## Introducing fractal computation

Jérôme Durand-Lose<br>Joint work with Denys Duchier and Maxime Senot

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, Orléans, FRANCE

## COPCOM '11 - Cluj Napoca

## Brute force search

- easy check
- (too) many to check


## Physical limitations

- classical parallelism
- unconventional computation


## Fractal parallelism

- continuous space and time idealization
- using a fractal to broadcast
(1) Introduction
(2) Physical limitations
(3) Signal machines

4 Fractal parallelism
(5) Conclusion

## (1) Introduction

## (2) Physical limitations

(3) Signal machines

4 Fractal parallelism
(5) Conclusion

## Hard to find but easy to check

- Very important in, e.g., asymmetric cryptography

Example: find 3 integers $a, b$, and $c$ such that...

$$
10<a<b<c<100
$$

and

$$
a^{2}+b^{2}=c^{2}
$$

## Hard to find but easy to check

- Very important in, e.g., asymmetric cryptography

Example: find 3 integers $a, b$, and $c$ such that...

$$
10<a<b<c<100
$$

and

$$
a^{2}+b^{2}=c^{2}
$$

Easy

$$
30^{2}+40^{2}=50^{2}
$$

## Hard to find but easy to check

- Very important in, e.g., asymmetric cryptography

Example: find 3 integers $a, b$, and $c$ such that...

$$
10<a<b<c<100
$$

and

$$
a^{2}+b^{2}=c^{2}
$$

Easy

$$
30^{2}+40^{2}=50^{2}
$$

Indeed

$$
900+1600=2500
$$

## Link with NP problems

## NP: class of decision problems

- YES : easily proved (polynomial time) with the right certificate
- NO: there is no certificate


## Link with NP problems

## NP: class of decision problems

- YES : easily proved (polynomial time) with the right certificate
- NO: there is no certificate


## Trivial algorithm

- try all certificates


## Link with NP problems

## NP: class of decision problems

- YES : easily proved (polynomial time) with the right certificate
- NO: there is no certificate


## Trivial algorithm

- try all certificates
- BUT there are too many to try


## SAT

## Instance

$\phi$ : Boolean formula with free variables $x_{1}, x_{2}, \ldots, x_{n}$.
Question
Is there a way to set the free variables such that $\phi$ is true?

Example

$$
\phi=\left(x_{1} \vee \neg x_{2}\right) \wedge x_{3}
$$

## SAT

## Instance

$\phi$ : Boolean formula with free variables $x_{1}, x_{2}, \ldots, x_{n}$.
Question
Is there a way to set the free variables such that $\phi$ is true?

Example

$$
\begin{gathered}
\phi=\left(x_{1} \vee \neg x_{2}\right) \wedge x_{3} \\
x_{1} \quad \overline{x_{2}} \quad x_{3}
\end{gathered}
$$

## SAT

## Instance

$\phi$ : Boolean formula with free variables $x_{1}, x_{2}, \ldots, x_{n}$.
Question
Is there a way to set the free variables such that $\phi$ is true?

Example

$$
\begin{gathered}
\phi=\left(x_{1} \vee \neg x_{2}\right) \wedge x_{3} \\
x_{1} \quad \overline{x_{2}} \quad x_{3}
\end{gathered}
$$

Complexity according to $n$, the number of variables

- Test a valuation: linear in the length of the formula
- Number of valuations: $2^{n}$


## Brute force parallelism

- Try them al!!
- A few... easy
- Polynomially many... might take a while
- Exponentially many... not feasible


## ...unless

- exponentially many computing units


## (1) Introduction

(2) Physical limitations
(3) Signal machines

4 Fractal parallelism
(5) Conclusion

## Classical computation

## Parallelism / grid / cloud

- 1 microprocessor $\Rightarrow 1$ unit of space
- $\approx d^{3}$ processor at distance $d$
- $\rightsquigarrow$ exponential diameter for exponentially many processors
- $\rightsquigarrow$ exponential communication time


## Unconventional Computation and Natural Computation (UC NC)

## DNA computation

- very small
- totally uncentralized computation
- still at some (faraway) point the soup will be too big


## Unconventional Computation and Natural Computation (UC NC)

## DNA computation

- very small
- totally uncentralized computation
- still at some (faraway) point the soup will be too big


## Quantum computation

- superposition of exponentially many states
- big decoherence/stability problem
- limited set of operations (unitary operators and projections)

Introducing fractal computation
Physical limitations

## Idealized model

## Wanted properties

- no space nor time granularity
- can work at any scale
- can compute


## (1) Introduction

## (2) Physical limitations

(3) Signal machines

4 Fractal parallelism
(5) Conclusion


- continuous space
- continuous time


## Vocabulary

- Signal (meta-signal)
- dimensionless
- Collision (rule)
- deterministic
- uniform


## Example: find the middle

## Meta-signals, speed <br> $\mathrm{M}, \mathrm{S}(\mathrm{M})=0$

## Collision rules



## Example: find the middle

# Meta-signals, speed <br> $\mathrm{M}, S(\mathrm{M})=0$ div, $S(\operatorname{div})=3$ 

## Collision rules

## Example: find the middle

## Meta-signals, speed

$\mathrm{M}, S(\mathrm{M})=0$
div, $S($ div $)=3$
hi, $S($ hi $)=1$
lo, $S(\mathrm{lo})=3$

Collision rules
$\{\operatorname{div}, \mathrm{M}\} \rightarrow\{\mathrm{M}$, hi, lo $\}$

## Example: find the middle

## Meta-signals, speed

$\mathrm{M}, S(\mathrm{M})=0$
div, $S($ div $)=3$
hi, $S($ hi) $=1$
lo, $S(\mathrm{lo})=3$
back, $S($ back $)=-3$

Collision rules
$\{\operatorname{div}, \mathrm{M}\} \rightarrow\{\mathrm{M}$, hi, lo $\}$
$\{$ lo, M$\} \rightarrow\{$ back, M \}

## Example: find the middle

## Meta-signals, speed

$\mathrm{M}, \mathrm{S}(\mathrm{M})=0$
div, $S($ div $)=3$
hi, $S($ hi $)=1$
lo, $S(\mathrm{lo})=3$
back, $S($ back $)=-3$

## Collision rules

$\{\operatorname{div}, M\} \rightarrow\{M$, hi, lo $\}$
$\{$ lo, M \} $\rightarrow$ back, M \}
$\{$ hi, back $\} \rightarrow\{M\}$

Introducing fractal computation
Signal machines

## Complex dynamics



Introducing fractal computation
Signal machines

## Complex dynamics



Introducing fractal computation
Signal machines

## Complex dynamics



Introducing fractal computation
Signal machines

## Fractal space-time diagrams



## (1) Introduction

(2) Physical limitations
(3) Signal machines

4 Fractal parallelism
(5) Conclusion

Introducing fractal computation
Fractal parallelism

## Using a fractal to compute



## Scheme

Use the structure to dispatch the computation

## QSat: quantified satisfaction problem

- Quantified boolean formula (without free variable)
- Find its logical value
- PSPACE-complete problem

$$
\begin{aligned}
& \text { Example } \\
& \qquad \phi=\exists x_{1} \forall x_{2} \forall x_{3} \quad\left(x_{1} \wedge \neg x_{2}\right) \vee x_{3}
\end{aligned}
$$

## QSat: quantified satisfaction problem

- Quantified boolean formula (without free variable)
- Find its logical value
- PSPACE-complete problem


## Example

$$
\phi=\exists x_{1} \forall x_{2} \forall x_{3} \quad\left(x_{1} \wedge \neg x_{2}\right) \vee x_{3}
$$

## Building the tree / combinatorial comb



## Lens and variables assignment



## Formula evaluation

$$
\phi=\exists x_{1} \forall x_{2} \forall x_{3} \quad\left(x_{1} \wedge \neg x_{2}\right) \vee x_{3}
$$

Case here
(true $\wedge \neg$ true) $\vee$ true


## (1) Introduction

## (2) Physical limitations

(3) Signal machines

4 Fractal parallelism
(5) Conclusion

## Fractal computation

- continuous media (time and space)
- structure automaticaly unfold
- structure used to dispatch and to collect
- generic machine
- modular programming



## Complexities

## Time

- constant (as a duration)
- cubic (as max length of collision chain)


## Space

- constant (as a width)
- exponential (as max number of independant signals, antichain)


## Complexities

## Time

- constant (as a duration)
- cubic (as max length of collision chain)


## Space

- constant (as a width)
- exponential (as max number of independant signals, antichain)

NB: Super-Turing Model with accumulations

- decide Halt in finite duration and width...


## Future work

## Fractal computation

- non deterministic processes
- higher complexity classes


## Automatic discretization

- into a cellular automata
- nice properties are lost
- easy way to define a CA


## Future work

## Fractal computation

- non deterministic processes
- higher complexity classes


## Automatic discretization

- into a cellular automata
- nice properties are lost
- easy way to define a CA

Thank you for your attention

