Jérôme DURAND-LOSE

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, ORLÉANS, FRANCE

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

IW Complexity of Simple Programs December 6-7, 2008 – Cork, Irland

Introduction

- 2 Turing machines
- 3 Cellular automata
- 4 Cyclic tag systems

Introduction

Collision based computing

Idealization

- continuous space
- continuous time
- dimensionless particles/signals

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Abstract geometrical computation

Signal machines

- meta-signals (finitely many)
- their speed/velocity
- collision rules

Signals, e.g.

- red (with speed 1) at position xx
- blue (with speed -1) at position yy

Collision, e.g.

• rule
$$\{\texttt{green}, \texttt{red}\} \rightarrow \{\texttt{blue}\}$$

application

Introduction

An example

▲ロト ▲圖 → ▲国 → ▲国 → 「国 → のへで

Introduction

More examples

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Introduction

More complex examples

◆□ > ◆圖 > ◆臣 > ◆臣 > ─ 臣

Turing machines

3 Cellular automata

4 Cyclic tag systems

Turing machines

Turing machines?

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Turing machines

Simulation

Corresponding signal machine

Turing machines

How many meta-signals?

	Meta-signal				
1 symbol	\rightsquigarrow	1			
1 state	\rightsquigarrow	2			
for finitness					
$\overline{\mathbf{\#}}, \ \overline{\mathbf{\#}}, \ \overline{\mathbf{\#}}, \ \overline{\overline{\mathbf{\#}}}$	$\sim \rightarrow$	4			

 $|\Gamma| + 2|Q| + 4$

Results

universal 18 (Woods and Neary, 2007) semi-universal
7 (Smith, 2007)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

ъ

Cellular automata

4 Cyclic tag systems

Cellular automata

Cellular automata

Output 0 1 1 0 1 1 0 Input 11111010110001101000 Imput Imput

Evolution and simulation on 11 framed by $^{\omega}(10)$ and $(011)^{\omega}$

0111001100 1011000111 10111110 10111110

Cellular automata

How many meta-signals?

Results			
	universal not interesting	semi-universal 6 (Cook, 2004)	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cellular automata

Link CA-ACG

▲ロ > ▲母 > ▲臣 > ▲臣 > ▲臣 - の Q @ >

Cyclic tag systems

3 Cellular automata

4 Cyclic tag systems

5 Conclusion

Cyclic tag systems

Cyclic tag system?

Definition

- a binary word
- a circular list

Dynamics

101 011 :: h :: 0110 :: 01011

- empty word
- halt appendant (here h)
- cycle (too expensive to test)

Cyclic tag systems

Cyclic tag system?

Definition

- a binary word
- a circular list

Dynamics

+01**011** 011 :: h :: 0110 :: 01011 :: 011

- empty word
- halt appendant (here h)
- cycle (too expensive to test)

Cyclic tag systems

Cyclic tag system?

Definition

- a binary word
- a circular list

Dynamics

101011 011 :: h :: 0110 :: 01011 :: 011 :: h

- empty word
- halt appendant (here h)
- cycle (too expensive to test)

Cyclic tag systems

Cyclic tag system?

Definition

- a binary word
- a circular list

Dynamics

101011**0110** 011 :: h :: 0110 :: 01011 :: 011 :: h :: 0110

- empty word
- halt appendant (here h)
- cycle (too expensive to test)

Cyclic tag systems

Cyclic tag system?

Definition

- a binary word
- a circular list

Dynamics

1010110110

011 :: h :: 0110 :: 01011 :: 011 :: h :: 0110 :: 01011

- empty word
- halt appendant (here h)
- cycle (too expensive to test)

Cyclic tag systems

Cyclic tag system?

Definition

- a binary word
- a circular list

Dynamics

1010110110**011** 011 :: h :: 0110 :: 01011 :: 011 :: h :: 0110 :: 01011:: 011

- empty word
- halt appendant (here h)
- cycle (too expensive to test)

Cyclic tag systems

Cyclic tag system?

Definition

- a binary word
- a circular list

Dynamics

1010110110011

011 :: h :: 0110 :: 01011 :: 011 :: h :: 0110 :: 01011:: 011 :: h

- empty word
- halt appendant (here h)
- cycle (too expensive to test)

Cyclic tag systems

Simulation

101 and 011 :: 10 :: 10 :: 01

Cyclic tag systems

How many meta-signals?

Universality

- 13 meta-signals
- 21 non-blank rules

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Conclusion

- 2 Turing machines
- 3 Cellular automata
- 4 Cyclic tag systems

Conclusion

Conclusion

Bounds			
	universal 13	semi-universal 6	

Future work

- Iower this bound
- bounds for
 - accumulation (3 or 4)
 - black hole implementation (13 ? 14 ? more)
 - analog computation (BSS or computable analysis)