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Abstract. In Abstract geometrical computation, Turing computability
is provided by simples machines involving drawing colored line segments,
called signals, according to simple rules: signals with similar color are
parallel and when they intersect, they are replaced according to their
colors. These signal machines also provide a very powerful model of ana-
log computation following both the approaches of computable analysis
and of Blum, Shub and Smale. The key is that accumulations can be de-
vised to accelerate the computation and provide an exact analog values
as limits in finite time.

In the present paper, we show that starting with rational numbers for
coordinates and speeds, the collections of positions of accumulations in
both space and time are exactly the computable real numbers (as defined
by computable analysis). Moreover, there is a signal machine that can
provide an accumulation at any computable place and date.
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1 Introduction

Starting from a few aligned points, lines are initiated. When they intersect, they
end and new line segments start. Each line is given a color and lines with the
same color should be parallel. The new line segments are colored according to
the colors of the removed ones.

What can kind of figure can one build with finitely many colors? Is this system
computing in some way?

Such a system computes. It does so in the understandings of both Turing com-
putability [Durand-Lose, 2005], the original Blum, Shub and Smale model [Blum
et al., 1989, Durand-Lose, 2007, 2008a] and computable analysis [Weihrauch,
2000, Durand-Lose, 2009b, 2010]. Even the Black hole model of computation
can be embedded there [Etesi and Németi, 2002, Hogarth, 2004, Lloyd and Ng,
2004, Andréka et al., 2009, Durand-Lose, 2006a, 2009a].
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Given that the underlying space and time are Euclidean, thus continuous, can
there be any accumulation? What can be said about them?

Yes this is easy to achieve (as on Fig. 1(a), time is always elapsing upward)
and with a simple shift and rescaling, this isolated accumulation could happen
anywhere.

In the present paper, we show that if the system is rational (i.e. the co-
efficients of the lines and the initial positions are rational numbers) then the
coordinates of any isolated accumulation are computable real numbers. From
now on, computable means according to computable analysis. We also prove
that for any computable coordinates, there is a machine and initial configura-
tion producing an isolated accumulation exactly at the point. Moreover, there
exists a machine such that the coordinates of possible isolated accumulation are
exactly the computable positions.

The system described above is a signal machine and the context is abstract
geometrical computations. This was inspired by a continuous time and space
counterpart of cellular automata [Durand-Lose, 2008b] similar to the approaches
of Jacopini and Sontacchi [1990], Takeuti [2005], Hagiya [2005] and also as an
idealization of collision computing [Adamatzky, 2002].

A signal machine gathers the definition of meta-signals (colors) and collision
rules. An instance of a meta-signal is a dimensionless point called a signal. Each
signal moves uniformly, its speed only depends on the associated meta-signal.
The traces of signals on the space-time diagrams are then lines and as soon as
they correspond to the same meta-signal, they are parallel. When signals meet,
they are destroyed and replaced by new signals. The nature of emitted signals
only depends on the nature of colliding ones.

One key feature of AGC is that space and time are continuous and Zeno
effects can be implemented (as on Fig. 1(a)) in a way to provide unbounded ac-
celeration. This has been used provide infinitely many discrete transitions during
a finite duration so as to be able to decide the halting problem by implementing
the so-called Black hole model of computation [Durand-Lose, 2009a]. This has
also been used to carry out exact analog computations [Durand-Lose, 2008a,
2009b].

All these were achieved with rational signal machines: speeds as well as ini-
tial positions are rational numbers. Since the positions of collisions are defined
by linear equations in rational numbers, the collisions all happen at rational
positions. This is interesting since rational can be handled exactly in classical
discrete computation.

One early question in the field was whether, starting from a rational signal
machine, accumulation could lead to an irrational coordinate. This was answered,
as expected, positively in Durand-Lose [2007] by providing an accumulation at√

2. The question was then to characterize the possible accumulation points. It
should be noted that forecasting accumulation for a rational signal machine is
as undecidable as the strict partiality of a computable function (Σ0

2 -complete in
the arithmetical hierarchy [Durand-Lose, 2006b]).
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Fig. 1. Examples of space-time diagrams.

In the present article, we are interested in isolated accumulations: there is
no accumulation point arbitrarily close to it in the space-time diagram as on
Fig. 1(a). As pointed out by the various examples on Fig. 1, there are many
types of accumulations. The ones on Fig. 1(b) form a cantor set and the one
of Fig. 1(c) are on a curve and are almost all accumulations of signals but not
collisions.

In Durand-Lose [2009b], computable analysis is implemented with real num-
bers implemented as distances and accumulations happening at the exact lo-
cation. The construction shows that the accumulation can be any computable
number but the accumulation is not isolated (because of the convoy construc-
tion that produces a curve made of accumulating signals as on Fig. 1(c)). The
construction has been improved in Durand-Lose [2010] so as to have only one
accumulation. This asserts that for any computable real number, there is one
rational signal machine and one initial configuration such that an isolated ac-
cumulated happen at the location. This is achieve by a two folding structures
(a folding structure provide the machinery to provide unbounded acceleration),
the inner one being nested inside the outer one. The inner one is producing, one
symbol at a time, the infinite string representing the output (the computable
analysis representation of the computable real number). The outer one shifts
and shrinks according to the symbol generated (the inner one is frozen while the
symbol is processed).

With a slight modification, this can be improved so that any computable
number can be the date of an isolated accumulation. The first step is to ensure
that each symbol extraction, shift and scaling have the same duration indepen-
dently of the simulated type-2 Turing machine and output symbol. Once this
normalization is done, it remains to add extra delays according to the output
symbol.

Then with a parallel execution of two type-2 Turing machines, construction
for both space and time with any two given computable real numbers can be
achieved. By considering a universal Turing machine, a signal machine able to
produce an isolated accumulation at any computable date or position is gener-
ated.



To prove that isolated accumulations only happen at computable coordinates,
we explain how to construct a type-2 TM that generates the infinite representa-
tion of the coordinate starting from the signal machine and a rational interval
of space and time where the isolated accumulation is expected.

Definitions are gathered in Sect. 2. Section 3 deals with generating accumula-
tions at computable coordinates. Section 4 shows that the coordinates of isolated
accumulations are always computable. Section 5 concludes the paper.

2 Definitions

2.1 Abstract geometrical computation

A signal machine collects the definitions of available meta-signals, their speed
and the collision rules. For example, the machine to generate Fig. 1(a) is com-
posed of the following meta-signals (with speed): left ( 1

2 ), zig (4), zag (−4), and
right (- 1

2 ). Two collision rules are defined:

{left, zag} −→ {left, zig} and {zig, right} −→ {zag, right}

It could happen that exactly 3 (or more) meta-signals meet. In such a case,
collisions rules involving 3 (or more) meta-signals are used. There can be any
number of meta-signals in the range of collision rules.

A configuration is a function from the real line (space) into the set of meta-
signals and collision rules plus two extra values: � (for nothing there) and Z
(for accumulation). If there is a signal of speed s at x, then, unless there is a
collision before, after a duration ∆t, its position is x + s.∆t. At a collision, all
incoming signals are immediately replaced by outgoing signals in the following
configurations according to collision rules (it maps two or more meta-signals into
a set of meta-signals). Moreover, any signal must be spatially isolated —nothing
else arbitrarily closed—, locations with � value must form an open set and the
accumulation points of non � locations must have Z value. (This is a spatial,
static, accumulation like on Fig. 1(c)).

A space-time diagram is the collection of consecutive configurations, they
form a two dimensional picture. It must also verify that any accumulation point
in the picture have Z value. (This are dynamical accumulations like on Fig. 1(a).)

An accumulation is isolated when there is no accumulation arbitrarily closed
in the space-time diagram (it is surrounded by � in its configuration). It is purely
dynamical. Considering the definition of light cone as on Fig. 2, an accumulation
at (x0, t0) is isolated if, sufficiently close to (x0, t0):

– the grey zone is empty (there is nothing but �);
– there are infinitely many signals and collisions but no accumulation in the

casual past.

A signal machine is rational if all the speeds are rational and only rational
positions are allowed for signals in the initial configuration. Since the location of
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Fig. 2. Casual past of backward light cone.

collisions are solutions of systems of rational linear equations, they are rational.
In any space-time diagram of a rational signal machine, as long as there is no
accumulation, the coordinates of all collisions are rational.

Space and time are continuous; there is no absolute scale and the dynamics
is uniform in both space and time. So that if the initial configuration is shifted
or scaled so is the whole space-time diagram.

2.2 Computable number

Computable analysis uses type-2 Turing machines together with a valid repre-
sentation of real numbers as an infinite sequence of symbols. A type-2 TM is
nothing but a regular TM with an input stream (or read only tape) and an
output stream (or write only tape). The TM should run forever and output the
infinite representation of the computed real number. Computable (real) numbers
are the ones generated by T2 TM with no entry.

The representation used is the signed binary representation [Weihrauch, 2000,
Def. 7.2.4 p. 206], ρsb :⊆ {•, 1, 0, 1}ω −→ R, is defined only for infinite sequences
with exactly one dot (•) by:

w0•d1d2d3 . . . dn . . . 7−→ νsb(w0) +
∑
1≤i

di

2i

where w0 ∈ {1, 0, 1}∗, di ∈ {1, 0, 1} and νsb is a naming of natural integers
signed in base 2 (1 stands for −1).

Since space-time diagram can be shifted and scaled just by doing it on the ini-
tial configuration and since rational shifts and coefficients preserve rationalness,
generating (spatial) position in [−1, 1] is enough.

For the temporal coordinates it is enough to consider (0, 1]. The above encod-
ing cannot be used directly since only (strictly) positive duration can be added.
As presented in Sect. 3.2, the encoding is then biased by the addition of:∑

1≤i

2
2i

= 2 .



Adding or subtracting 2 does not change the computability of any number. But
with the above increase, it is like working with values {1, 2, 3} for “bits”. The
generated time is in (2, 3], but again by scaling the initial configuration it can
be anywhere.

3 Accumulating at computable coordinates

3.1 Spatial coordinate

In this section, the construction is only sketched. A more detailed construction
can be found in [Durand-Lose, 2010].

Let x be any given computable number. It is represented by some TMM that,
started on an empty tape and using no input stream, output its infinite signed
binary representation. This machine can be implemented straightforwardly in
abstract geometrical computation as shown on Fig. 3. The generated bits are
signal leaving on the right.
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Fig. 3. Simulating the T-2 Turing machine

The construction is a two level structure made of shrinking structures: the
inner and outer ones. Shrinking structures are construction that can be added to
any signal machine in order to provide an unbounded acceleration ending in an
isolated acceleration. These construction can be added to any signal machine:
meta-signals and collision rules are added; existing ones are unaffected. The
outer structure is in charge of driving the whole construction to accumulate at
the right place, according of the generated (signed) bits produced by the inner
structure.

The inner structure is in charge of squeezing (accelerating) M until a bit is
output. When a bit is output, to avoid producing an unwanted accumulation,



the inner structure and M freeze until another bit is asked for by the outer
structure. To ensure that M is frozen, output is made blocking: M restarts on
receiving an acknowledgement. One bit extraction is show on Fig. 3(c); it is the
same iterations of M as on the rest of Fig. 3. The structure is indicated with
the dashed lines. Squeezing ensures that the bit is obtained in bounded time.
Moreover, when the inner structure (and the embedded M) is scaled down, so
is the bound.

Basically the algorithm is:

1. The inner structure accelerates M until a bit is output.
2. The outer structure treats this bit by scaling down by one half and shifting

the whole structure.
3. An acknowledgement is sent to the inner structure that restarts at first stage.

When the inner structure and M are frozen, only parallel signals are present.
It is then easy to shift and scale them according to the bit received. The three
cases are illustrated on Fig. 4.

(a) Case 1 (b) Case 0 (c) Case 1

Fig. 4. Outer structure dynamics.

Putting all together, the picture is like the one on Fig. 5. The accumulation
at the top is exactly at the computable number. The inner structure is not
provoking any accumulation anywhere else since it is always stopped and shifted.

3.2 Time coordinate

In the previous construction, special care has been taken to provide shrink and
shift steps that have exactly the same height, i.e. take exactly the same amount
of time. To master totally the duration, the delay in-between these steps has to
be imposed by the construction and not depend on the output bit. Since the
inner structure is accumulating, geometrically accelerating M , this duration is
up bounded.

The next modification is:



Fig. 5. The whole picture for spacial accumulation.

– the output bit is just collected and stored on the left, and
– the step is started by some signal emitted from the other side at the end of

the previous step.

This starting signal is slow enough to ensure that it arrives after the generated
bit.

At this point, the system accumulates at a date given as the sum of a geo-
metric series (of rational factor). Considering the remark at the end of Sect. 2.2,
to reach any computable number it suffices to add the same duration once for 0
and twice for 1. Adding the same duration once or twice is very easy to achieve:
once the shrink and shift step is done, one signal can go back and forth one or
twice, just to let the corresponding amount of time elapse.

This way an accumulation can happen at any date that is a computable
number.

3.3 Both coordinates

Starting from two computable numbers, x and t, it is possible to provide a
signal machine and an initial configuration such that there is exactly one isolated
accumulation, and it is located at (x, t).

Previous construction does not handle independent coordinates. This can be
done very simply: a second inner shrinking structure and T2-TM is embedded



inside the outer structure. The two inner structures are independent and each
one squeeze its T2-TM to get bits. One is always received by the outer structure
as an indication for the shift, the other always for the extra delays.

This ways, x and t are generated independently, each one operating on its
coordinate.

4 Only computable coordinates

Let us consider a rational signal machine and an isolated accumulation at (x0, t0).
There is a bounded portion of the space-time diagram such that all the collisions
and signals are in the casual past of the accumulation.

More formally, there are rational numbers x−, x+, t−, and t+, such that:
x− < x0 < x+ and t− < t0 < t+ and the grey zone of Fig. 2 contains only �.

In the casual past, signals and collisions are only accumulating at (x0, t0)
(since the accumulation is isolated there must exists such x−, x+, t−, and t+).
At each date t, there is only finitely many signals and collisions. Moreover, if t
is rational, then they are located at rational position.

Rational numbers can be implemented with exact precision so can rational
signal machines (and it has been programmed in Java to generate all the space-
time diagrams). So starting from x−, x+, t−, t+ and the signals and collisions
present at t− and simulating, the bounds x−, x+, t−, t+ can be improved and
output. This generated an infinite sequence converging to (x0, t0), thus they are
computable.

5 Conclusion

By considering a universal Turing machine and shift and scale operators, comes
the following theorem:

Theorem 1. There is a rational signal machine that can generate isolated ac-
cumulation at any computable coordinates. Moreover, the isolated accumulations
of rational signal machine can only happen at computable coordinates.
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