1
.||||||m

UNIVERSITE D'ORLEANS

4 rue Léonard de Vinci

BP 6759

F-45067 Orléans Cedex 2
FRANCE
http://www.univ-orleans.fr/lifo

Rapport de Recherche

Fractal Parallelism:
solving SAT in bounded
space and time

Dens DUCHIER, Jérome DURAND-LOSE and
Maxime SENOT

LIFO, Université d’Orléans

Rapport n° RR-2010-08

Fractal Parallelism:
Solving SAT in bounded space and time

Denys Duchier, Jérome Durand-Lose*, and Maxime Senot

LIFO, Université d’Orléans,
B.P. 6759, F-45067 ORLEANS Cedex 2.

Abstract. Abstract geometrical computation can solve NP-complete
problems efficiently: any boolean constraint satisfaction problem, in-
stance of SAT, can be solved in bounded space and time with simple
geometrical constructions involving only drawing parallel lines on a Eu-
clidean space-time plane. Complexity as the maximal length of a se-
quence of consecutive segments is quadratic. The geometrical algorithm
achieves massive parallelism: an exponential number of cases are explored
simultaneously. The construction relies on a fractal pattern and requires
the same amount of space and time independently of the SAT formula.

Key-words. Abstract geometrical computation; Signal machine; Frac-
tal; SAT; Massive parallelism; Model of computation.

1 Introduction

SAT, the problem of determining the satisfiability of propositional formulae, is
the poster-child of combinatorial complexity and the natural representative of
the classical time complexity class NP [Cook, 1971, Levin, 1973]. As such, it
is a natural challenge to consider when investigating new computing machinery
(quantum, NDA, membrane, hyperbolic spaces...) [Sosik, 2003, Margenstern
and Morita, 2001]. In this paper, we show that signal machines, through fractal
parallelization, are capable of solving SAT in bounded space and time, and thus
by NP-completeness of SAT, signal machine can solve any NP-problem i.e. hard
problems according to classical models like Turing-machine. We also offer a more
pertinent notion of complexity, namely depth, which is quadratic for our proposed
construction for SAT.

The geometrical context proposed here is the following: dimensionless parti-
cles/ signals move uniformly on the real axis. When a set of particles collide,
they are replaced by a new set of particles according to a chosen collection
of collision rules. By adjoining a temporal dimension to the continuous space-
line, we can visualize the chronology of motions and collisions of these particles
as a space-time diagram (in which both space and time are continuous). Since
particles have constant speed, their trajectories in the diagram consist of line
segments.

* Corresponding author Jerome.Durand-Lose@univ-orleans.fr

Models of computation, conventional or not, are frequently based on math-
ematical idealizations of physical concepts and investigate the consequences, on
computational power, of such abstractions (quantum, membrane, closed time-
like curves, black holes...) [Pdun, 2001, Brun, 2003, Etesi and Németi, 2002].
However, oftentimes, the idealization is such that it must be interpreted either
as allowing information to have infinite density (e.g. an oracle), or to be trans-
mitted at infinite speed (global clock, no spatial extension. . .). On this issue, the
model of signal machines stands in contradistinction with other abstract models
of computation: it respects the principle of causality, density and speed of infor-
mation are finite, as are the sets of objects manipulated. Nonetheless, it remains
a resolutely abstract model with no apriori ambition to be physically realizable,
and it deals with theoretical issues such as computational power.

Signal machines are Turing-universal [Durand-Lose, 2005] and allows to do
analog computation by a systematic use of the continuity of space and time
[Durand-Lose, 2008, 2009a,b]. Other geometrical models of computation exist
and allow to compute: colored universe [Jacopini and Sontacchi, 1990], geometric
machines [Huckenbeck, 1989], piece-wise constant derivative systems [Asarin and
Maler, 1995, Bournez, 1997], optical machines [Naughton and Woods, 2001]...

Most of the work to date in this domain, called abstract geometrical com-
putation (AGC), has dealt with the simulation of sequential computations even
though the model, seen as a continuous extension of cellular automata, is in-
herently parallel. (The connexion with CA is briefly illustrated on Fig.1) In the
present paper, we describe a massively parallel evaluation of all possible valu-
ations for a given propositional formula. This is the first time that parallelism
is really used in AGC and that an algorithm is proposed to solve directly hard
problems (without simulating another model).

[[
]]
]]
| |
]]
]] |
= - B | o
3 - - SaEEE | g
©]]
g B """ B 9
= .| | . | g
H | | | R=
[| [
| | E
- EEN
| | | N NN |
Pl SESSSEN SEE mES Ean BN
Space (Z) Space (R)

Fig. 1. From cellular automata to signal machines.

To achieve this, we follow a fractal pattern to a depth of n (for n propositional
variables) in order to partition the space in 2" regions corresponding to the 2"
possible valuations of the formula. We call the resulting geometrical construction
the combinatorial comb of propositional assignments. With a signal machine,
such an exponential construction fits in bounded space and time regardless of
the number of variables.

This constant time has to be understood in the context of continuous space
and time. Feynman famously remarked that “there’s plenty of room at the bot-
tom.” This is especially the case here where, by scaling things down, room can be
provided anywhere. With proper handling, this also leads to unbounded acceler-
ation [Durand-Lose, 2009a]. The fractal pattern provides a way to automatically
scale down. The one implemented here is a recursive subdivision in halves.

Once the combinatorial comb is in place, it is used to implement a binary
decision tree for evaluating the formula, where all branches are explored in par-
allel. Finally, all the results are collected and disjunctively aggregated to yield
the final answer.

Signal machines are presented in Section 2. Sections 3 to 7 detail step by step
our algorithm to solve SAT by geometrical computation: splitting the space,
coding and generating the formula, broadcasting it, evaluating it and finalizing
the answer by collecting the evaluations. Complexities are discussed in Section 8
and conclusion and remarks are gathered in Section 9.

2 Definitions

Signal machines are an extension of cellular automata from discrete time and
space to continuous time and space. Dimensionless signals/particles move along
the real line and rules describe what happens when they collide.

Signals. Each signal is an instance of a meta-signal. The associated meta-signal
defines its velocity and what happen when signals meet. Figure 2 presents a very
simple space-time diagram. Time is increasing upwards and the meta-signals are
indicated as labels on the signals. Existing meta-signals are listed on the left of
Fig. 2.

Meta-Signals|Speed Collision rules

w 0 w p {w,div}—{w, hi, lo}

. Ry — —

divi 3 Wi TR {6, w) — { back, w }

hi| 1 g —

— { hi,back } - {w}

lo| 3 N w

back| -3 d\\' w

Fig. 2. Geometrical algorithm for computing the middle

Generally, we use over-line arrows to indicate the direction of propagation of
a meta-signal. For example, @ and a denotes two different meta-signals; but as
can be expected, they have similar uses and behaviors. Similarly b, and b are
different; both are stationary, but one is meant to be the version for right and
the other for left.

Collision rules. When a set of signals collide, they are replaced by a new set of
signals according to a matching collision rule. A rule has the form:

{01,...,0n}—>{0’1,...,01’7}

where all o; are meta-signals of distinct speeds as well as 0';- (two signals cannot
collide if they have the same speed and outcoming signals must have different
speeds). A rule matches a set of colliding signals if its left-hand side is equal to
the set of their meta-signals. By default, if there is no exactly matching rule for
a collision, the behavior is defined to regenerate exactly the same meta-signals.
In such a case, the collision is called blank. Collision rules can be deduced from
space-time diagram as on Fig.2. They are also listed on the right of this figure.

Signal machine. A signal machine is defined by a set of meta-signals, a set of
collision rules, and and initial configuration, i.e. a set of particles placed on the
real line. The evolution of a signal machine can be represented geometrically as a
space-time diagram: space is always represented horizontally, and time vertically,
growing upwards. The geometrical algorithm displayed in Fig.2 computes the
middle: the new w is located exactly half way between the initial two w.

3 Combinatorial comb

In order to determine by brute force whether a propositional formula with n
variables is satisfiable, 2" cases must be considered. These cases can be recur-
sively enumerated using a binary decision tree. In this section, we explain how
to construct in parallel the full decision tree in constant space and time. This
is done for a fixed formula, so that n is a constant, and the construction of the
signal machine depends on it. In later sections we will use this tree to evaluate
the formula.

The intuition is that the decision for variable z; will be represented by a
stationary signal: the space on the left should be interpreted as xz; = false,
and the space on the right as z; = true. Then we will similarly subdivide the
spaces to the left and to the right, with stationary signals for z;,1, and so on
recursively for all variables as illustrated in Fig. 3(a).

Starting with two bounding signals w and an initiator stTrf, space is recur-
sively divided as shown in Fig. 3(b). The first step works exactly as in Fig. 2, but
then continues on to a depth of n: the counting is realized by using successively
mo, mi, My ... The necessary rules and meta-signals are summarized in Tab. 1

Since each level of the tree is half the height of the previous one, the full tree
can be constructed in bounded time regardless of its size. Also, note that the
bottom level of the tree is not x,, but b, and b;. These are used both to evaluate
the formula and to aggregate the results as explained later.

4 Formula encoding

In this section, we will explain how to represent the formula as a set of signals.
This is illustrated with the following example:

Cﬁ = (331 \/_‘372) /\333

X3 X2 X3 X1 X3 X2 X3

T3 | X3 | T3 | T3 | T3 | XT3 | T3 | T3
X3 X3 X3 X3

X2 T2 x2 X2

X2 X2

X1

(a) Cases identification (b) Division process

Fig. 3. Combinatorial comb.

Meta-Signal Speed Collision rules
start, starty, @ 3 { start, w } — { w, starty,, mo }
mo, M1, ms ... 1 {sta—rtk,),w}—>{<?,w}
X1, X2, X3 .. . 0 {w,9}—={w 3}
Mo, M1, Mz ... -1 {Z,wr—={3,w}
El -3 {mi, 3} — {9, M1, xi, mig1, @}
bi, by 0 {3, m}— {9, Mit1, xi, miy1, @ }
{ma, 3} —{b}
{a,m. }—>{b}

Table 1. Meta-Signals and collision rules to build the comb.

A formula can be viewed as a tree whose nodes are labeled by symbols (con-
nectives and variables). The evaluation of the formula for a given assignment is
a bottom-up process that percolates from the leaves toward the root. In order
to model that process, we shall represent each node of the tree by a signal. In
Fig.4(a), each node is additionally decorated with a path from the root uniquely
identifying its position in the tree: thus we are able to conveniently distinguish
multiple occurrences of the same symbol. These decorated symbols provide con-
venient names for the required meta-signals (see Fig.4(b)). Thus a formula of
size | requires the definition of 2/ meta-signals.

The signals for all subformulae are sent along parallel trajectories and form
a beam. They are stacked in the diagram in order of nesting, inner-most subfor-
mulae first. This order is important for the process of percolation that will take
place at the end.

The process can be initiated by just 3 signals as shown in Fig. 4(c). The delay
between the two signals from the left, mg and ¢g, controls the width of the beam.
Since space is continuous, this width can be made as small as desired.

/\ s W collect
/ \
\

lre

llN

%

To Vf
(a) Labeled tree
Iy
s
XIrc
Meta-Signal‘Speed =
— — X
/\7 \/I> _‘|r, Xlll) X|2rc, Xr3 -1
_ — = — —
— - m
A, VA x5S, 1
L

(b) Generated signals /‘15/#%7

(c) Initial
displaying

Fig. 4. Compiling the formula

5 Propagating the beam

The formula’s beam is now propagated down the decision tree. For each decision
point, the beam is duplicated: one part goes through, the other is reflected. Thus,
by construction, every branch of the beam tree encounters a decision point for
every variable at least once. If the beam is sufficiently narrow, the guarantee
becomes “exactly once,” as shown in Fig.5(a). Although we lack space for a
detailed explanation (¢f App. A), it can easily be verified that emitting ¢, from
the origin with a speed of 1 —7/(3k-2"%2) is more than sufficient, where k is the
number of signals in the beam and n is the number of variables in the formula.
This rational number can be computed in time at most quadratic in the size of
the formula.

When the beam encounters a decision point (a stationary signal for a vari-
able x;), then a split occurs producing two branches. Except for the sign of their
velocity, most signals remain identical in both branches; most, except those cor-
responding to occurrences of z;: those become false in the left branch and true
in the right branch. Fig. 5(b) shows the beam 1ntersect1ng the decision 31gna1 for

variable x1. Note how the incident signal x| becomes 1 on the left and t! on
the right; the path decoration is preserved since, as we shall see, it is essential
later for the percolation process. This is achieved by the collision rule:

i o
{Xlﬁxl}_){f X1, T }

1 colleCt

(a) Corridors (b) Split

Fig. 5. Propagating the formula’s beam

Since a decision point is encountered exactly once for each variable on each
branch of the beam tree, at the bottom of the tree, all signals corresponding to
occurrences of variables have been assigned a boolean value.

6 Evaluating the formula

Remember how, at the very bottom of the decision tree, we added an extra di-
vision using signals by or b,: their purpose is to initiate the percolation process.
by is for starting the percolation process of a left branch, while b, is for a right
branch. Fig.6 zooms on one case of our example: The invariant is that all sig-

iy
nals that reach b, have determined boolean values. When t" reaches by, it gets

i
reflected as T". The change from lowercase to uppercase indicates that the sub-
formula’s signal is now able to interact with the signal of its parent connective.
The stacking order ensures that reflected signals of subformulae will interact
with the incoming signal of their parent connective before the latter reaches b,.
This enforces the invariant.

A connective is evaluated by colliding with the (uppercased) boolean signals
of its arguments. For example, the disjunction collides with its first argument.
Depending on its value, it becomes the one-argument function identity or the
constant true. This is the way the rules of Tab. 2 should be understood.

Note how the path decorations are essential to ensure that the right sub-
formulae interact with the right occurrences of connectives. Conjunctions and
negations can be handled similarly. Finally, store projects the truth value of
the formula’s root on b, where it is temporarilly stored until collect starts the
aggregation of the results.

Fig. 6. Evaluation at the bottom of the comb.

(AT =y (0L T =18} (i, T)~
(LAY = (id) (0~ (F) (d P =)

Table 2. Collision rules to evaluate the disjunction V'

7 Collecting the results

At the end of the propagation phase, the results of evaluating the formula for all
possible assignments have been stored as stationary signals replacing the b; and
b, signals. We must now compute the disjunction of all these results. This is the
collection phase and it is initiated and carried out by signals collect and collect
as illustrated in Fig. 7. The required collision rules are summarized in Tab. 3.

{ B, collect } — { B } { collect, x; } — { collect, L, collect }
— — — —_—
{ B, collect } — { B } {x, collect } — { collect, R, collect }
— «—— —
{Bl7 R, BQ}-){BP,} for B,Bl,Bz,Bge{T,F}
— — —
{Bl7 L7 BQ}—>{Bg} andB3:Bl\/Bg

Table 3. Collection rules

Fig. 7. Collecting the result.

Putting it all together, we get the space-time diagram of Fig.8. Although,
it cannot be seen on the picture, four signals are emitted on the first collision
(bottom left). Two have very close speeds so that when the signals for the formula
are generated, the resulting beam is sufficiently narrow (see Fig. 4(c) for a zoom
in on this part).

8 Complexities

We now turn to a crucial question: what is the complexity of our construction
as a function of the size of the formula? What is a meaningful way to measure
this complexity?

The width of the construction measures the space requirement: it is indepen-
dent of the formula and can be fixed to any value we like. The height measures
the time requirement: it is also independent of the formula because of the fractal
construction and the continuity of space-time. If more variables are involved, the
comb gains extra levels, but its height remains bounded by the fractal.

As a consequence, while width (space) and height (time) are the natural
continuous extensions of traditional complexity measures used in the discrete
universe of cellular automata, in the context of abstract geometrical computa-
tions, they loose all pertinence.

Instead we should regard our construction as a computational device trans-
forming inputs into outputs. The inputs are given by the initial state of the
signal machine at the bottom of the diagram. The output is the computed result
that comes out at the top. The transformation is performed in parallel by many
threads: a thread here is an ascending path through the diagram from an input
to the output. The operations that are “performed” by the thread are all the
collisions found along the path.

Thus, if we view the diagram as an acyclic graph of collisions (vertices) and
signals (arcs), the time complexity can then be defined as the maximal length

N/

Fig. 8. The whole diagram.

of a chain and the space complexity can be defined as the maximal length of an
anti-chain.

Let t be the size of the formula and n the number of variables. At the bottom
level of the comb, there is an anti-chain of length approximately ¢2". The space
complexity is exponential.

Generation of the comb, initiation, propagation, evaluation and aggregation
contribute along any path a number of collisions at most linear in the size of the
formula. However, intersections of incident and reflected branches at every level
add O(nt) because there are O(n) levels and the beam consists of O(t) parallel
signals. Thus the time complexity is O(nt).

It should also be pointed out that the signal machine depends on the for-
mula but the compilation of the formula into a rational signal machine is done
in polynomial time, presicely in quadratic time (¢f App. B). The size of the
generated signal machine is as follows. The number of meta-signals is linear in n
for the comb and in ¢ for the formula. The number of non blank collision rules is
proportional to nt (each node of the formula is split on each variable). Counting
the blank collision rules, it sums up to t2. There are only seven distinct speeds:
—6, —3, —1, 0, 1, 3 and one special rational value for the initiation.

9 Conclusion

In this article, we have shown how to achieve massive parallelism with signal
machines, by means of a fractal pattern. We call this fractal parallelism and it
is a novel contribution in the field of abstract geometrical computation.

Our approach is able to solve SAT, and thus any NP-problem, in bounded
space and time by a methodic use of continuity. It does so while respecting
the principle that everywhere the density of information is finite and its speed
is bounded; a principle typically not considered by other abstract models of
computation.

The complexity is not hidden inside the compilation of the machine nor in the
initial configuration. Admittedly, the “magic” rational velocity used to control
the narrowness of the beam constitutes an infelicity of presentation as it is the
only one that depends on the formula. It can be eliminated using a slightly more
involved beam-narrowing technique, but that extension is beyond the scope of
the present article.

Since, clearly, time and space are no longer appropriate measures of com-
plexity, we have also proposed to replace them respectively by the maximum
length of a chain and an anti-chain in the space-time diagram regarded as a
directed acyclic graph. According to these new definitions, our construction has
exponential space complexity and quadratic time complexity. The compilation
of formulae into signal machines can be done uniformly in quadratic time by a
single classical machine.

We are currently furthering this research along two axes. First, we are con-
sidering how to tackle other complexity classes such as PSPACE, #P or EXP-
TIME using abstract geometrical computation. Second, we would like to design
a generic signal machine for SAT, i.e. a single machine solving any instance of
SAT, where the formula is merely compiled into an initial configuration.

Bibliography

Eugene Asarin and Oded Maler. Achilles and the Tortoise climbing up the
arithmetical hierarchy. In FSTTCS ’95, number 1026 in LNCS, pages 471-
483, 1995.

Olivier Bournez. Some bounds on the computational power of piecewise constant
derivative systems. In ICALP ’97, number 1256 in LNCS, pages 143-153, 1997.

Todd A. Brun. Computers with closed timelike curves can solve hard problems
efficiently. Foundations of Physics Letters, 16:245-253, 2003.

Stephen A. Cook. The complexity of theorem proving procedures. In 3rd Sym-
posium on Theory of Computing (STOC *71), pages 151-158. ACM, 1971.
Jérome Durand-Lose. Abstract geometrical computation: Turing computing abil-
ity and undecidability. In B.S. Cooper, B. Lowe, and L. Torenvliet, editors,
New Computational Paradigms, 1st Conf. Computability in Europe (CiE ’05),

number 3526 in LNCS, pages 106-116. Springer, 2005.

Jérome Durand-Lose. Abstract geometrical computation with accumulations:
Beyond the Blum, Shub and Smale model. In Arnold Beckmann, Costas
Dimitracopoulos, and Benedikt Lowe, editors, Logic and Theory of Algorithms,
4th Conf. Computability in Europe (CiE ’08) (abstracts and extended abstracts
of unpublished papers), pages 107-116. University of Athens, 2008.

Jérome Durand-Lose. Abstract geometrical computation 3: Black holes for clas-
sical and analog computing. Nat. Comput., 8(3):455-572, 2009a.

Jérome Durand-Lose. Abstract geometrical computation and computable anal-
ysis. In J.F. Costa and N. Dershowitz, editors, International Conference on
Unconventional Computation 2009 (UC ’09), number 5715 in LNCS, pages
158-167. Springer, 2009b.

Gabor Etesi and Istva Németi. Non-turing computations via Malament-Hogarth
space-time. International Journal of Theoret. Physics, 41:341-370, 2002.

Ulrich Huckenbeck. Euclidian geometry in terms of automata theory. Theoret.
Comp. Sci., 68(1):71-87, 1989.

Giuseppe Jacopini and Giovanna Sontacchi. Reversible parallel computation: an
evolving space-model. Theoret. Comp. Sci., 73(1):1-46, 1990.

Leonid Levin. Universal search problems. In Problems of Information Trans-
mission., pages 265—266, 1973.

Maurice Margenstern and Kenichi Morita. NP problems are tractable in the
space of cellular automata in the hyperbolic plane. Theor. Comp. Sci., 259
(1-2):99-128, 2001.

Thomas J. Naughton and Damien Woods. On the computational power of a
continuous-space optical model of computation. In M. Margenstern, editor,
Machines, Computations, and Universality (MCU ’01), number 2055 in LNCS,
pages 288 299, 2001.

Gheorghe Paun. P systems with active membranes: Attacking NP-Complete
problems. Journal of Automata, Languages and Combinatorics, 6(1):75-90,
2001.

Petr Sosik. Solving a PSPACE-Complete problem by P-systems with active
membranes. In M. Cavaliere, C. Martin-Vide, and G. Paun, editors, Brain-
storming Week on Membrane Computing, pages 305-312. Tarragona: Univer-
sidad Rovira i Virgili, 2003.

A Appendix A: computation of the special speed value

In this section, we explain the condition for having a good propagation of the
beam through the comb and we compute the special speed given in Sect. 5.
This special speed value is the speed of the signal ¢r which is used to initiate
the generation of the beam (containing signals associated to the formula). The
condition of validity of the whole evaluation process depends on this special
speed.

Let [be the width of the comb and n the number of variables. At the bottom
of the comb, space is split in 2"*! equal parts. So that each part has a width
#. Splitting signals have speed 1 (or —1) so that the delay between the last
split and the evaluation level is also #

To ensure that signals corresponding to variables will be assignated a boolean
value exactly once and that an evalution case will not interfere with another
distinct one, the width of the beam must be less that Qn% This condition on
the propagation at the final level can be seen on Fig.9: we want the splitting
point S to happen before the starting of the evaluation marqued by E i.e. the
temporal coordinate of S is less than the temporal coordinate of E. This ensures
too that the crossing point C happens stricly before the evalution and that the
splitting and the evaluation processes are independent in the time (evalution
begins strictly after the end of the split).

1/2m!

Fig. 9. Validity of the top of the construction

Let k be the number of signals in the beam (including the splitting one).
These signals are set at equal distance § (as shown on Fig. 10). Since their speed
is 1 (or —1), the width and the height of the beam are (k — 1)d.

Taking §p = # ensures that the beam splits correctly before another
beam starts and the formula is evaluated safely at the end.

A correct spacing should be ensured from the start. On Fig. 10, there is a
vertical zig-zag composed of signals of speed 1 and —1, so that the delay —this
is the wanted d— is twice the distance between the vertical signals.

€3(6/2

é PW colleét
store
—
X,
v
N

=

% 502

Fig.10. Generation of the beam with the proper delay

The collision between mp and ¢ (speed —6 emitted at (I, é)) appends at

(37[, 371) If ¢ passes at this point moved by (—%0, 0), then the final § works since

it is smaller. To ensure that ¢, passes through that point, since it is emitted at
the origin, it speed must be:

L% 6l—Trpesr 6E27TI 7

) B 61 T Gk.ontl

that is after symplifying:

7

L= gexonre -

If the size of the formula is ¢, then we have k = ¢ + 3. Indeed, the number
of signals in the beam is equal to the number of symbols of the formula ¢, plus
3 signals: one for splitting the beam, one for storing the result of the evaluation

and one for starting the collecting process. That sums up the number of signals
in the beam to ¢ + 3.

Eventually, the speed value of ¢, can be expressed in function of the number
of variable n and the size of the formula ¢ by:

7
3(t + 3) x ont2 -’

This rational number can be computed in polynomial time. Indeed, the num-
ber of bits of k is logarithmic in ¢, the size of the formula. 2"*! has a linear
number of bits in the number of variables, n. The multiplication of integer num-
bers is at most quadratic in function of the number of bits, so 3k x 2”2 can be
computed in at most quadratic time in the size of the formula (since n < ¢t and
k=t+3).

B Appendix B: Compilation of the signal machine

We give in this appendix the main algorithms to compile the signal machine
corresponding to a SAT formula. The algorithms given here completed by the
tables of meta-signals and collision rules fully describe the signal machine com-
piled from a SAT formula. We follow the steps described in the paper.

B.1 Constructing the comb

We provide in ths subsection the meta-signals and the rules used to build the
combinatorial comb. Meta-signals and collision rules which are independent of
the SAT-formula are gathered in Tab. 4. Others signals and rules depending on
the number of variables n are generated by Algo. 1.

Meta-Signal‘Speed Collision rules
start, startio, a 3 { start, w } — { w, startj,, mg }

mo 1 {startig,w} —{ 3, w}

K} -3 {w,9}—={w, a3}

bi, br 0 {d,w}—={T,w}

Table 4. Meta-Signals and rules independent of the formula to build the comb.

input : M signal machine
output: M added with the rules to build the comb

/* Meta-signals to build the comb *x/
1 for ¢=1 to n do

2 x; «— M.add.new _meta_signal of Speed(0) ;
3 m; «—— M.add.new_meta_signal of Speed(1) ;
4 (-1
5

m; «— M.add.new meta_signal of Speed(-1) ;
end
/* Rules of collision to build the comb x/
6 for i=1 to n do
7 M add_rule({m;, a} — {7, Mit1,%;, M1, @ }) ;
8 M add_rule({a,m;, } — {9, Mit1, %, Mit1, 3 }) ;
9 end

10 M «— add_rule({m,, @} — {b}) ;
11 M« add_rule({3,mn, } — {bi}) ;

Algorithm 1: Building the comb

B.2 Compiling the formula

We explain next how a propositional formula can be viewed as a labeled tree
and how it is then used to generate the meta-signals and the collision rules
corresponding to the formula. Signals and rules which do not depend on the
formula are given by Tab.5, the other are generated by Algo. 2.

Let call v the special speed value computed in Appendix A: v is the speed
of ¢Rr, used to generate the beam.

Meta-Signal|Speed Collision rules
collect, store 1 {startig, w} — { o, @, w}
Sollect, Sfore, 5| -1 { dr, o} —{ ow }
dw 0 {md, o } — { oL, Mo, dw, Mg }
oL 6 { ow, Mo } — { ¢w, mg }
oR v {ow, 2} -0

Table 5. Meta-Signals and rules for the initiation.

We will now describe how to compile a propositional formula into a signal
machine. This process exploits the fact that a propositional formula ¢ can be
modeled as a labeled tree: its nodes can be identified by their paths from the root:
a path 7 is a word over the alphabet N, and they are labeled by connectives or
propositional variables.

Labeled trees: We assume a signature X' of function symbols f, g, ..., each of
which is equipped with an arity ar(f) > 0. We write Ny for N\ {0}. A tree domain
D is a finite subset of N§j which is closed for prefixes and for left-siblings; in other
words it satisfies:

v, ' e Nj ' €D = weD
Vr e Ng, Vi,j € Ny i1<jATjeED = meD

A labeled tree T = (D,, L;) consists of a tree domain D,, and a labeling
function L, : D, — X assigning a symbol to each node, respecting arities, i.e.:

ar(L;(m))=n = mmeD; AN w(n+1)¢ D, Vr € D;,¥n >0
ar(L;(m))=0 = 7wl¢gD, Vre D,

Propositional formulae as labeled trees: We take the signature X' to be formed
from propositional variables (arity 0), the connective — (arity 1), and the con-
nectives A and V (arity 2).

Compilation: Given a propositional formula ¢ = (D, L), we will emit a particle

for each one of its nodes. Consider a node m € D, with Lg(m) = ¢: its associated
— —

meta-signals will be noted ¢™ and ¢™ (respectively for the right-moving and the

left-moving signals). We write Ny for the set of labelled nodes of ¢, i.e.

N¢ = {L¢'(7T>Tr}‘n'€D¢ = {éﬂ—}ﬂ'EDQb

The meta-signals coding the formula have all the same speed which is the
speed of all the signals forming the beam: this speed is 1 (resp. —1) for the
right-moving beam (resp. the left-moving).

We write < for the lexicographic order on Dy and [Dy] for the <-maximal
element in Dy. We write |7] for the <-predecessor of 7 in Dy. If 7 < 7', then

—

. ;
Ly (m)™ is emited later than Ly (7)™ .

input : M signal machine
output: M added with the rules of generation

/* Meta-signals coding the formula x/

foreach (" € Ny do
—
{" «—— M.add.new _meta_signal of Speed(1) ;

r— M.add.new_meta_signal of Speed(-1) ;

N I N

end

/* Rules for generating the beam */
-

M — add_rule({mg, pw} — {€/7¢] m¢, pw}) ;

foreach (" € Ny do

if 7 = ¢ then

M — add_rule({éw, &} — {ow, € }) ;
M — add_rule({F,q&W} — {store, pw, F}) ;
10 else

© ® N O wm

— —
11 M — add_rule({ow, "} — {édw, " }) ;
— N —
12 M — add_rule({¢", pw} — {£™), pw, £7}) ;
13 end
14 end

15 M «—— add_rule({¢w, store} — {store, pw}) ;
16 M «—— add_rule({store, pw} — {collect, pw, store, }) ;

— —_—
17 M «— add_rule({¢w, collect} — {¢w, collect, }) ;

Algorithm 2: Generating the formula

Ezample: consider the propositional formula ¢ = (z1 V —22) A x3 taken in ex-
ample to generate all the diagram in this paper. It has six nodes and Ny =
{211, 2121, <120Vl g2 Af)

To simplify the notations, we will write I, 7, and ¢ to designate respectively
left, right and center in the path of a node of the formula (we will sometimes
use ¢ to designate the empty word i.e. € will be the path of the first node) . The
previous example becomes Ny = {zf!, zire, =l vl 2% Al

B.3 Broadcasting the formula

In this subsection, the main algorithm is given by Algo.3. Whereas all the other
algorithms are in linear time in the size of the formula, Algo.3 is in quadratic
time because of its two imbricated loops. It makes the compilation of the signal
machine be in quadratic time.

input : M signal machine
output: M added with the rules of propagation

1 R— M.add.new_meta_signal of Speed(0) ;
L—— M.add.new_meta_signal of Speed(0) ;
/* Boolean meta-signals for assignating the variables x/
foreach (™ € N, do
if { = z; then
7 M.add.new_meta_signal of Speed(1) ;

[

F) «—— M.add.new_meta_signal of Speed(1) ;

1

t" «— M.add.new_meta_signal of Speed(-1) ;

T

fT «— M.add.new_meta_signal of Speed(-1) ;
end
10 end
/* Rules of split and assignment of variables x/ 5
11 for i=1 to n do
12 foreach (" € N, do

© 0w N O h®

13 if ¢ = z; then

— — —
14 M — add_rule({¢",x;} — {f",xi,t" }) ;

— — —
15 M — add_rule({¢",x;} — {f",xi,t" }) ;
16 else

— — —
17 M — add_rule({€",x;} — {£™,x;, €™ });

— — —
18 M — add_rule({0™,x;} — {€™,x;, L™ });
19 end
20 end

s — s

21 M —— add_rule({collect,x;} — {collect, x;, collect}) ;
22 M —— add_rule({x;, collect} — {collect, x;, collect}) ;
23 M —— add_rule({store, x;} — {store, L, store}) ;
24 M — add_rule({x;, store} — {store, R, store}) ;
25 end

Algorithm 3: Rules for the propagation

B.4 Evaluating the formula

We just propose here Tab.6 to give the idea of how rules of evaluation are defined:
it respect the classical boolean operations. The reconstruction process follows
the reverse process involved in the generation of the formula: signals collide with
respect to the lexical order of the set of nodes Nj.

]
!
|
1

(AT S (0 T {0y {id, T = (d)
O T B R T = S U R O B B
(LT = (0 (10, T = {0} {id, T} {1}
N S B T N S U R B B B

Table 6. Collision rules to evaluate the disjunction V'

B.5 Collecting the results and answering SAT
We give in Tab.7 the collision rules necessary for collecting the results of all

evaluations. The rules are independent of the formula.

Meta—Signal‘Speed Collision rules

success, Fail 3 { collect, T} — { success } { success, R, success } — { success }
-
T, F 0 { T, collect } — { success } { success, L, success } — { success }
—_— — —
§uccess, Eail -3 { collect, F} — { Fail } { success, R, Fail } — { success }
— — «—
{ F, collect } — { Fail } { success, L, Fail } — { success }
{ Fail, L, success } — { success } { Fail, L, success } — { Fail }
— —
{ Fail, R, success } — { success } { Fail, R, success } — { Fail }

Table 7. Meta-Signals and rules for agregating the results.

