
Noname manuscript No.
(will be inserted by the editor)

Abstract geometrical computation 5:
embedding computable analysis

Jérôme Durand-Lose?

LIFO, Université d’Orléans, B.P. 6759, F-45067 Orléans Cedex 2, France

The date of receipt and acceptance will be inserted by the editor

Abstract Extended Signal machines are proven capable to compute any
computable function in the understanding of recursive/computable analysis
(CA), represented here with type-2 Turing machines (T2-TM) and signed
binary. This relies on a mixed representation of any real number as an
integer (in signed binary) plus an exact value in (−1, 1). This permits to
have only finitely many signals present simultaneously. Extracting a (signed)
bit, improving the precision by one bit and iterating a T2-TM only involve
standard signal machines.

For exact CA-computations, T2-TM have to deal with an infinite entry
and to run through infinitely many iterations to produce an infinite output.
This infinite duration can be provided by an infinite acceleration construc-
tion. Extracting/encoding an infinite sequence of bits is achieved as the limit
of the approximation process with a careful handling of accumulations.

Key-words. Analog computation; Abstract geometrical computation; Com-
putable analysis; Signal machine; Type-2 Turing machine.

1 Introduction

Classical computability deals with integers, finite sequences of letters, and
more generally up to countably many discrete values. Does this mean that
analysis and engineering are totally disconnected from computations? That
physical simulation is impossible in silico? Of course not, this is done ev-
eryday.

? e-mail: http://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose,
e-mail: Jerome.Durand-Lose@univ-orleans.fr

2 Jérôme Durand-Lose

Dealing with real values is handled in various ways: fixed approxima-
tion (π is 3.14), formal manipulation (π is PI), unbounded approximation
on demand (π is a program that provide extra digits on demand), interval
arithmetics (π is [3.1, 3.2]). . . Following their definition as Cauchy sequences
of rational numbers, real numbers can be encoded by infinite decreasing se-
quences of intervals with rational endpoints, such that the length of the
intervals tends to zero. The whole infinite sequence represents exactly one
real (at its intersection), but a finite prefix of the sequence is enough to
get an approximation; the larger the prefix, the better the approximation.
Rational endpoints allow exact coding and manipulation of each interval
in classical computation, so that the infinite sequence of intervals can be
written as an infinite sequence of symbols. Functions over these infinite se-
quences can be used to represent functions on the reals. A Turing machine is
used: the infinite entry is written on a read-once tape and the infinite output
is expected on a write-once tape (extra working tapes are available). These
tapes can be seen as input and output streams. To entirely process the input
and generate the whole output, an infinite number of iterations is needed,
but in finitely many steps an approximation of the result is generated.

This approach, now called Computable Analysis (CA) was initiated by
Turing [1936], then Grzegorczyk [1957] and is detailed in classical textbooks
[Ko, 1991, Weihrauch, 2000]. It has been proven equivalent to a variation
of Shannon’s General Purpose Analog Computer [Bournez et al., 2007].

In the present paper, Abstract Geometrical Computation (AGC) is proven
capable to carry out any CA computation with a representation of real num-
bers with finitely many signals. This representation is compatible with the
one used to implement the original Blum, Shub and Smale (BSS) model
[Durand-Lose, 2007, 2008] (a different approach to analog computing: val-
ues and primitives are freely available [Blum et al., 1989]).

Abstract geometrical computation is defined by dimensionless signals
moving uniformly in an Euclidean (continuous) space in continuous time. To
each signal corresponds a meta-signal which defines its speed. The number
of meta-signals is finite. Existing signals are only modified when they collide:
they are replaced by new signals according to their meta-signals and collision
rules. A signal machine collects the definition of available meta-signals and
collision rules.

In [Durand-Lose, 2007, 2008], to implement the BSS-model, real numbers
are encoded by the distance between two parallel signals (plus two more
signals to encode the scale, i.e. distance 1). On one side, for CA, this is not
so convenient since infinite sequences are expected. On the other side, in the
AGC context, infinitely many signals would either occupy the whole infinite
space or produce accumulation of signals (and maybe collisions), both are
problematic.

Stoking infinitely many signals in a bounded space is a very complex
yet powerful feature (fore example, with the use of folding structures, exact
multiplication of real numbers was achieved [Durand-Lose, 2008]). Special

Abstract geometrical computation 5: embedding computable analysis 3

care has to be taken in defining the space-time diagram near them. The only
scheme used here is that any singularity reduced to a point in the space-
time diagram results in one signal (always the same). More complex rules
can be devised to handle accumulations —unused here— so as to emulate
the (nested) black hole model of computation [Hogarth, 1994, Etesi and
Németi, 2002, Durand-Lose, 2006, 2009a].

To avoid handling infinitely many signals, a mixed representation is used.
A real number x is encoded by n+ ε where n is an integer and −1 < ε < 1;
n is encoded in signed binary and ε as a distance between two signals (a
pair of signals somewhere in the configuration amounts for distance 1). The
encoding used for CA implementation is signed binary with symbols 1, 0,
1 plus a decimal point. To go back and forth between the encodings, n is
encoded as a sequence of signed bits (and thus does not have to be taken
care of) and the first approximation is (n−1, n+1). Then the approximation
goes by steps: the interval (a, b) is replaced by (a, a+b

2), (3a+b
4 , a+3b

4) and

(a+b
2 , b) that corresponds to 1, 0 and 1 respectively. (Intervals overlap and

the infinite sequence is not unique.) The geometric construction to generate
from the decimal part an infinite sequence corresponding to the real number
relies on five signals amounting for values −1

2n , −1
2n+1 , 0, 1

2n+1 and 1
2n . The

position of ε gives the signed bit, ε is reduced while the five-signal structure
is scaled down.

The presentation of the implementation of (classical) Turing machines
(TM) is only illustrated; it is quite straightforward and already done in
[Durand-Lose, 2009a, 2010]. A Type-2 TM needs infinitely many iterations
to complete a computation. To get the results in finite duration, TM and in-
put are embedded into a folding structure as in [Durand-Lose, 2006, 2009a].

In Durand-Lose [2009b], a convoy is defined and used to bring the infinite
output to a structure that bring forth better and better approximations
and at the limit the exact number. This is not needed here anymore: the
shrinking structure is itself embedded into another shrinking structure that
accumulates at the exact location of the output. Theses shrinking structures
are called, respectively, inner and outer. The inner one stops each time a
signed bit is output. On receiving this bit, the outer structure makes one
shrinking operation on the left, central or right half depending on the value
of the bit. Then some acknowledgement signal is sent to resume the inner
structure shrinking and the T2-TM computation.

Another way to express this it to say that the TM is accelerated until a
signed bit is output then it is stopped until the bit is proceeded, then the
process starts again. The computation providing the bits is embedded inside
the structure that accumulates on the exact output. (The inner structure
been stopped and translated, it accumulates at the same location).

Definitions of AGC and CA are gathered in Section 2. Section 3 concen-
trates on approximation, i.e. the mixed representation as well as how to
get bits, and the simulation of type-2 Turing machines. Section 4 deals with
exact computation in finite duration. Section 5 concludes this paper.

4 Jérôme Durand-Lose

2 Definitions

2.1 Abstract geometrical computation

A signal machine (SM) is defined by (M,S,R) where M (meta-signals) is
a finite set, S (speeds) a mapping from M to R, and R (collision rules) a
function from the subsets of M of cardinality at least two into subsets of
M (all these sets are composed of meta-signals of distinct speeds). A signal
machine is extended if some meta-signal µZ is distinguished to be used as
the result of an isolated accumulation.

Each instance of a meta-signal is a signal located on the real axis. The
mapping S assigns speeds to signals. A collision rule, ρ−→ρ+, defines what
emerges (ρ+ ⊆M) from the collision of two or more signals (ρ− ⊆M). Since
R is a function, SM are deterministic. The extended value set, V , is the union
of M and R plus two special values: � for void, Z for isolated accumulation.
A (finite) configuration, c, is a mapping from R to M ∪R ∪ {�} such that
the set {x ∈ R | c(x) 6= �} is finite. An extended (finite) configuration, is a
mapping from R to V such that the set {x ∈ R | c(x) 6= �,Z } is finite.

A (resp. extended) space-time diagram is a mapping from an interval
of R (representing the time) into (resp. extended) configurations. A signal
corresponding to a meta-signal µ at a position x, i.e. c(x) = µ, is moving
uniformly with constant speed S(µ). A signal must start (resp. end) in the
initial (resp. final) configuration or in a collision. At a ρ−→ρ+ collision,
signals corresponding to the meta-signals in ρ− (resp. ρ+) must end (resp.
start) and no other signal should be present. There is a Z if and only if
collisions are accumulating and it is isolated in the configuration (i.e. at the
time it exists). A Z immediately turns into a (regular) µZ signal, so that a
µZ signal can also result from an accumulation.

Space-time diagrams are represented with time increasing upward. The
traces of signals are line segments whose directions are defined by (S(.), 1)
(1 is the temporal coordinate) so that the speed is the inverse of the slope.
Collisions correspond to the common extremities of these segments.

2.2 Computable Analysis

A type-2 Turing machine (T2-TM) is a regular Turing machine (TM) such
that the entry is an infinite sequence of symbols written on a read-once tape
(it is thought of as an input stream). The output is also expected to be an
infinite sequence of symbols written on a write once tape. The TM has an
extra work tape on which it can freely read and write. It needs infinitely
many iterations to read a whole entry and write the whole result. These
read-once and write-once tapes are treated as input and output streams.
After finitely many iterations, a finite part of the entry is read and a finite
part of the result is generated; they represent approximation of the entry and
the result. Since the output is write-once, anything written never changes
and it converges to the infinite output according to the prefix topology.

Abstract geometrical computation 5: embedding computable analysis 5

To link this machinery to analysis, a representation of real numbers by
infinite sequences should be provided. The larger the prefix of the represen-
tation is read, the more should be known on the encoded real number x,
ultimately x should be perfectly known and distinguished from any other
real number. The standard representation of a real number x is by any de-
creasing sequence of intervals with rational ends such that their intersection
reduces to {x}. The infinite sequence is then just the self-delimiting concate-
nation of the naming of the intervals. In the present paper, an equivalent
representation is used.

Let Σ = {•, 1, 0, 1}, the signed binary representation, ρsb :⊆ Σω −→
R, (from [Weihrauch, 2000, Def. 7.2.4 p. 206]) is defined only for infinite
sequences with exactly one dot (•) by:

w0•d1d2d3 . . . dn . . . 7−→ νsb(w0) +
∑
1≤i

di
2i

where w0 ∈ {1, 0, 1}∗, di ∈ {1, 0, 1} and νsb is a naming of natural integers
signed in base 2 (1 stands for −1).

Each real number is represented by infinitely many sequences. Comput-
ing from different representations of x might produce different sequences,
but since CA defines functions over R, these should represent the same real
number y.

3 Approximation

This section deals with finite run of type-2 Turing machines. After defining
the mixed representation of real numbers and the extraction of signed bits,
T2-TM implementation is presented.

3.1 Mixed representation and decoding

Each real number can be decomposed as n + ε where n is an integer and
ε belongs to (−1, 1). The representation used in AGC is in two parts. The
integer n is encoded as a sequence of signals in {1, 0, 1} followed by a •
signal. This is a direct signed binary representation. The real number ε is
represented in AGC, by the distance between two signals (there exist two
signals somewhere representing the scale, i.e. their distance is 1).

The aim is now to extract an infinite sequence of signed bits (plus a •)
encoding the real. Each query for a signed bit is started by receiving a get
signal. The integral part is treated very simply: the first signal encountered
is transformed into 1R, 0R or 1R. The dot is treated similarly. The integral
part is not addressed anymore in this paper.

The two signals to represent ε are zero and e. More signals are present:
one, half, half and one at position respectively −1, − 1

2 , 1
2 and 1 (position

0 is the one of zero). Signal e is between the two one signals, it might be

6 Jérôme Durand-Lose

superposed with half or zero, in such a case a different meta-signal is used
(these special cases are omitted).

Signed bits are extracted one after the other and companion signals are
prepared for next extraction: one, half, half and one are scaled by one half
and e is translated in order to correspond to the remainder. The structure
in fig. 1 is used for this. On this space-time diagram, the signal amounting
for ε, e, is missing. Its presence only superposes signals and collisions.

o
n
e get

h
a
lf

get +ze
ro

get 0

ha
lf R

h
alfL

h
a
lf

get 0 ha
lf R

o
n
e

ha
lf R

h
alfL

h
a
lf

set

o
n
e

get − ha
lf R

ze
ro

set

h
a
lf

set

o
n
e

set

o
n
e

h
a
lf

ze
ro

h
a
lf

o
n
e

ti
m

e
Meta-Signal Speed

halfL -3

get, get−, get0, get+

set -1

one, half, zero 0

halfR 1

Rules
{one, get}→{get+}
{half, get+}→{get0, halfL, one}
{zero, get0}→{get0, halfL, zero, halfR}
{half, get0}→{get−, one, halfR}
{one, get−}→{}
{halfR, halfL}→{half, halfR}
{halfR, one}→{set, one}

{halfR, zero, set}→{set, zero}
{one, set}→{one}

Fig. 1 Empty structure for extracting bits

figure 1 presents all the basic ingredients in AGC. A lot of insights on this
first construction is provided in order to illustrate how AGC works. In the
following, meta-signals are not listed and collisions rules are not listed, all
has been implanted and the reader should be able to name signals, deduce
rules and prove the correction of the constructions.

On this figure, it can first be proved that starting with one, half, zero, half
and one at position −4x, 2x, 0, 2x and 4x (x is any positive real number)
and get coming from the right. At the end there should only be present
one, half, zero, half and one at position −2x, x, 0, x and 2x. Looking at
the speeds and collision rules, everything happens according to the picture.
Since the new one signals replace the old half, they are directly correctly
positioned. Let’s take time 0 at the collision half with get+. The collision of
zero and get0 happens at (0, 2x) since get0 has speed −1. Computing the
intersection of two lines, the (right) collision of halfR and halfL happens at
(x, 3x).

The three cases of bit extraction are represented in fig. 2 where the sig-
nals handling ε, e is drawn with dashed lines. If − 2

2n < ε < − 1
2n then the

extracted bit is 1 (signal 1R exits on the right) and ε is replaced by ε+ 1
2n

(e is shifted by the distance from one to half). If − 1
2n < ε < 1

2n then the

Abstract geometrical computation 5: embedding computable analysis 7

extracted bit is 0 (signal 0R) and ε is unchanged (e is not shifted). Except
for the geometric construction, the last case is symmetric to the first one.
Arbitrarily, if − 1

2n < ε < 0, then the extracted bit is 0 although it could
have been 1 (similarly for 0 < ε < 0 < 1

2n).

e

e
1R

(a) − 2
2n

< ε < − 1
2n

e

e

0R

(b) − 1
2n

< ε < 1
2n

e

e

1R

(c) 1
2n

< ε < 2
2n

Fig. 2 Extracting a single signed bit.

For bit extraction, get comes from the right and is subsequently trans-
formed into get+ (on meeting the first one) then get0 (on the first half) then
get− (on the second half). According to what signal meets e, 1, 0 or 1 is
send back. If e is between the two half (fig. 2(b)), it remains is position which
is correct. If e is on the left between one and half (fig. 2(a)), then it is set
parallel to halfR (they have the same speed). It get set into position by set,
since set and get− are parallel, the displacement of e is exactly the same as
the one of halfR from the initial half to the zero where set is generated. If e
is on the right between half and one (fig. 2(c)), the construction is basically
the same.

All the meta-signals and rules are not detailed in the paper. The cor-
rections of the various constructions rely on simple geometry. All have been
checked (and implemented in Java to generate the pictures).

3.2 Computable Analysis

A type-2 Turing machine is nothing but a regular TM that never halts to-
gether with two special purpose tapes: one initially totally filled — entry —
and one for writing once — result. On the entry tape, the head cannot
change the read symbol nor move left (i.e. back to the start). On the re-
sult tape, the head either rewrites the blank symbol or moves right. In the
transition table, transitions that read on the entry can be clearly identified.
Reading is replaced by sending a get signal to the mixed structure and wait-
ing for the signed bit. The same is done with writing, in this case, signals
encoding signed bits are sent on the side but no acknowledge/returned value
is expected (in this subsection).

8 Jérôme Durand-Lose

Implementing a TM in AGC has already been done in Durand-Lose
[2009a]. Read and write operations are carried out by signals sent on the
side. Reading sent a get to the left and wait for an answer. Since the T2-
TM is running for infinitely many iterations, the tape might be extended
infinitely, care is taken that the space used for the tape remains bounded.
Since space is continuous, it is pretty easy to put less and less space between
signals amounting for the cells of the tape. Indeed, a geometric decrease is
used so that each signal is two third of the distance from the last than the
distance from the last to the previous one. This is illustrated in fig. 3 with
the first iterations of a TM and its implementation.

figure 1 provides the definition of a type-2 Turing machine that is used
to exemplify the construction. The regular transitions are as usual. The
other two (reading a bit of the entry or writing a bit of the result) are done
without moving the head nor changing the value under the head. The table
reads as follows: qi!0 means that the next state is qi and 0 is written on the
result tape and ?1 : q1. . . ?1 : q3 means that a symbol should be queried, if
it is 1 then the next state is q1 . . . if it is 1 then the next state is q3.

Table 1 Transition table of the type-2 Turing machine.

state \ symbol 1 0 1 #

qi qi,0,→ qi,1,→ qi,1,→ ?1 : q1 ?0 : q2 ?1 : q3

q1 - - - qi!1

q2 - - - qi!0

q3 - - - qi!1

This T2-TM goes right, inverting 1 and 0 and then queries the entry
and output the same bit on and on. The simulation of the TM in fig. 3(b)
has three regular transitions then it enters a cycle of read in and write out.
In fig. 3(c), on the left is the structure holding the entry and on the right
the simulation of the machine.

While the entry is queried, the state is encoded together with the letter
on the tape as indicated on the upper part of fig. 3(b). This way the position
of the head is also indicated by the only such meta-signal. The write out
signals are the ones leaving on the right. Each time a symbol is queried
or sent to the result, the signal encoding the state bounces on the signal
directly on the right; this separated transitions which is necessary when
symbols are outputted directly one after the other. The first transitions are
displayed in fig. 3(b).

These signals might go accumulating if the head is moving right forever.
But in a proper CA-computation, it is not the case: there must be infinitely
many readings and each one needs signals to go forth and back from the tape
to the mixed structure. Since this distance is bounded away from zero, each
reading requires a minimal time. There is no accumulation whatsoever in a
proper CA-computation. A bounded space is used by the T2-TM simulation

Abstract geometrical computation 5: embedding computable analysis 9

1 0 1 #

qi

0 0 1 #

qi

0 1 1 #

qi

0 1 1 #

qi1 →
0 1 1 #

q3 →1
0 1 1 #

qi0 →
0 1 1 #

q2 →0
0 1 1 #

qi0 →

(a) TM computation

1

←−q
i

−→q i

0

−→q i

1

−→q i

#

1

get

1

get

0

get

get
0

1
1

(q
i,
#
)

#

(b) First transitions (c) Implementation

Fig. 3 Simulation of a type-2 Turing machine.

and the encoded real number. There is always finitely many signals in any
configuration.

In case of multiple entries (for example for an addition), it is easy to set
one after the other on the right and to have a distinct get for each entry.

4 Exact computation

4.1 Folding and extended signal machines

Except for the output signals, the T2-TM simulation and the entry use a
bounded portion of space during the whole computation. There exist con-
structions to fold into bounded space and time a spatially bounded infinite
time computation. These can be used to fold the computation without in-
terfering with the output signals (by running through the collision rules and
cancelling any action that the folding structure would have on them, they
become insensible to the folding). Inside the structure, the computation is
scaled down, generating an infinite acceleration (used to emulate the black
hole in Durand-Lose [2006, 2009a]). In finite time, the whole infinite output
is generated and exits the structure as displayed in fig. 9.

Inside the folding structure, the Turing machine has an infinite time
ahead of it. The structure preserves ratios in the understanding that there
are infinitely many pieces at different scales that reform the original space-
time diagram after rescaling, unbending and translating. Even though the

10 Jérôme Durand-Lose

mixed representation undergoes multiple rescaling, it still generates the
same infinite sequence, and the simulation of T2-TM has the same output.

The problem is then to deal with the output: infinitely many signals
are generated in a bounded space, so that accumulation of signals have
to be considered. In Durand-Lose [2009b], this was considered and convoy
were introduced. We provide a construction avoiding that. The shrinking
structure is embedded inside another one that will accumulate. (From now
these structures are respectively designed as outer and inner.) The signals
outputted from the inner are used to drive the outer structures so that it
accumulates at the right place.

4.2 Inner structure

This first structure accelerates (shrinking) until a signal is eventually out-
putted. The inner structure is then frozen and only remains null speed
signals (until they are unfrozen).

First the T2-TM is modified in order that writing is freezing the com-
putation. Instead of the bouncing signal, the state and the read symbol are
encoded together, waiting for some writing acknowledgement. This func-
tions exactly as in the read case above, except that it is not restarted by a
read bit signal but by a owrite-done signal. So that when a bit is outputted,
the signals encoding the T2-TM are all parallel. This is described in fig. 4(a).

The real-number representation and T2-TM simulation are embedded
in the inner shrinking structure as displayed in fig. 4(b). As presented alone
in fig. 4(c), this structure is defined by 5 meta-signals: iborderle, iscalehi,

iscalelo, iback and iborderri and three collision rules. (The prefix i denotes
meta-signals from the inner structure). An extra meta-signal, istart, is used
to start shrinking from just iborderle and iborderri.

(a) Freezing on
outputting

(b) Embedded into the
structure

istart
iscalelo

i
b
or

d
er

rii
sc
ale hi

i back

i
b
or

d
er

le

i back

iscalelo

i
b
or

d
er

rii
sc
ale hi

i back

i
b
or

d
er

le

i back

(c) Naked structure

Fig. 4 Inner structure.

Abstract geometrical computation 5: embedding computable analysis 11

In the inner shrinking, the computation is displayed bent in triangles de-
limited iscalelo, iscalehi and iback and unbent (but scaled!) everywhere else.
Please note that the computation is going on from one piece to the next
and remains between iborderle on the left and a succession of iborderri and

iback on the right. The bending is done by replacing signals by bent signals.
Crossing iscalelo, each signal is replaced by a signal such that the direc-
tions (i.e. speeds) undergo a linear transformation corresponding to factor
1 on iscalelo (ensuring correct transition) and factor 1

2 on iscalehi. Crossing

iscalehi, a (bent) signal is replaced by its unbent version. This result in ap-
plying the linear transformation corresponding to the same directions but
exchanged factors. After being unbend, the combined linear transformation
is factor 1

2 on both directions. The scaling is thus achieved.

To stop the inner structure and be able to restart it, it suffices to remove
all but iborderle and iborderri. This is done by changing the collision rules
so that the signal corresponding to a symbol output is not only unaffected
by the structure but also affects it. If it is generated in the unbent zone, it
crosses unaffected by the bending, turn iback to iback

F and/or iborderri to

iborder
F
ri . As can be seen in fig. 5, each case results in only two motionless

signals: iborderle on the left and iborderri or iborder
F
ri on the right. Rules are

changed so that the output signal is always generated unbent (this explains
why it is not the bent version in the right diagram of fig. 5).

iscalelo

i
b
or

d
er

rii
sc
ale hi

i back

0 L

i back

i
b
or

d
er

le

i backF

0 L

i
b
or

d
er

ri

i
b
or

d
er

le

i
b
or

d
er

F ri

0 L

iscalelo

i
b
or

d
er

ri0 L

i back
i
sc
ale hi i backFi

b
or

d
er

le

i
b
or

d
er

ri

0 L

Fig. 5 Stopping the inner structure.

In any case, the simulation of the T2-TM is scaled and represented with
unbent signals only. The order in which the inner structure and the T2-TM
computation stop does not matter. They are both stopped before the output
signal reaches the outer structure.

It is crucial that the computation as well as the inner folding could be
resumed: the T2-TM computation is infinite and the shrinking ensure that
the next output symbol comes in bounded time.

The awaking is done in two times. One symbol, owrite-done—generated
by the outer structure— crosses the configuration from right to left to restart
the T2-TM computation. This signal reaches the left end of the outer struc-

12 Jérôme Durand-Lose

ture generating istart that resumes the shrinking. (iborder
F
ri behaves like

iborderri.)

4.3 Outer structure

Each time a symbol is output, T2-TM and inner structure are frozen, apart
from the symbol signal, only remains motionless signals. The outer structure
reacts to the output signals: it shrinks everything by one half and does a
translation so as to occupy the first half (for 1), the middle half (for 0) or
the right half (for 1).

The inner structure and the computation within are frozen each time a
symbol is outputted. This has two purpose: to treat each output indepen-
dently and to prevent the inner structure from producing another accumu-
lation: it will accumulate exactly at the same position.

In the following space-time diagram, the head of the T2-TM and istart
are removed for clarity. (The meta-signals involved in the outer structure
are denoted with an initial o.)

If 1 is received, all is described in fig. 6. The triangle ominuslo, ominushi
and owrite-done is used both to scale and to relocate. Since handled signals
are parallel and hence there is no activity whatsoever, scaling is easier than
previously (it is a special case). All bent signals are parallels to owrite-done
ensuring an exact preservation of ratios from one side to the other of the
triangle.

1 R

o
b
or

d
er

o
b
or

d
er

ominuslo

ominushi

o m
inus

top

o
b
or

d
er

owrite-done

o
b
or

d
er

o
b
or

d
er

(a) Empty structure (b) With signals

Fig. 6 Outer structure shrinking step for 1.

If 0 is received, all is described in fig. 7. This time two triangles are used:

ozerolo, ozeromi and oborderL and then ozeromi, ozerohi and oborderR. The
first one scales by 3

4 and align on position 3
4 on the right. The second one

scales by 2
3 and align on position 1

4 on the left. Altogether, they are set in
(1
4 ,

3
4) and scaled by 1

2 .

Abstract geometrical computation 5: embedding computable analysis 13

0 R

o
b
or

d
er

o
b
or

d
er

ozerolo

ozer
omi

o border
L

o
bo

rd
erR

ozerohi

oback

o
b
or

d
ero
b
or

d
er

owrite-done

o
b
or

d
er

o
b
or

d
er

(a) Empty structure (b) With signals

Fig. 7 Outer structure shrinking step for 0.

If 1 is received, all is described in fig. 8. The triangle opluslo, oplushi and

oback is used both to scale and to relocate.

1 R

o
b
or

d
ero
b
or

d
er

opluslo

oback

o plus
hi

oback

o
b
or

d
er

o
b
or

d
er

owrite-done

o
b
or

d
er

o
b
or

d
er

(a) Empty structure (b) With signals

Fig. 8 Outer structure shrinking step for 1.

Finally, fig. 9 depicts a whole run. It becomes rapidly hard to distinguish
the inner part due to the cumulative shrinking effects. Nevertheless, the
output signals can be distinguished, the sequence starts with 1, 0, 0, and 1.

The result might be an infinite constant sequences of 1. This would
provide an ε equals to 1. This is very easy to test and to deal with.

5 Conclusion

The time for the accumulation to occur is not only finite but bounded: the
duration can be decomposed in accumulation time for inner structure, outer
structure and interactions between the two structures. Each one is bounded
by a geometrical series.

14 Jérôme Durand-Lose

Fig. 9 The whole picture.

Theorem 1 With a proper handling of accumulations, it is possible to com-
pute any function of computable analysis in bounded time. There are always
finitely many signals in each configuration.

There is no hidden oracle. Although speeds may be any real and thus
encode information, only a few rational values are used. And apart from
mixed representation of ε, the distance between signals are also proportional
with rational ratio.

Not only does the mixed representation use finitely many signals, but is
also almost directly reusable to do analog computation in the Blum-Shub-
Smale understanding (as presented in [Durand-Lose, 2007, 2008]). This leads
to consider even more powerful analog computational system since CA and
BSS are not comparable, e.g. analytic machines [Chadzelek and Hotz, 1999].

It should also be possible to use higher order accumulation to hyper-
compute as is done for the BSS model in Durand-Lose [2009a] and to do
some real hyper-computing Ziegler [2007].

Abstract geometrical computation 5: embedding computable analysis 15

References

L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bull. Amer. Math. Soc., 21(1):1–46, 1989.

O. Bournez, M. L. Campagnolo, D. S. Graça, and E. Hainry. Polynomial differen-
tial equations compute all real computable functions on computable compact
intervals. Journal of Complexity, 23(3):317–335, 2007.

T. Chadzelek and G. Hotz. Analytic machines. Theoret. Comp. Sci., 219(1-2):
151–167, 1999. doi: 10.1016/S0304-3975(98)00287-4.

J. Durand-Lose. Abstract geometrical computation 1: Embedding black hole com-
putations with rational numbers. Fund. Inf., 74(4):491–510, 2006.

J. Durand-Lose. Abstract geometrical computation and the linear Blum, Shub and
Smale model. In S. B. Cooper, B. Löwe, and A. Sorbi, editors, Computation
and Logic in the Real World, 3rd Conf. Computability in Europe (CiE ’07),
number 4497 in LNCS, pages 238–247. Springer, 2007. doi: 10.1007/978-3-540-
73001-9 25.

J. Durand-Lose. Abstract geometrical computation with accumulations: Beyond
the Blum, Shub and Smale model. In A. Beckmann, C. Dimitracopoulos, and
B. Löwe, editors, Logic and Theory of Algorithms, 4th Conf. Computability
in Europe (CiE ’08) (abstracts and extended abstracts of unpublished papers),
pages 107–116. University of Athens, 2008.

J. Durand-Lose. Abstract geometrical computation 3: Black holes for classical and
analog computing. Nat. Comput., 8(3):455–572, 2009a. doi: 10.1007/s11047-
009-9117-0.

J. Durand-Lose. Abstract geometrical computation and computable analysis. In
J. F. Costa and N. Dershowitz, editors, International Conference on Uncon-
ventional Computation 2009 (UC ’09), number 5715 in LNCS, pages 158–167.
Springer, 2009b. doi: 10.1007/978-3-642-03745-0 20.

J. Durand-Lose. Abstract geometrical computation 4: small Turing universal
signal machines. Submitted to TCS, special issue on Complexity of Simple
Programs, 2010.

G. Etesi and I. Németi. Non-Turing computations via Malament-Hogarth space-
times. Int. J. Theor. Phys., 41(2):341–370, 2002. gr-qc/0104023.

A. Grzegorczyk. On the definitions of computable real continuous functions. Fund.
Math., 44:61–77, 1957.

M. L. Hogarth. Non-Turing computers and non-Turing computability. In Biennial
Meeting of the Philosophy of Science Association, pages 126–138, 1994.

K.-I. Ko. Computational Complexity of Real Functions. Birkhäuser, 1991.
A. M. Turing. On computable numbers, with an application to the entschei-

dungsproblem. Proceedings of the London Mathematical Society, 42(2):230–265,
1936.

K. Weihrauch. Introduction to computable analysis. Texts in Theoretical computer
science. Springer, Berlin, 2000.

M. Ziegler. (Short) Survey of real hypercomputation. In S. B. Cooper, B. Löwe,
and A. Sorbi, editors, Computation and Logic in the Real World, 3rd Conf.
Computability in Europe, CiE ’07, volume 4497 of LNCS, pages 809–824.
Springer, 2007. doi: http://dx.doi.org/10.1007/978-3-540-73001-9 86.

