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Introduction

Context

Collision based computing

Idealization

continuous space

continuous time

dimensionless particles/signals
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Introduction

Abstract geometrical computation

Signal machines

meta-signals (finitely many)

their speed/velocity

collision rules

Signals, e.g.

red (with speed 1) at position xx

blue (with speed -1) at position yy

Collision, e.g.

rule {green, red} → {blue}

application
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Turing machines

Turing machines?

Finite automata

Read/write head

Tape

q

^ input # # . . .
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Turing machines

Simulation

Iterations of a Turing machine
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Turing machines

How many meta-signals?

Meta-signal

1 symbol  1
1 state  2

for finitness

#,
←−
# ,
−→
# ,
−→
#  4

|Γ|+ 2|Q|+ 4

Results

universal semi-universal

18 (Woods and Neary, 2007) 7 (Smith, 2007)
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Cellular automata

Cellular automata

Rule 110 and one transition implementation

Output 0 1 1 0 1 1 1 0

Input 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0

ze
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Evolution and simulation on 11 framed by ω(10) and (011)ω

0 1 1 1 0 0 1 1 0 0

10 1 1 0 0 0 1 11

10 1 1 1 1 10

10 1 101
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Cellular automata

How many meta-signals?

Meta-signal

1 state  3
for finitness

Regular pattern on both side  expensive

3|Q|+???

Results

universal semi-universal

not interesting 6 (Cook, 2004)
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Cellular automata

Link CA-ACG

in a chromosome. This de�nes one generation of the GA; it is repeated G times for one GA run.FI(�) is a random variable since its value depends on the particular set of I ICs selected toevaluate �. Thus, a CA's �tness varies stochastically from generation to generation. For thisreason, we choose a new set of ICs at each generationFor our experiments we set P = 100, E = 20; I = 100, m = 2; and G = 50. M was chosenfrom a Poisson distribution with mean 320 (slightly greater than 2N). Varying M preventsselecting CAs that are adapted to a particular M . A justi�cation of these parameter settings isgiven in [9].We performed a total of 65 GA runs. Since F100(�) is only a rough estimate of performance,we more stringently measured the quality of the GA's solutions by calculating PN104(�) withN 2 f149; 599; 999g for the best CAs in the �nal generation of each run. In 20% of the runsthe GA discovered successful CAs (PN104 = 1:0). More detailed analysis of these successful CAsshowed that although they were distinct in detail, they used similar strategies for performing thesynchronization task. Interestingly, when the GA was restricted to evolve CAs with r = 1 andr = 2, all the evolved CAs had PN104 � 0 for N 2 f149; 599; 999g. (Better performing CAs withr = 2 can be designed by hand.) Thus r = 3 appears to be the minimal radius for which the GAcan successfully solve this problem.
β γ
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(a) Space-time diagram. (b) Filtered space-time diagram.
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Figure 1: (a) Space-time diagram of �sync starting with a random initial condition. (b) The same space-time diagram after �ltering with a spatial transducer that maps all domains to white and all defects toblack. Greek letters label particles described in the text.Figure 1a gives a space-time diagram for one of the GA-discovered CAs with 100% perfor-mance, here called �sync. This diagram plots 75 successive con�gurations on a lattice of sizeN = 75 (with time going down the page) starting from a randomly chosen IC, with 1-sites col-ored black and 0-sites colored white. In this example, global synchronization occurs at time step58. How are we to understand the strategy employed by �sync to reach global synchronization?Notice that, under the GA, while crossover and mutation act on the local mappings comprising a4
c©Das-Crutchfield-Mitchell-Hanson95
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Cyclic tag systems

Cyclic tag system?

Definition

a binary word

a circular list

Dynamics

101
011 :: h :: 0110 :: 01011

Halt

empty word

halt appendant (here h)

cycle (too expensive to test)
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Cyclic tag systems

Simulation

101 and 011 :: 10 :: 10 :: 01

initial configuration
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101 & 011 :: h :: 0110 :: 01011
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Cyclic tag systems

How many meta-signals?

Universality

13 meta-signals

21 non-blank rules
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Conclusion

Conclusion

Bounds

universal semi-universal

13 6

Future work

lower this bound

bounds for

accumulation (3 or 4)
black hole implementation (13 ? 14 ? more)
analog computation (BSS or computable analysis)
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