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Abstract. In Abstract geometrical computation for black hole compu-
tation (MCU ’04, LNCS 3354), the author provides a setting based on
rational numbers, abstract geometrical computation, with super-Turing
capability: any recursively enumerable set can be decided in finite time.
To achieve this, a Zeno-like construction is used to provide an accumu-
lation similar in effect to the black holes of the black hole model.
We prove here that forecasting an accumulation is Σ0

2 -complete (in the
arithmetical hierarchy) even if only energy conserving signal machines are
addressed (as in the cited paper). The Σ0

2 -hardness is achieved by reduc-
ing the problem of deciding whether a recursive function (represented by
a 2-counter automaton) is strictly partial. The Σ0

2-membership is proved
with a logical characterization.
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1 Introduction

The foundations of computability are currently being questioned as many super-
Turing models of computation are being unveiled. Some models use analog or hy-
brid settings [AM95,Bou99,Bra95], infinite computations [EN93,Ham02,HL00],
or black holes [EN02,LN04]. To our knowledge, there are only few researches
on the whereabouts of the artifacts providing super-Turing capability. In this
article, we are interested in providing an example where the phenomenon used,
albeit being easy to generate, is not easy to forecast. More precisely, we are in-
terested in the black hole embedding in (rational) signal machines as described
in [DL05]. In this paper, the author shows how to produce and use an accumu-
lation to provide the black hole effect. We prove that it is undecidable to predict
whether an accumulation will even happen, even when restricted to the conser-
vative (ensuring some energy conservation) signal machines: it is Σ0

2-complete
in the arithmetical hierarchy. On the one hand, this means that it is not even
semi-decidable, but on the other hand it is not so bad considering that it is the
key to decide recursively enumerable problems.
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Abstract geometrical computation considers Euclidean lines. The support of
space and time is R. Computations are produced by signal machines which are
defined by finite sets of meta-signals and of collision rules. Signals are atomic
information, corresponding to meta-signals, moving at constant speed thus gen-
erating Euclidean line segments on space-time diagrams. Collision rules are pairs
(incoming meta-signals, outgoing meta-signals), that define a mapping over sets
of meta-signals. A configuration is a mapping from R to meta-signals, colli-
sion rules, and two special values: void (i.e. nothing there) and accumulations
(amounting for black holes). The time scale is R+; there is no such thing as a
“next configuration”. The following configurations are defined by the uniform
movement of signals. In the configurations following a collision, incoming signals
are replaced by outgoing signals according to a collision rule.

Zeno like acceleration and accumulation can be constructed as on Fig. 2 of
Sect. 2. This provides the black hole-like artifact for deciding R.E . problems.
But accumulations can lead to an uncontrolled burst of signals producing in-
finitely many signals in finite time (as in the right of Fig. 2). To avoid this,
a conservativeness condition is imposed: a positive energy is defined for every
meta-signal, the sum of these energies must be conserved by each rule. Thus no
energy creation is possible; the number of signals is bounded.

Abstract geometrical computation (AGC) comes from the common use, in the
literature on cellular automata (CA), of Euclidean lines to model discrete lines
in space-time diagrams of CA (i.e. colorings of Z×N with states as on the left of
Fig. 1) to access dynamics or to design. The main characteristics of CA, as well
as abstract geometrical computation, are: parallelism, synchronicity, uniformity
and locality of updating. Discrete lines are often observed and idealized as on
Fig. 1. They can be the keys to understanding the dynamics like in [Ila01, pp.
87–94] or [BNR91,JSS02]. They can also be the tool to design CA for precise
purposes like Turing machine simulation [LN90] or reversible simulation [DL97].
These discrete line systems have also been studied on their own [MT99,DM02].
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Fig. 1. Space-time diagram of a cellular automaton and its signal machine counterpart.

To our knowledge, AGC is the only computing model that is a dynamical sys-
tem with continuous time and space but finitely many local values. The closest
model we know of is the Mondrian automata of Jacopini and Sontacchi [JS90].
Their space-time diagrams are mappings from Rn to a finite set of colors repre-



senting bounded finite polyhedra. Another close model is the piecewise-constant
derivative system [AM95,Bou99]: Rn is partitioned into finitely many polygonal
regions; trajectories are defined by a constant derivative on each region and form
sequences of (Euclidean) line segments.

In this paper, space and time are restricted to rational numbers. This is possi-
ble since all the operations used preserve rationality. All quantifiers and intervals
should be understood over Q, not R. Since rational numbers can be implemented
exactly on a computer (which is impossible for real numbers), decision problems
concerning AGC can be expressed in classical computability.

It was proved in [DL05] that any 2-counter automaton can be simulated by
a conservative (rational) signal machine. In the same article, a conservativeness
preserving construction to embed this simulation into an accumulation is pro-
vided. We modify this construction so that the accumulation does not take place
when the simulation stops. This provides a reduction of the Halting problem and
Σ0

1 -hardness. We then provide a higher lever structure that tries all possible ini-
tial values, one after the other. This way, if a computation never stops then an
accumulation happens, otherwise no accumulation will even happen. This is a
reduction of the problem of deciding whether a recursive function is total or not,
which is Σ0

2 -complete. Each construction preserves conservativeness.

Signal machines are defined in Sect. 2. The forecasting decision problems,
arithmetical hierarchy and 2-counter automata are presented in Sect. 3. In Sect. 4
we prove the Σ0

1 -hardness and then its Σ0
2-hardness of Conservative-AGC-

accumulation-Forecasting. The membership of the general case (AGC-

accumulation-Forecasting) is proved by a logical characterization in Sect. 5.
Conclusion and perspective are gathered in Sect. 6.

2 Abstract geometrical computations

Abstract geometrical computations are defined by the following machines:

Definition 1 A (rational) signal machine is defined by (M, S, R) where M
(meta-signals) is a finite set, S (speeds) a mapping from M to Q, and R (col-
lision rules) a partial mapping from the subsets of M of cardinality at least 2
into the subsets of M (speeds must differ in both domain and range).

Each instance of a meta-signal is a signal. The mapping S assigns rational
speeds to meta-signals, which corresponds the slopes of the segments in space-
time diagrams. The collision rules, denoted ρ−→ρ+, define what happens when
two or more signals meet.

The extended value set, V , is the union of M and R plus two symbols: one
for void, ⊘, and one for an accumulation (or black hole) ❊. A configuration, c,
is a total mapping from Q to V such that the set { x ∈ Q | c(x) 6= ⊘} is finite.

A signal corresponding to a meta-signal µ at a position x, i.e. c(x) = µ,
is moving uniformly with constant speed S(µ). A signal must start (resp. end)
in the initial (resp. final) configuration or in a collision. This corresponds to
condition 2 in Def. 2. At a ρ−→ρ+ collision, all, and only, signals corresponding



to the meta-signals in ρ− (resp. ρ+) must end (resp. start); no other signal
should be present (condition 3). A black hole corresponds to an accumulation of
collisions and disappears without a trace (condition 4).

Let Smin and Smax be the minimal and maximal speeds. The causal past,
or light-cone, arriving at position x and time t, J−(x, t), is defined by all the
positions that might influence the information at (x, t) through signals, formally:

J−(x, t) = { (x′, t′) | x − Smax(t−t′) ≤ x′ ≤ x − Smin(t−t′) } .

(x, t)

J−(x, t)

Fig. 2. Light-cone, a simple accumulation and three unwanted phenomena.

Definition 2 The space-time diagram issued from an initial configuration c0

and lasting for T , is a mapping c from [0, T ] to configurations (i.e. a mapping
from Q × [0, T ] to V ) such that, ∀(x, t) ∈ Q × [0, T ] :
1. ∀t∈[0, T ], { x ∈ Q | ct(x) 6= ⊘} is finite,
2. if ct(x)=µ then ∃ti, tf∈[0, T ] with ti<t<tf or 0=ti=t<tf or ti<t=tf=T s.t.:

– ∀t′ ∈ (ti, tf ), ct′(x + S(µ)(t′ − t)) = µ ,
– ti = 0 or cti

(xi) ∈ R and µ ∈ (cti
(xi))

+ where xi = x + S(µ)(ti − t) ,
– tf = T or ctf

(xf ) ∈ R and µ ∈ (ctf
(xf ))− where xf = x+S(µ)(tf − t) ;

3. if ct(x) = ρ−→ρ+ ∈ R then ∃ε, 0 < ε, ∀t′ ∈ [t−ε, t+ε] ∩ [0, T ], ∀x′ ∈
[x − ε, x + ε],
– ct′(x

′) ∈ ρ−∪ρ+ ∪ {⊘},

– ∀µ ∈ M , ct′(x
′)=µ ⇒

∨

{

µ ∈ ρ− and t′ < t and x′ = x + S(µ)(t′ − t)) ,
µ ∈ ρ+ and t < t′ and x′ = x + S(µ)(t′ − t)) ;

4. if ct(x) = ❊ then
– ∃ε > 0, ∀(x′, t′) /∈ J−(x, t), ( |x−x′|<ε and |t−t′|<ε ) ⇒ ct′(x) = ⊘ ,
– ∀ε > 0, { (x′, t′) ∈ J−(x, t) | t−ε<t′<t ∧ ct′(x

′) ∈ R } is infinite.

On the illustrating space-time diagrams, time is always increasing upwards.
The three space-time diagrams of Fig. 2 provide examples un-compatible with
Def. 2 at the time of accumulation. In each case, the number of signals is burst-
ing to infinity and black holes are not isolated. To prevent this, the following
restriction is imposed.

Definition 3 A signal machine is conservative when an atomic positive energy
is defined for all meta-signals (E : M → N∗) such that the total energy of the
system is preserved, i.e. the sum of all the energy of existing signals is a constant
of the system. This is equivalent to have each rule preserving the energy: the
sum of the energy of incoming meta-signals equals the sum of outgoing ones.



It follows automatically that given a conservative signal machine and an
initial configuration, the number of signals in any following configuration, as
well as the number of accumulations, is bounded (by the total energy divided
by the least atomic energy).

3 Decision problems, arithmetical hierarchy and

2-counter automata

Instance AGC-accumulation-Forecasting

M: rational signal machine, and
c: (rational) configuration for M.

Question

Is there any accumulation in the space-time generated by M from c?
Since rational numbers can be encoded by natural numbers, this problem

is expressible in classical computability theory. The problem Conservative-

AGC-accumulation-Forecasting is defined similarly but with an extra con-
dition on M: the machine must be conservative.

Arithmetical hierarchy deals with non recursive sets. It is defined by:

Definition 4 A set S belongs to Σ0
n if it can be defined by a logic formula

consisting of a total recursive predicate preceded by an alternation of n uni-
versal/existential quantifiers over a numerable set starting with an existential
quantifier:

S ∈ Σ0
2k ⇐⇒ S = {x|∃n1, ∀n2, ∃n3 . . .∀n2k, φ(x, n,n2 . . . n2k)} ,

S ∈ Σ0
2k+1 ⇐⇒ S = {x|∃n1, ∀n2, ∃n3 . . .∃n2k+1, φ(x, n,n2 . . . n2k+1)} ,

where φ is a recursive total predicate.

Thus Σ0
0 are Σ0

1 the set of respectively recursive and recursively enumerable
sets. To address a decision problem, the set of positive instances is considered.
A set is said to be complete in a class if and only if it belongs to the class and
any problem of its class can be many-one-reduced to it (i.e., there is a recursive
function mapping positive –resp. negative– instances of the first problem into
the positive –resp. negative– instances of the second one). The halting problem
is Σ0

1-complete. The following problem is Σ0
2-complete [Odi99, p. 621]: given a

Turing-machine, is there an entry such that the computation never stops. This
corresponds to deciding whether a recursive function is not total.

A 2-counter automaton is a finite automaton coupled with two counters, A and
B. The possible actions on any counter are add/subtract 1 and branch if non-
zero. These machines can be described with a six-operations assembly language
with branching labels as on the left part of Fig. 4 (see [Min67] for more on
2-counter automata). Since Turing machines and 2-counter automata compute
exactly the same functions, the following problem is also Σ0

2-complete:
Instance Not-Total-2CA

A: 2-counter automaton.
Question

Is there an initial value such that the computation of A never stops?



4 Energy concerving case

4.1 Reduction from the halting problem

It is possible to simulate any 2-counter automaton with a conserving signal
machine [DL05]. Figure 3 shows how the counters are encoded using two fixed
signals zero and one as a scale. A signal amounting for the current line zigzags
between these signals. Figure 4 presents the code of a simple 2-counter automaton
and some simulations. When a simulation stops, a signal stop appears and is
locked inside the ribbon, bouncing between zero and one.
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Fig. 3. Encoding positions of counters.

A != 0 notZ
A++

glob B != 0 loop

A != 0 fin
loopB--

A++

A != 0 glob
notZ A--

B++

fin stop

6

a=0 b=0

6

a=1 b=0

6

a=0 b=1

6

a=2 b=0

Fig. 4. 2-counter automaton Anext and its simulations for three different initial values.

Let us note that the automaton Anext on Fig. 4 computes the following func-
tion: if A is zero then (A′, B′) = (B+1, 0) otherwise (A′, B′) = (A−1, B+1).
Starting from (0, 0) successive applications of it generate all the elements of
N × N. On Fig. 4, each computation yields the counter values for the next. This
is used in Subsect. 4.2 to start one after the previous finishes all the computations
possible by any 2-counter automaton.

Figure 5 sketches the construction of a structure that allows to transform any
spatially-bounded computation into another computation that is also temporally-
bounded. The iterated shrinking structure always brings out an accumulation.
On the example on the right of Fig. 5, a two-counter simulation is embedded
inside this structure. This construction preserves conservativeness. Details can
be found in [DL05,DL06].

Preventing the accumulation of the structure. To achieve this, the signal ma-
chine is modified so that stop erases and collects the energy of scaleHi, back and
backSlow. The resulting signal stop8l leaves on the left side. Collecting starts
when stop meets scaleHi. Signal stop collects it and all signals until it encounters
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Meta-Signal Speed E

back −2ν0 1
backSlow −ν0 1
borderRi 0 1
scaleHi ν0 1
scaleLo 4ν0 1

{scaleLo, borderRi}→{back, backSlow}
{scaleHi, back}→{backSlow, borderRi}

{borderRi, backSlow}→{back, borderRi}
{backSlow, back}→{scaleHi, scaleLo}

Fig. 5. Structure, meta-signals and rules for the iterated shrinking.

backSlow. When it collects backSlow, it turns back to collect all the remaining
signals. This is done by adding the meta-signals and rules given on Fig. 6 (for
clarity, we use the same name for unstrained strained signals).

Meta − signal Speed E

stopir (i ∈ 2..7) ν0 i

stopil (i ∈ 3..8) −ν0 i

{scaleHi, stop}→{stop2r}
{stopir, a}→{stop(i+1)r} (i ∈ 2..7)

{stopir, b}→{stop(i+1)r} (i ∈ 2..7)

{stopir, one}→{stop(i+1)r} (i ∈ 2..7)

{stopir, back}→{stop(i+1)r} (i ∈ 2..7)

{stopir, backSlow}→{stop(i+1)l} (i ∈ 3..8)

{stopil, a}→{stop(i+1)l} (i ∈ 3..8)

{stopil, b}→{stop(i+1)l} (i ∈ 3..8)

{stopil, zero}→{stop(i+1)l} (i ∈ 3..8)

Fig. 6. stop prevents the accumulation: example and modifications.

This provides a reduction from the Halting problem; Conservative-AGC-

accumulation-Forecasting is Σ0
1-hard.

4.2 Reduction from Not-Total-2CA

Let A be any 2-counter automaton. We provide a higher structure for iterating
the previous construction. It is divided in two parts. On the left side there is a



simulation of Anext (of Fig. 4) that holds and updates the initial values for A.
On the right side A starts with the initial configuration copied from Anext in a
shrinking structure. If the simulation stops, then everything on the right side is
erased and collected as in previous subsection.

At the beginning, the Anext simulation holds (0, 0) and the copy process is
launched. All the signals for simulating A and the shrinking structure are copied
as in Fig. 7. As soon as signals are set in position, they act normally.

Fig. 7. Copying process (vertically stretched for clarity).

If the computation of A on (a0, b0) does not stop then the shrinking structure
is not prevented from producing an accumulation. Otherwise, stop8l collects all
the energy of both the structure and the simulation, preventing any accumula-
tion. When stop8l reaches the left side, it restarts Anext which produces the next
value of the enumeration of N × N. This automaton always stops. The copying
process and a new iteration start.

The copying process is conservative, the energy that has been gathered in
stop8l is released bit by bit. All together, each and every counter initial values
is tested one after the other, there is an accumulation as soon as there is a non
halting A-computation, otherwise all values are tested.

Lemma 5 Conservative-AGC-accumulation-Forecasting is Σ0
2 -hard.

5 Σ
0

2
membership of the general case

Lemma 6 AGC-accumulation-Forecasting belongs to Σ0
2 .

This is proved with the following expression of the problem matching Def. 4:

Lemma 7 There is an accumulation in the space-time generated by M from c
if and only if the following formula is true:
∃(x, t) ∈ Z×N, ∀n∈N, {there is at least n collisions in the casual past of (x, y)} .

The predicate “there is at least n collision. . . ” is total and recursive: compute
the collision in the light-cone until there are at least n or no more collision. This
is a total and recursive predicate quantified by ∃∀ over numerable sets.
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Fig. 8. Layout and first iterations.

6 Conclusion

Theorem 8 Both AGC-accumulation-Forecasting and Conservative-

AGC-accumulation-Forecasting are Σ0
2-complete.

The process does never stop, but we are not interested in the halting problem
but in the apparition of an accumulation. Accumulation is disconnected from
infinite duration computation. We believe that even restrained to signal machines
that preserve the number signal (each rule has as many in signals as out signals)
and are reversible the problem is still Σ0

2 -complete.
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