Irrationality is needed to compute with signal machines with only three speeds *CiE 2013 — Special session on Computation in Nature*

Jérôme Durand-Lose

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, Orléans, FRANCE

July 5th 2013 — U. Milano Bicocca, Milano, Italia

2 Problematics

- Accumulating
- Computing
- Few speeds
- 3 Simple cases
 - 2 speeds or less
 - 4 speeds or more
- 4 3 speeds
 - Rational (numbers) case (Q)
 - Irrational accumulating case
 - Irrational computing case
- Results and future work

Problematics

- Accumulating
- Computing
- Few speeds

3 Simple cases

- 2 speeds or less
- 4 speeds or more

🕘 3 speeds

- Rational (numbers) case (Q)
- Irrational accumulating case
- Irrational computing case
- 5 Results and future work

Signals in cellular automata

- Signal (meta-signal)
- Collision (rule)

Μ

Vocabulary and example: find the middle

М

Collision rules

Vocabulary and example: find the middle

Meta-signals (s	speed)	
М	(0)	
div	(3)	

М

Collision rules

Vocabulary and example: find the middle

Meta-signals (s	speed)	
M div hi Io	(0) (3) (1) (3)	

Collision rules

 $\{ \text{ div, } M \} \!\rightarrow\! \{ \text{ M, hi, lo} \}$

Vocabulary and example: find the middle

Meta-signals (s	peed)	
М	(0)	
div	(3)	
hi	(1)	
lo	(3)	
back	(-3)	

Collision rules

{ div,	М	$\} \!\rightarrow\! \{$	M, hi	, lo	}
{ lo,	М	$\} \!\rightarrow\! \{$	back,	Μ	}

Vocabulary and example: find the middle

Meta-signals (speed)					
М	(0)				
div	(3)				
hi	(1)				
lo	(3)				
back	(-3)				

Collision rules

	{ c	liv,	М	$\} \!\rightarrow\! \{$	М,	hi,	lo	}
	{	lo,	М	$\} \!\rightarrow\! \{$	bac	:k,	М	}
{	hi,	ba	ck	$\} \!\rightarrow\! \{$	Μ	}		

Complex behavior

Complex behavior

Complex behavior

Signal machines

2 Problematics

- Accumulating
- Computing
- Few speeds
- - 2 speeds or less
 - 4 speeds or more

- Rational (numbers) case (Q)
- Irrational accumulating case
- Irrational computing case

Problematics

Accumulating

2 Problematics

- Accumulating
- Computing
- Few speeds
- - 2 speeds or less
 - 4 speeds or more
- - Rational (numbers) case (Q)
 - Irrational accumulating case
 - Irrational computing case

Problematics

Accumulating

Accumulations are quite common

Problematics	
Computing	

2 Problematics

- Accumulating
- Computing
- Few speeds
- - 2 speeds or less
 - 4 speeds or more
- - Rational (numbers) case (Q)
 - Irrational accumulating case
 - Irrational computing case

Problematics

Computing

Simulating a Turing machine (on a finite tape)

Problematics	
Four encode	

Signal machines

2 Problematics

- Accumulating
- Computing
- Few speeds
- - 2 speeds or less
 - 4 speeds or more

- Rational (numbers) case (Q)
- Irrational accumulating case
- Irrational computing case

Problematics

Few speeds

Minimality — bounds on the number of...

Problematics

Few speeds

Minimality — bounds on the number of...

...*meta-signals* to...

Accumulate 4

Compute 13 meta-signals (21 collision rules) Cyclic tag system [Durand-Lose, 2011]

Problematics

Few speeds

Minimality — bounds on the number of...

...*meta-signals* to...

Accumulate 4

Compute 13 meta-signals (21 collision rules) Cyclic tag system [Durand-Lose, 2011]

...*speeds* to...

Accumulate this talk [Becker et al., 2013] Compute this talk

Simple cases

Signal machines

2 Problematics

- Accumulating
- Computing
- Few speeds
- 3 Simple cases2 speeds or less
 - 4 speeds or more

4 3 speeds

- Rational (numbers) case (Q)
- Irrational accumulating case
- Irrational computing case
- 5 Results and future work

Simple cases

2 speeds or less

Signal machines

2 Problematics

- Accumulating
- Computing
- Few speeds

3 Simple cases2 speeds or less

4 speeds or more

🕘 3 speeds

- Rational (numbers) case (Q)
- Irrational accumulating case
- Irrational computing case
- 5 Results and future work

Simple cases

2 speeds or less

1 or 2 speeds

- No accumulation
- Not Turing-universal

Simple cases

4 speeds or more

Signal machines

2 Problematics

- Accumulating
- Computing
- Few speeds
- 3 Simple cases
 - 2 speeds or less
 - 4 speeds or more

🕘 3 speeds

- Rational (numbers) case (Q)
- Irrational accumulating case
- Irrational computing case
- 5 Results and future work

Simple cases

4 speeds or more

- Accumulation
- Turing-universal

Simple cases

4 speeds or more

- Accumulation
- Turing-universal

Signal machines

2 Problematics

- Accumulating
- Computing
- Few speeds

3 Simple cases

- 2 speeds or less
- 4 speeds or more
- ④ 3 speeds
 - Rational (numbers) case (\mathbb{Q})
 - Irrational accumulating case
 - Irrational computing case

5 Results and future work

3 speeds

Rational (numbers) case (\mathbb{Q})

Signal machines

2 Problematics

- Accumulating
- Computing
- Few speeds
- 3 Simple cases
 - 2 speeds or less
 - 4 speeds or more

④ 3 speeds

• Rational (numbers) case (\mathbb{Q})

- Irrational accumulating case
- Irrational computing case
- 5 Results and future work

3 speeds

Rational (numbers) case (\mathbb{Q})

Rational case (\mathbb{Q})

- Rational speeds
- Rational initial positions

Collisions at rational positions
as the solution of systems of two rational linear equations

Implemented in Java

- Exact precision (on \mathbb{Q})
- Tons of space-time diagrams

3 speeds

Rational (numbers) case (Q)

Rational space-time diagrams

3 speeds

Rational (numbers) case (\mathbb{Q})

Embedded in a mesh

- Some gcd computations [Becker et al., 2013]
- Embedded in a mesh [Becker et al., 2013]

Results

- No accumulation [Becker et al., 2013]
- No computation

3 speeds

Irrational accumulating case

Signal machines

2 Problematics

- Accumulating
- Computing
- Few speeds
- 3 Simple cases
 - 2 speeds or less
 - 4 speeds or more
- ④ 3 speeds
 - Rational (numbers) case (Q)
 - Irrational accumulating case
 - Irrational computing case
- 5 Results and future work

3 speeds

Irrational accumulating case

Simple fractal construction [Becker et al., 2013]

Irrational initial positions $(0, 0.6, 1, \varphi)$, rational speeds (-2, 0, 2) φ must satisfy $\frac{\varphi}{1} = \frac{1}{\varphi - 1}$ φ is the Golden ratio

3 speeds

Irrational accumulating case

Simple fractal construction [Becker et al., 2013]

Rational initial positions (-.1, 0, .9, 1), irrational speeds (-2 φ , 0, 2) φ must satisfy $\frac{\varphi}{1} = \frac{1}{\varphi - 1}$ φ is the Golden ratio

3 speeds

Irrational computing case

Signal machines

2 Problematics

- Accumulating
- Computing
- Few speeds

3 Simple cases

- 2 speeds or less
- 4 speeds or more

④ 3 speeds

- Rational (numbers) case (\mathbb{Q})
- Irrational accumulating case
- Irrational computing case
- 5 Results and future work

3 speeds

Irrational computing case

How to enlarge the tape?

Use the fractal...

without generating it!

Signal machines

2 Problematics

- Accumulating
- Computing
- Few speeds

③ Simple cases

- 2 speeds or less
- 4 speeds or more

🕘 3 speeds

- Rational (numbers) case (\mathbb{Q})
- Irrational accumulating case
- Irrational computing case

5 Results and future work

Irrationality is needed to compute with signal machines with only three speeds Results and future work

Results

Rational signal machines

- Up to normalization (~> rational ratios)
- At least 4 speeds to accumulate or compute

With an irrational ratio between initial distances

- 3 (rational) speeds are enough to accumulate and compute
- Turing-universal 25-meta-signal 3-speed signal machine with the Golden ratio

With an irrational ratio between speeds

- Can be used to get an irrational ratio between distances
- 3 (rational) speeds are enough both to accumulate and compute

Irrationality is needed to compute with signal machines with only three speeds Results and future work

Future work

• Use irrational values as oracle

• Black hole (hyper-)computation

• Analog computation?

Becker, F., Chapelle, M., Durand-Lose, J., Levorato, V., and Senot, M. (2013).

Abstract geometrical computation 8: Small machines, accumulations & rationality.

Submitted.

- Durand-Lose, J. (2011).

Abstract geometrical computation 4: small Turing universal signal machines.

Theoret. Comp. Sci., 412:57-67.