Jérôme DURAND-LOSE

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, ORLÉANS, FRANCE

Journées Automates Cellulaires 2008 — 21 au 25 avril — Uzès

- 2 Implicit use of signals
- 3 Discrete signals
- 4 Signal Machines

Introduction

- 2 Implicit use of signals
- 3 Discrete signals
- ④ Signal Machines

Cellular Automata

Definition

(do you really need one?)

Dynamical system

Global function, $\mathcal{G}: Q^{\mathbb{Z}} \to Q^{\mathbb{Z}}$

Orbit and space-time diagram

Value in $Q^{\mathbb{Z} \times \mathbb{N}}$ Image with big pixels

Background and Signals

Background

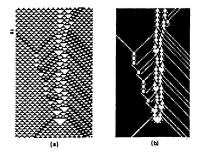
(2-d) Pattern that may form a valid space-time diagram by bi-periodic repetition.

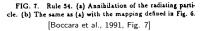
Signal

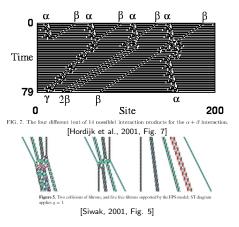
- Pattern that (legally) repeats 1-periodically on a background
- Pattern repeating 1-periodically and separating two backgrounds

Illustration by examples

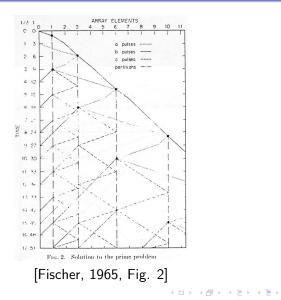
2 Implicit use of signals


3 Discrete signals

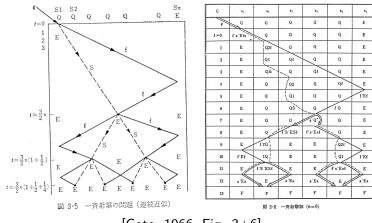

④ Signal Machines



Understanding the dynamics


◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Computing by simulating a Turing machine


[Lindgren and Nordahl, 1990, Fig. 4]

Generating primes

æ

Firing Squad Synchronization

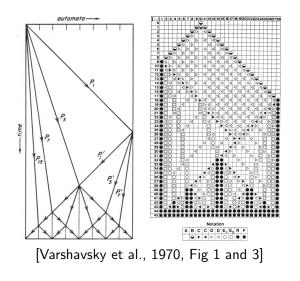
[Goto, 1966, Fig. 3+6]

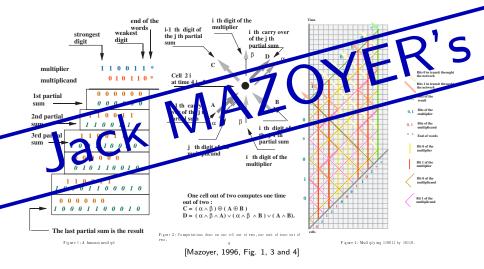
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Discrete signals

Implicit use of signals

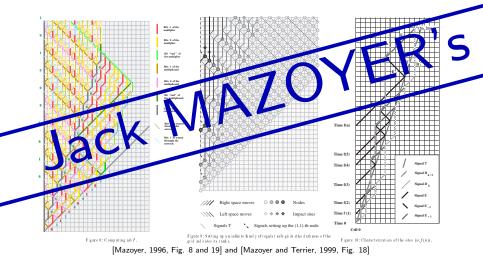
3 Discrete signals


4 Signal Machines



Discrete signals

Firing Squad Synchronization (again)



Multiplication

Discrete signals

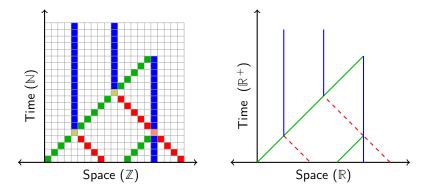
A whole programming system

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Signal Machines

- 2 Implicit use of signals
- 3 Discrete signals

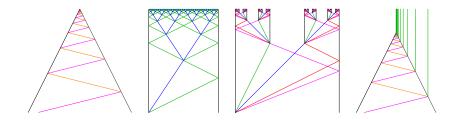
4 Signal Machines


Moving to the continuum

Forget about discreteness

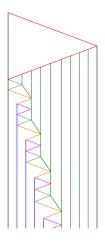
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 \rightsquigarrow continuous


Signal Machines

Vocabulary

- Signal (meta-signal)
- Collision (rule)


New kinds of *monsters*

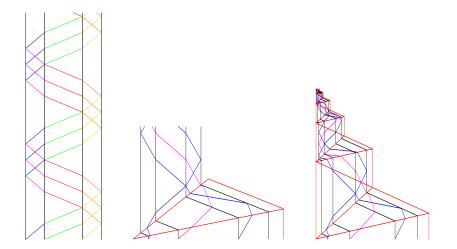
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④ Q @

Signal Machines

Computability and undecidability [Durand-Lose, 2005]

Two-counter simulation

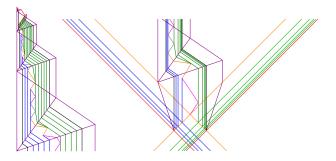
Turing-machine can also be simulated directly


Undecidable

- total erasing
- finite number of signal
- signal/collision apparition

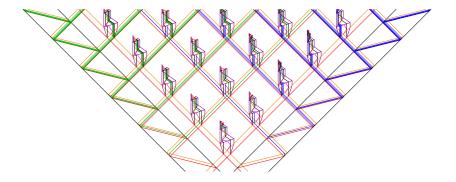
(日)、(四)、(E)、(E)、(E)

Signal Machines


Scaling down and bounding the duration

・ロト ・聞ト ・ヨト ・ヨト

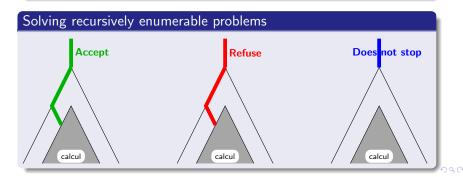
э


Computing inside bounded room

・ロト ・聞ト ・ヨト ・ヨト

æ

Accumulation forecasting is Σ_0^2 -complete [Durand-Lose, 2006b]


◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Link with the Black hole model [Durand-Lose, 2006a]

Principe

Two different timelike half-curves such that

- they have a point in common (used to set things and start)
- one is upward-infinite and fully contained in the casual past of a point of the other

Links with the Blum, Shub and Smale model

Classical BSS model

Variables holds real numbers in exact precision

- input / output
- test 0 <
- shift (to access other variables)
- compute a polynomial function

Linear BSS [Durand-Lose, 2007]

Restriction

- only linear function
- *i.e.* no inner multiplication

Encoding real numbers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

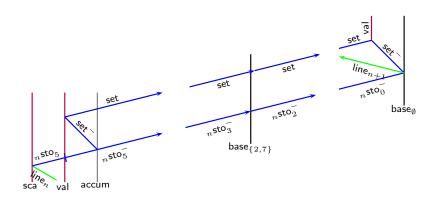
- Common scale for all variables
- Sign test trivial

Encoding real numbers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

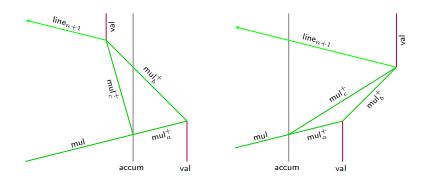
- Common scale for all variables
- Sign test trivial

Encoding real numbers



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Common scale for all variables
- Sign test trivial


Signal Machines

Addition

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

External multiplication

Internal multiplication [Durand-Lose, 2008]

Computation

- Pre-treatment to ensure 0 < y < 1
- Binary extension of *y*:

$$y = y_0.y_1y_2y_3...$$

イロト イヨト イヨト

Computation

$$xy = \sum_{0 \le i} y_i\left(\frac{x}{2^i}\right)$$

Principe

Computation on the margin the margin is scaling down geometrically

Square rooting is also possible!

Conclusion

Introduction

- 2 Implicit use of signals
- 3 Discrete signals
- 4 Signal Machines

- Natural filiation with CA
- Continuous time
 - Zeno effect
 - Unpredictability

Links with other models

- Black hole model
- Blum, Shub and Smale model

Future work

- Relate with CA
- Characterize the analog computing power

Boccara, N., Nasser, J., and Roger, M. (1991).

Particle-like structures and interactions in spatio-temporal patterns generated by one-dimensional deterministic cellular automaton rules.

Phys. Rev. A, 44(2):866-875.

Durand-Lose, J. (2005).

Abstract geometrical computation: Turing computing ability and undecidability.

In Cooper, B. S., Löwe, B., and Torenvliet, L., editors, *New Computational Paradigms, 1st Conf. Computability in Europe (CiE '05)*, number 3526 in LNCS, pages 106–116. Springer.

Durand-Lose, J. (2006a).

Abstract geometrical computation 1: Embedding black hole computations with rational numbers.

Fund. Inf., 74(4):491-510.

Forcasting black holes in abstract geometrical computation is highly unpredictable.

In Cai, J.-Y., Cooper, B. S., and Li, A., editors, *Theory and Applications of Models of Computations (TAMC '06)*, number 3959 in LNCS, pages 644–653. Springer.

Durand-Lose, J. (2007).

Abstract geometrical computation and the linear Blum, Shub and Smale model.

In Cooper, B. S., Löwe, B., and Sorbi, A., editors, *Computation and Logic in the Real World, 3rd Conf. Computability in Europe (CiE '07)*, number 4497 in LNCS, pages 238–247. Springer.

Durand-Lose, J. (2008).

Abstract geometrical computation with accumulations: Beyond the Blum, Shub and Smale model.

In Beckmann, A., Dimitracopoulos, C., and Löwe, B., editors, *Logic* and Theory of Algorithms, 4th Conf. Computability in Europe (CiE '08) (abstracts and extended abstracts of unpublished papers), pages 107–116. University of Athens.

Conclusion

Fischer, P. C. (1965).

Generation of primes by a one-dimensional real-time iterative array. J. ACM, 12(3):388–394.

Goto, E. (1966).

Ōtomaton ni kansuru pazuru [Puzzles on automata].

In Kitagawa, T., editor, *Jōhōkagaku eno michi [The Road to information science]*, pages 67–92. Kyoristu Shuppan Publishing Co., Tokyo.

Hordijk, W., Shalizi, C. R., and Crutchfield, J. P. (2001).

An upper bound on the products of particle interactions in cellular automata.

Phys. D, 154:240-258.

Lindgren, K. and Nordahl, M. G. (1990).

Universal computation in simple one-dimensional cellular automata.

Complex Systems, 4:299-318.

Mazoyer, J. (1996).

Computations on one dimensional cellular automata.

Ann. Math. Artif. Intell., 16:285–309.

Mazoyer, J. and Terrier, V. (1999).

Signals in one-dimensional cellular automata.

Theoret. Comp. Sci., 217(1):53-80.

Siwak, P. (2001).

Soliton-like dynamics of filtrons of cycle automata.

Inverse Problems, 17:897-918.

Varshavsky, V. I., Marakhovsky, V. B., and Peschansky, V. A. (1970).

Synchronization of interacting automata.

Math. System Theory, 4(3):212–230.