, when the simulation stops,
if the configuration corresponds to acceptance, then the instruction signal goes on the
left. In the case of rejection, another signal would be issued.

The iterated shrinking construction is modified in order not to act on this signal

18

(i.e. it is always generated unstrained and never strained) so that it leaves the iterated
shrinking. The iterated shrinking provides the black hole effect; these specially treated
signals represent the information that “leaves” the black hole before the collapsing.

It only remains to get this information or assert that no information had left (i.e. the
computation never stops). This is done by bounding the iterated shrinking by 2 signals
that meet after the black hole. If a notification of acceptance or rejection leaves, they
grab it before they meet. So that, at the meeting, they know whether the computation
finished. This is illustrated by Fig. 15.

accumulation

Y

Accepts

❊

accumulation

N

Rejects

❊

accumulation

Does not halt

❊

Figure 15: Encapsulation of a black hole.

6 Conclusion

We provide a geometrical model of computation that is Turing-computation universal
and has the special features of the Black hole model, in particular it can decide any R.E .
problem (more on abstract geometrical computation can be found in [DL03]). We are not
using already existing black holes, but rather creating them on demand (a Malament-
Hogarth space-time is implicitly built). It is not so strange that computation forms the
black hole since, in the black hole setting, they “come from” the “same matter” as the
machine sent into it. One can also consider that some signals fix black hole formation,
while others carry out the computation using the black hole.

One may object that black holes disappearance is not acceptable. The underlying
space being one-dimensional, any remaining black hole would form a barrier preventing
information to cross from one side to the other; whereas in dimension two and more, it is
always possible to go around it. Another argument is to imagine that signals are drifting
in a higher dimensional space, so that the black holes remain, but its orbit is not in the
plane of the space-time diagram.

Reversibility is an important issue in theoretical physics. One can easily check that
reversibility corresponds to R being one-to-one. At the expense of more involved con-
structions, universality can be achieved as well as the use of accumulations as black holes.
But the final collapsing is not reversible.

The number of possible black holes/R.E . queries is bounded from the start (each one
needs a minimal amount of energy). Unless the black hole returns the energy in some form,

19

which is clearly forbidden here, there is no way to address second order accumulations (i.e.
ω2 or second order space-time arithmetic deciding or Σ0

2 in the arithmetical hierarchy),
unless infinitely many signals exist at start, apart one from another. This way it would
be reasonably possible to hope to climb the arithmetical hierarchy as in [AM95, Bou99].

As long as the model is restricted to rational numbers, there are finitely many signals
present at any instant and there is no accumulation, the model is Turing-universal and
can be simulated by any Turing machine and is thus Turing-equivalent. If the “finite
number of signals” condition is lifted, but signals are isolated, then this is a super-Turing
model of computation following the “Infinity principle” of [EW03]. The analog power
really appears when the rationality constraint is lifted. Real values for speeds and/or
positions can be used as oracles and thus provide computing ability that goes beyond
classical Turing-computation.

References

[Ada02] A. Adamatzky, editor. Collision based computing. Springer, 2002.

[AM95] E. Asarin and O. Maler. Achilles and the Tortoise climbing up the arithmetical
hierarchy. In FSTTCS ’95, number 1026 in LNCS, pp. 471–483, 1995.

[BNR91] N. Boccara, J. Nasser, and M. Roger. Particle-like structures and interactions
in spatio-temporal patterns generated by one-dimensional deterministic cellular
automaton rules. Phys. Rev. A, 44(2):866–875, 1991.

[Bou99] O. Bournez. Achilles and the Tortoise climbing up the hyper-arithmetical
hierarchy. Theoret. Comp. Sci., 210(1):21–71, 1999.

[DL97] J. Durand-Lose. Intrinsic universality of a 1-dimensional reversible cellular
automaton. In STACS ’97, number 1200 in LNCS, pp. 439–450. Springer,
1997.

[DL03] J. Durand-Lose. Calculer géométriquement sur le plan – machines à signaux.
Habilitation à diriger des recherches, École Doctorale STIC, Université de Nice-
Sophia Antipolis, 2003.

[DL05] J. Durand-Lose. Abstract geometrical computation for black hole computa-
tion (extended abstract). In M. Margenstern, editor, Universal Machines and
Computations (MCU ’04), number 3354 in LNCS, pp. 175–186. Springer, 2005.

[DM02] M. Delorme and J. Mazoyer. Signals on cellular automata. in [Ada02], pp.
234–275, 2002.

[EN02] G. Etesi and I. Nemeti. Non-Turing computations via Malament-Hogarth
space-times. Int. J. Theor. Phys., 41(2):341–370, 2002. gr-qc/0104023.

[EW03] E. Eberbach and P. Wegner. Beyond Turing machines. Bull. EATCS, 81:279–
304, 2003.

20

[Fis65] P. C. Fischer. Generation of primes by a one-dimensional real-time iterative
array. J. ACM, 12(3):388–394, 1965.

[Got66] E. Goto. Ōtomaton ni kansuru pazuru [Puzzles on automata]. In T. Kitagawa,
editor, Jōhōkagaku eno michi [The Road to information science], pp. 67–92.
Kyoristu Shuppan Publishing Co., Tokyo, 1966.

[Ham02] J. D. Hamkins. Infinite time Turing machines: Supertask computation. Minds
and Machines, 12(4):521–539, 2002. arXiv:math.LO/0212047.

[HL00] J. D. Hamkins and A. Lewis. Infinite time turing machines. J. Symb. Log.,
65(2):567–604, 2000. arXiv:math.LO/9808093.

[Hog94] M. Hogarth. Non-Turing computers and non-Turing computability. In Biennial
Meeting of the Philosophy of Science Association, number 1, pp. 126–138, 1994.

[Hog00] M. Hogarth. Predictability, computability and space-time. PhD the-
sis, University of Cambridge, UK, 2000. ftp://ftp.math-inst.hu/pub/algebraic-

logic/Hogarththesis.ps.gz.

[HSC01] W. Hordijk, C. R. Shalizi, and J. P. Crutchfield. An upper bound on the
products of particle interactions in cellular automata. Phys. D, 154:240–258,
2001.

[Ila01] A. Ilachinski. Cellular automata –a discrete universe. World Scientific, 2001.

[JS90] G. Jacopini and G. Sontacchi. Reversible parallel computation: an evolving
space-model. Theoret. Comp. Sci., 73(1):1–46, 1990.

[JSS02] M. H. Jakubowsky, K. Steiglitz, and R. Squier. Computing with solitons: a
review and prospectus. in [Ada02], pp. 277–297, 2002.

[LN90] K. Lindgren and M. G. Nordahl. Universal computation in simple one-
dimensional cellular automata. Complex Systems, 4:299–318, 1990.

[LN04] S. Lloyd and Y. J. Ng. Black hole computers. Scientific American, 291(5):31–
39, November 2004.

[Maz96a] J. Mazoyer. Computations on one dimensional cellular automata. Annals of
Mathematics and Artificial Intelligence, 16:285–309, 1996.

[Maz96b] J. Mazoyer. On optimal solutions to the Firing squad synchronization problem.
Theoret. Comp. Sci., 168(2):367–404, 1996.

[Min67] M. Minsky. Finite and infinite machines. Prentice Hall, 1967.

[MT99] J. Mazoyer and V. Terrier. Signals in one-dimensional cellular automata. The-
oret. Comp. Sci., 217(1):53–80, 1999.

[Siw01] P. Siwak. Soliton-like dynamics of filtrons of cycle automata. Inverse Problems,
17:897–918, 2001.

21

[VMP70] V. I. Varshavsky, V. B. Marakhovsky, and V. A. Peschansky. Synchronization
of interacting automata. Math. System Theory, 4(3):212–230, 1970.

22

