
THE SIGNAL POINT OF VIEW:

FROM CELLULAR AUTOMATA TO SIGNAL MACHINES
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1. Introduction

Cellular automata (CA) were introduced in the 1950’s and have been used as a model
for self-replication, computation, hardware, physics, economics. . . They are composed of
identical automata, called cells displayed on a regular lattice and communicating only with
neighbors. The dynamics, defined by the transition function of a cell, is parallel and syn-
chronous. Different points of view are commonly used: considering a single cell or an entire
configuration or the whole space-time diagram.

In the past decades, a new point of view has emerged: the cells are just a substrata on
which information travels. The atomic pieces of information are signals: patterns that keep
repeating regularly. The dynamics can then be understood as well as conceived in terms of
signals.

In this paper, we show that this signal approach is quite usual both for describing CA
generated from modeling and for designing special purpose CA. Then we recall some con-
structions on discrete signals and present signals in a continuous setting, abstract geometrical
computation before stating some of their computing capabilities.

Signals are embedded inside a discrete structure: both space and time are discrete. On
space-time diagrams they correspond more or less to discrete lines. On the one side, the
granularity of space is often exploited to get a natural scale and to get a halting condition
(for example to finish a Firing squad synchronization). On the other side it imposes a quite
cumbersome setting: discrete geometry; for example halfway between two cells is either on
a cell or between two cells.
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To generate special purposed CA, usually an Euclidean setting is used for conception
and then brute force and technical skills are used to discretize. The other way round, to
explain dynamics, one often forgets about the discreteness and moves on to a continuous
setting for an easier explanation. Both approaches rely on scaling invariance: if the gran-
ularity is thinner or thicker, the same phenomenon happens so that it does not depend on
the number of cells.

These observations led us to consider the continuous case on its own. On the one hand,
there is no problem with finding the middle; all positions are available. On the other hand,
there is no granularity on which to rely for an absolute scale or to ensure a correct stop.

The discrete and continuous cases have similarities; for example, both can compute (in
the classical sense) and thus have numerous related undecidability problems. Nevertheless,
the continuous model is quite different and addresses different topics. For example, the
signal approach have been very fruitful to solve the Firing squad synchronisation problem
but the constructions lead to “monsters” on the continuous side (like accumulations on a
Cantor set).

Signal machines can compute anything in the classical understanding as well as CA. In
the continuous setting, Zeno effect (infinitely many steps in a finite duration) can appear
and be used efficiently to decide semi-decidable problems, whereas in CA it is impossible.
In another direction, since it works in a continuous setting it can handle real numbers with
exact precision and be related to other analog models of computation like the Blum, Shub
and Smale one.

The paper is articulated as follows. Section 2 briefly recalls what cellular automata,
space-time diagrams and discrete signals are. Section 3 provides examples from the literature
where signals are used a mean of explanation. Section 4 presents the approach and results
on discrete signals, whereas Sect. 5 presents its continuous counterpart and some results on
its computing capabilities. Conclusion and perspectives are gathered in Sect. 6.

2. Cellular automata

This section grounds the notations. Only CA with one dimension are addressed, almost
everything naturally extends to higher dimensions.

Definition 2.1. A cellular automaton (CA) is defined by (Q, r, f) where Q is a finite set
of states, the radius, r, is a positive integer, and the local function, f , is a function from
Q2r+1 to Q. A configuration is an element of QZ. The global function, G : QZ → QZ, is
defined by:

G(c)i = f(ci−r, ci−r+1 . . . ci . . . ci−r−1, ci−r) .

Definition 2.2. A space-time diagram, D, is the orbit of a configuration, c0. It is an
element of QZ×N, D(., 0) is c0 and D(i, t) is Gt(c)i.

Unless noted otherwise, space-time diagrams are represented with time increasing up-
ward. Each configuration is set right above the previous one.

The following definition is empirical. It may vary according to articles and is more
conceptual that formal.

Definition 2.3. A background is a state pattern that may legally tile a whole space-time
diagram. A signal is a pattern that is periodically repeating over a background. Its speed
is defined as the spacial shift divided by the number of iterations to repeat.
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For example, if 0 is a quiescent state (i.e. f(0, . . . , 0) = 0) then a configuration filled
with 0 is mapped onto itself and the resulting space-time diagram is filled with 0, so that 0
is a background. If the dynamics is such that a configuration with only 0’s except for 1 on
three consecutive cells, is regenerated every other iteration shifted by one cell on the right,
then 111 is a signal and its speed is 1/2.

The speeds are bounded by the radius. This is a speed-of-light-like limitation. In space-
time diagrams, the more a signal is vertical, the more it is slow. Signals have a width: the
length of the pattern. The generated ones are generally 1-cell thin, but the ones observed
are frequently not that thin.

3. Informal use of signals

Signals are information conveyors. The dynamics is driven by the information received,
proceeded and sent.

3.1. Analysing the dynamics

3.1.1. Particles and solitons. Signals can be thought of as moving objects. This leads to
the vocabulary of “particles”. The term “soliton” is also used, but it implies that they can
cross one another unaffected, like waves. Figure 1 shows some examples from the literature.
This approach is important in physical modeling to ensure that studied objects could exist.

(a) [BNR91, Fig. 7]

(b) [HSC01, Fig. 7]

(c) [Siw01, Fig. 5]

(Time is increasing downward.)

Figure 1: Examples of particles and solitons.
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(Time is increasing downward.)

Figure 2: Signals to build an universal Turing machine [LN90, Fig. 3 and 4].

3.1.2. Computing capability. In computer science, before computing better (whatever it
means), one is interested in being able to compute. In [LN90] (Fig. 2), signals are found so
as to provide states and tape to simulate Turing machines.

In the quest for minimal Turing-universal and intrinsically universal cellular automata [Oll02,
Coo04, RO08], finding signals have often been the key to success.

3.2. Generating particular CA

The other way round, signals have also been used to design special purpose CA.

3.2.1. Prime number generation. One application is to generate the prime numbers as the
iteration numbers with no signal on cell 0 (i.e. on the leftmost vertical line) as done on
Fig. 3(a) [Fis65]. Other sets of natural numbers can be enumerated this way [MT99].

3.2.2. Firing squad synchronization (FSS). This is a typical synchronisation problem from
distributed computing. The aim is to have all processors do something special for the first
time simultaneously. They have no way to broadcast, nor a common clock to refer to. This
is thought of as a line of soldiers that must shoot synchronously but are not aware of their
number and have very poor means of communication: each one can only communicate with
the closest soldier on each side. Two soldiers are particularised: the first is a general that
will start the process and the last who knows that he is the last. In CA modeling, the cells
represent the soldiers.

Most solutions work on a divide and conquer scheme. For example, Goto’s algorithm
(Fig. 3(b)) cuts the line of soldiers in half and restarts the process synchronously on each
side. When the granularity of space is reached they shoot. A careful management of
odd/even pieces ensures that granularity is reached everywhere synchronously.
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(a) [Fis65, Fig. 2] (b) Goto’s solution to FSS [Got66, Fig. 3+6]

(Time is increasing downward.)

Figure 3: Geometric algorithms.

4. The world of discrete signals

4.1. Towards a definition

In the previous Section, we show that empirical notions of signals are used according
to the context. It makes it natural to look at signals not as a tool but as a subject in itself.
This is an important change of point of view. States and transitions are not considered
to be the central place for the dynamics but rather some underlying layer, some byte code
for a higher level language. Things are defined at the signals level, and then compiled into
states and transitions. The compilation is more or less automatic depending what a signal
is and what is expected from it.

For example, in the FSS construction of [VMP70] (Fig. 4), infinitely many signals and
speeds are considered. One would expect it hard if not impossible to bring this forth with
finitely many states. This turns out to be possible, not only because speeds are bounded
but also because, basically, the movement is managed by the interactions between signals.
This family can be decomposed with a few bricks: a signal for moving, one for not moving
together with signals ordering to move or to stop. Each signal forward the order to move
only half of the time so that the second one is half slower, the next one is half of half. . .

Considering this, one may think of some kind of jigsaw/tiling puzzle where thin pieces
can be clipped on a board. Starting from the bottom, the board is filled upwards according
to the way the pieces should be assembled together. This is the right level of abstraction.
This can be implemented into CA and is abstract enough to design complex behaviours.

Let us propose a simple approach to compile signals of max speed 1 and width 1
(encoded on exactly one cell and with radius 1) to show its feasibility. Interaction only
happens when signals are on the same cell. Signals are defined before their interactions.

A discrete signal is defined as a finite word over {←,−,→} that corresponds to its
periodic movements. For example, a word → would mean to move endlessly on the right,
one cell at each iteration, whereas −→ would mean right every other iteration. A signal
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(Time is increasing downward.)

Figure 4: Geometrical Algorithm to solve the FSS [VMP70, Fig 1 and 3].

does not need to be anything like a discrete line segment on a period (e.g. ←←← →→→
is valid) although at a different scale it looks like a line.

Compilation is quite simple: in each cell there is a bit corresponding to each step of
each signal. This means that every signal, at every step can be present in every cell! This
generates a huge number of states. But signals can be handled very easily: if a signal is
present with next move −, then it just goes to next step otherwise it is forgotten. If a signal
is present on the left (resp. right) with next move → (resp. ←), it goes on the next step on
the current cell. Since signals are split into steps, this is well defined. Signals are endlessly
moving.

Interactions/collisions can now be defined by rules like “if these signals are present at
these steps, then they are replaced by those at those steps”. Considering the vast amount
of possibilities, one can imagine intended (and not extended) formulation and undefined
cases could be handled by some superposition schemes and/or a default like: they cross
unaffected or they disappear.

4.2. Achievements

This approach at the signal level together with an implementation (generally ad hoc
and involving) has been quite fruitful: to give a improved solution to the FSS [Maz87], to
design parabolas and circles [DMT99] and especially to develop a new kind of programing
system with specific primitives.

For example, it is quite easy to have bits encoded by signals and have the dynamics
carry out an addition or a multiplication [Maz96]. In these cases, the generated space-time
diagrams look like the operation displayed as shown on Fig. 5.

There are ways to automatically have one computation twisted/bent so as to fit a
portion of the diagram and to restart the computation in the room left. This produces
recursion [DM02, Maz96, MT99] as displayed on Fig. 6.



THE SIGNAL POINT OF VIEW: FROM CELLULAR AUTOMATA TO SIGNAL MACHINES 7

0ÊÊ1ÊÊ0   1ÊÊ1ÊÊ0ÊÊ*

1ÊÊÊ1ÊÊÊ0ÊÊÊ0ÊÊÊ1ÊÊÊ1ÊÊÊ*

0ÊÊÊ0ÊÊÊ0ÊÊÊ0ÊÊÊ0ÊÊÊ0ÊÊ

1ÊÊÊ1ÊÊÊ0ÊÊÊ0ÊÊÊ1ÊÊÊ1Ê

0ÊÊÊ0ÊÊÊ0ÊÊÊ0ÊÊÊ0ÊÊÊ0ÊÊ

1ÊÊÊ1ÊÊÊ0ÊÊÊ0ÊÊÊ1ÊÊÊ1ÊÊÊÊ0

1ÊÊÊ1ÊÊÊ0ÊÊÊ0ÊÊÊ1ÊÊÊ1Ê

1   0   0 ÊÊ1ÊÊÊ1ÊÊ0ÊÊÊ0ÊÊ1ÊÊÊ0

0ÊÊÊ0ÊÊÊ0ÊÊÊ0ÊÊÊ0ÊÊÊ0Ê

1ÊÊÊ1ÊÊÊ0ÊÊÊ0ÊÊÊ1ÊÊÊ1Ê

0ÊÊÊ0ÊÊÊ0ÊÊÊ0ÊÊÊ0ÊÊÊ0ÊÊ

1 ÊÊ0   0 ÊÊ0  Ê1ÊÊÊ1 ÊÊ0ÊÊÊ0 ÊÊ0ÊÊÊ1ÊÊÊ0ÊÊÊ

multiplier

multiplicand

strongest 
digit

weakest 
digit

end of the 
words

1st partial 
sum

2nd partial 
sum

3rd partial 
sum

The last partial sum is the result

0   1  0 ÊÊ1ÊÊÊ1ÊÊ0ÊÊÊ0ÊÊ1ÊÊÊ0

1 ÊÊ0   0 ÊÊ0  Ê1ÊÊÊ1 ÊÊ0ÊÊÊ0 ÊÊ0ÊÊÊ1ÊÊÊ0ÊÊÊ

Figure 1: A human multipli

AA
AA
AA
AA
AA
AA
AAAA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AA
AAAAA
AAA
AAA
AAA

AA
AA
AA

CellÊÊ2ÊiÊÊ
at time 4ÊjÊ-Ê2

i   th digit of the 
multiplier

j   th digit of the 
multiplicand

i  th digit of the 
multiplier

i--1 th  carry 
over of the jÊth 
partial sum 

i  th  carry over 
of the jÊth 
partial sum 

i  th  digit of 
the j-1 th 
partial sum 

i-1  th  digit of 
the j th partial 
sum 

C

D

A
B

α β

α
β

ÊÊÊOne cell out of two computes one time 
out of two :
CÊ=ÊÊ(ÊαÊ∧ÊβÊ)Ê⊕Ê(ÊAÊ⊕ÊBÊ)

DÊ=ÊÊ(ÊαÊ∧ÊβÊ∧ÊA)Ê∨Ê(ÊαÊ∧ÊβÊÊ∧ÊBÊ)Ê∨Ê(ÊAÊ∧ÊB).

Figure 3: Computations done on one cell out of two, one unit of time out of

two.

9

cells

Time

0

1

*

*

1

0

1

1

0

0

1

1

1

0

Bit 1 of the
multiplier

Bit 0 of the
multiplier

Bit 1 of the
multiplicand

Bit 0 of the
multiplicand

0, 1
Bits of the
multiplier

0, 1 Bits of the
multiplicand

* End of words*

0

1

0

0

0

1

0

1

0

0

1

*

0

0,1,* Bits of the 
result

Bits 1 in transit throught 
the network

Bits 0 in transit throught 
the network

Figure 4: Multiplying 110011 by 10110.

Figure 5: Computation of a multiplication ([Maz96, Fig. 1, 3 andx 4]).
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Figure 6: Geometric computing ([Maz96, Fig. 8 and 19], and [MT99, Fig. 18]).

5. Signal machines

In an euclidean space-time (R×R+), signals follow straight lines as illustrated on Fig. 7.
They are dimension-less points (i.e. their width is zero). The dynamics of a single signal is
not defined any more by a sequence of elementary displacements but by a constant speed.
Thus its trace is a line segment in any space-time diagram.

The speed only depends on the nature of the signal since for discrete signals, it only
depends on the pattern. Pragmatically, it simplifies everything; but nevertheless, the model
is already very rich.
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Figure 7: Space-time diagram of a cellular automaton and its signal machine counterpart.

The whole dynamics is driven by signal collisions. When two or more signals meet,
they are replaced by other signals according to some rules.

5.1. Definition

Definition 5.1. A signal machine is defined by (M,S,R) where M is a finite set of meta-
signals, S is a function (M → R) that assigns speeds, and R defines the collision rules (a
function from 2M to itself). A signal is an instance of a meta-signal.

There are finitely many signals which is not the case in some of above discrete examples.
The reason is that otherwise the machine would not be finitely defined.

Let µ ∈M , if a µ-signal is at position x, then it will be at position x+ t.S(µ) at time
t if no other signal is met before.

A collision rule is denoted ρ− → ρ+, if the meeting signals correspond to ρ−, they are
removed and replaced by signals corresponding to ρ+. For example, in Fig. 7, whenever a
dotted signal meets a dashed one they are replaced by a line one and a dashed one. Since
R is a function, the dynamics is deterministic.

Definition 5.2. The extended value set, V , is the set of meta-signals plus two special
values: � for the background (i.e. the absence of any signal) and Z for an accumulation. A
configuration maps the underlying space to the extended set (R → V ) such that there are
finitely many non � positions.

The finitely many non � signals condition amounts for the finiteness of a configuration
ensuring that the collisions are clearly defined.

Definition 5.3. Let Smin and Smax be the minimal and maximal speeds. The causal past,
or (backward) light-cone, arriving at position x and time t, I−(x, t), is defined by all the
positions that might influence the information at (x, t) through signals, formally:

I−(x, t) = { (x′, t′) | x− Smax(t−t′) ≤ x′ ≤ x− Smin(t−t′) } .
The space-time diagram issued from an initial configuration c0 and lasting for T , is a

mapping c from [0, T ] to configurations (i.e. a mapping from R × [0, T ] to V ) such that,
∀(x, t) ∈ R× [0, T ] :
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(1) ∀t∈[0, T ], {x ∈ R | ct(x) 6= �} is finite,
(2) if ct(x)=µ ∈M then ∃ti, tf∈[0, T ] with ti<t<tf or 0=ti=t<tf or ti<t=tf=T s.t.:

• ∀t′ ∈ (ti, tf ), ct′(x+ S(µ)(t′ − t)) = µ ,
• ti=0 or ( cti(xi) = ρ−→ρ+ and µ ∈ ρ+ ) where xi=x+ S(µ)(ti−t) ,
• tf=T or (ctf (xf ) = ρ−→ρ+ and µ ∈ ρ−) or ctf (xf )=Z where xf=x+S(µ)(tf−t) ;

(3) if ct(x)=ρ−→ρ+ ∈ R then ∃ε, 0<ε, ∀t′∈[t−ε, t+ε] ∩ [0, T ], ∀x′∈[x− ε, x+ ε],
• (x′, t′) 6= (x, t) ⇒ ct′(x

′) ∈ ρ−∪ρ+ ∪ {�},

• ∀µ∈M , ct′(x
′)=µ ⇔ or

{
µ ∈ ρ− and t′ < t and x′ = x+ S(µ)(t′ − t)) ,
µ ∈ ρ+ and t < t′ and x′ = x+ S(µ)(t′ − t)) .

(4) if ct(x) = Z then ∀ε > 0, there is infinitely many signals in I−(x, t)∩ ([x−ε, x+ε]×
[t−ε, t]).

Rules handle the collision of isolated signals. So that other kind of “continuation”
would have to be defined when infinitely many signals are spatially accumulating to ensure
that the configuration at t + ε is defined. Among the monsters of Fig. 8; there is Goto’s
FSS counterpart and a Cantor set generation. For CA, granularity ensures the correct
achievement of the FSS, but there is no such thing here.

There is a tentative definition for the first kind of accumulation (leftmost case of Fig. 8)
in [DL03, Chap. 9], simplified versions are used later on (nothing or a single signal is issued).

Figure 8: A simple accumulation and three unwanted phenomena.

5.2. Turing computing capabilities

Although Abstract geometrical computation relies on exact real values, with a simple
restriction, it falls into the setting of classical computability. A signal machine is rational
if it has only rational speeds and positions in any initial configuration. It is easy to see
that, as long as there is no accumulation, all collisions happen at rational locations. Since
rational numbers can be encoded and manipulated with exact precision on any computer
(and the machine is finitely defined and there are finitely many signals in any configuration),
implementation is possible (and has been done in Java to generate the illustrations). So
that relating to Turing machine or any equivalent model makes sense.

In [DL05], it is proved that (rational) signal machine can simulate any counter au-
tomaton and thus have Turing power. This is still the case when only signal machines
that are conservative and reversible are considered [DL06c]. Conservative means that each
meta-signal has an positive energy and that each collision preserves this energy, so that the
number of signals is bounded from the beginning. Reversible means that the collision rule
is a bijection and that the signal machine can be run backward deterministically.

With computing capability comes undecidability, in the rational context many problems
can be expressed in the classical setting. Some prediction problems (e.g. the apparition



10 J. DURAND-LOSE

of a signal, the extension of a configuration on the side) are straightforwardly undecidable
[DL05] (this is not surprising since there are many such results as well as a Rice theorem
for CA [Kar94]). Collision forecasting is not even semi-decidable, it is Σ2

0-complete in the
arithmetical hierarchy [DL06b].

Let us illustrate the computing capability as well as available geometrical operations
with the proof of Σ2

0-hardness. This is done by reducing the (Π2
0-complete) Total problem:

whether a computable function (as defined by a 2-counter automaton for example) is defined
for all values. On the left of Fig. 9 there is a simulation of a two-counter automaton (the
vertical lines represent the counters). It is possible to add signals and rules allowing a
computation to go on while being bent one way then bent back producing a scaling by one-
half. This superstructure can restart itself and iterates infinitely (scaling is done three times
in the middle space-time diagram of Fig. 9). This computation is more and more compressed
and accelerated by a fractal structure it is entangled in. Since each iteration corresponds
to the same uncompressed duration, the embedded computation has an infinite time ahead
of it. If the computation stops (as in the picture), the structure and computation is erased
so that there is no accumulation, otherwise the accumulation takes place (Π1

0-hardness is
already reached by reducing Halt).

Figure 9: 2-counter automaton simulation, straight and contracted, and starting it.

On the right of Fig. 9, it is shown the way the value is provided and the computation
started. On Fig. 10, a lattice is formed in order to try all the values of the counters.

With a proper use of simple accumulations (they just disappear leaving no trace), the
so-called Black hole model of computation can be embedded inside rational signal machines
and semi-decidable problems become decidable [DL06a]. The construction is as follows.
The contracting computation is bounded by two signals. If the computation stops, a signal
amounting for the answer is emitted and collected by the signals outside. When these two
signals meet, it they had not received any signal they can assert that the computation never
stopped.

5.3. Relations with the Blum-Shub-Smale model [BSS89].

Since the positions and speeds are any real number, computability issues refer to analog
computation/computing on the continuous. Yet there is no analog Turing thesis and various
incomparable definitions exist. Abstract geometrical computation has already been related
to the BSS model: it is like a register machine where registers hold real numbers with exact
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Figure 10: Trying all values.

addition, multiplication and sign test. Indirect addressing and infinitely many registers are
available. Signal machines without any accumulation are equivalent to linear BSS, i.e. with
the restriction that multiplication can only be by a constant [DL07]. The encoding of a
linear BSS is done with constants in speeds and any real numbers held by a register as the
distance between two parallel signals.

To achieve the full BSS, i.e. with internal multiplication, accumulations can be used
[DL08]. Here accumulations results in a single signal where the accumulation takes place.
Accumulations are used to compute infinite sums. The multiplication of two real numbers
a and b is done by summing the products of a by the positive and negative powers of 2
according to the infinite binary expansion of b.

The resulting model is strictly more powerful than BSS since it can also performs
square rooting. The formula/program for computing it uses only rational numbers so that
the speeds of the machine are rational numbers. To compute the square root of 2, all signals
are at rational positions. But the accumulation happens at the irrational position

√
2.

6. Conclusion

Abstract geometrical computation naturally arose from CA and is rich and promising.
The discrete constructions perfectly fit into the discrete word of CA as the continuous

constructions perfectly fit the continuous word of SM. It would be interesting to investigate
on how and in which cases the continuous side is a limit of the discrete one and the other
way round, up to what amount can CA represent approximations of AGC. For example,
on what conditions could there be an automatic discretisation of signal machine into CA in
order to preserve some kind of properties?

Abstract geometrical computation still have to be studied on its own as well as related
to computable analysis for its continuous aspects on one side and to transfinite computation
since accumulation of order 2 and higher can be generated on the other side.
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eno michi [The Road to information science], pages 67–92. Kyoristu Shuppan Publishing Co.,
Tokyo, 1966.

[HSC01] W. Hordijk, C. R. Shalizi, and J. P. Crutchfield. An upper bound on the products of particle
interactions in cellular automata. Phys. D, 154:240–258, 2001.

[Kar94] J. Kari. Rice’s theorem for the limit sets of cellular automata. Theoret. Comp. Sci., 127:229–254,
1994.

[LN90] K. Lindgren and M. G. Nordahl. Universal computation in simple one-dimensional cellular au-
tomata. Complex Systems, 4:299–318, 1990.

[Maz87] J. Mazoyer. A 6-states minimal-time solution to the Firing squad synchronisation problem. The-
oret. Comp. Sci., 50(2):183–237, 1987.

[Maz96] J. Mazoyer. Computations on one dimensional cellular automata. Ann. Math. Artif. Intell., 16:285–
309, 1996.

[MT99] J. Mazoyer and V. Terrier. Signals in one-dimensional cellular automata. Theoret. Comp. Sci.,
217(1):53–80, 1999.

[Oll02] N. Ollinger. The quest for small universal cellular automata. In P. Widmayer, F. T. Ruiz,
R. B. Morales, M. Hennessy, S. Eidenbenz, and R. Conejo, editors, International Colloquium
on Automata Languages and Programming (ICALP ’02), number 2380 in LNCS, pages 318–329.
Springer, 2002.



THE SIGNAL POINT OF VIEW: FROM CELLULAR AUTOMATA TO SIGNAL MACHINES 13

[RO08] G. Richard and N. Ollinger. A particular universal cellular automaton. In T. Neary, D. Woods,
A. K. Seda, and N. Murphy, editors, The Complexity of Simple Programs. National University of
Ireland, Cork, 2008.

[Siw01] P. Siwak. Soliton-like dynamics of filtrons of cycle automata. Inverse Problems, 17:897–918, 2001.
[VMP70] V. I. Varshavsky, V. B. Marakhovsky, and V. A. Peschansky. Synchronization of interacting au-

tomata. Math. System Theory, 4(3):212–230, 1970.


