Irrationality is needed to compute with signal machines with only three speeds

To be presented at CiE '13

Jérôme Durand-Lose

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, Orléans, FRANCE

Frac 2013 — 28 février & 1e mars 2013 — LIRMM Montpellier

- Signal machines
- 2 Problematics
 - Accumulating
 - Computing
 - Few speeds
- Simple cases
 - 2 speeds or less
 - 4 speeds or more
- 4 3 speeds
 - Rational (numbers) case (Q)
 - Irrational accumulating case
 - Irrational computing case
- Sesults and future work

- Signal machines
- 2 Problematics
 - Accumulating
 - Computing
 - Few speeds
- Simple cases
 - 2 speeds or less
 - 4 speeds or more
- 4 3 speeds
 - Rational (numbers) case (Q)
 - Irrational accumulating case
 - Irrational computing case
- 5 Results and future work

Signals in cellular automata

- Signal (meta-signal)
- Collision (rule)

Meta-signals (speed) M (0) div (3) hi (1) lo (3)

Meta-signals (speed)

M (0) div (3) hi (1)

lo (3)

back (-3)

Collision rules

Meta-signals (speed) M (0)

```
M (0)
div (3)
hi (1)
lo (3)
back (-3)
```

Collision rules

Complex behavior

Complex behavior

Complex behavior

- Signal machines
- 2 Problematics
 - Accumulating
 - Computing
 - Few speeds
- Simple cases
 - 2 speeds or less
 - 4 speeds or more
- 4 3 speeds
 - Rational (numbers) case (Q)
 - Irrational accumulating case
 - Irrational computing case
- 5 Results and future work

- Signal machines
- 2 Problematics
 - Accumulating
 - Computing
 - Few speeds
- Simple cases
 - 2 speeds or less
 - 4 speeds or more
- 4 3 speeds
 - Rational (numbers) case (Q)
 - Irrational accumulating case
 - Irrational computing case
- 5 Results and future work

Accumulating

Accumulations are quite common

- Signal machines
- 2 Problematics
 - Accumulating
 - Computing
 - Few speeds
- Simple cases
 - 2 speeds or less
 - 4 speeds or more
- 4 3 speeds
 - Rational (numbers) case (Q)
 - Irrational accumulating case
 - Irrational computing case
- 5 Results and future work

Simulating a Turing machine (on a finite tape)

Few speeds

- Signal machines
- 2 Problematics
 - Accumulating
 - Computing
 - Few speeds
- Simple cases
 - 2 speeds or less
 - 4 speeds or more
- 4 3 speeds
 - Rational (numbers) case (Q)
 - Irrational accumulating case
 - Irrational computing case
- 5 Results and future work

Few speeds

Minimality

Minimal number of signals to...

Accumulate 4

Minimality

Minimal number of signals to...

Accumulate 4

Compute 13 meta-signals
(21 collision rules)
Cyclic tag system
[Durand-Lose, 2011]

Few speeds

Minimality

Minimal number of signals to...

Accumulate 4

Compute 13 meta-signals
(21 collision rules)
Cyclic tag system
[Durand-Lose, 2011]

Minimal number of speeds to...

Accumulate this talk
[Becker et al., 2013,
Durand-Lose, 2013]

Compute this talk
[Durand-Lose, 2013]

- Signal machines
- 2 Problematics
 - Accumulating
 - Computing
 - Few speeds
- Simple cases
 - 2 speeds or less
 - 4 speeds or more
- 4 3 speeds
 - Rational (numbers) case (Q)
 - Irrational accumulating case
 - Irrational computing case
- Results and future work

- Signal machines
- 2 Problematics
 - Accumulating
 - Computing
 - Few speeds
- Simple cases
 - 2 speeds or less
 - 4 speeds or more
- 4 3 speeds
 - Rational (numbers) case (Q)
 - Irrational accumulating case
 - Irrational computing case
- 5 Results and future work

1 or 2 speeds

- No accumulation
- Not Turing-universal

- Signal machines
- 2 Problematics
 - Accumulating
 - Computing
 - Few speeds
- 3 Simple cases
 - 2 speeds or less
 - 4 speeds or more
- 4 3 speeds
 - Rational (numbers) case (Q)
 - Irrational accumulating case
 - Irrational computing case
- Results and future work

- Accumulation
- Turing-universal

- Accumulation
- Turing-universal

- Signal machines
- 2 Problematics
 - Accumulating
 - Computing
 - Few speeds
- Simple cases
 - 2 speeds or less
 - 4 speeds or more
- 4 3 speeds
 - Rational (numbers) case (Q)
 - Irrational accumulating case
 - Irrational computing case
- Results and future work

- Signal machines
- 2 Problematics
 - Accumulating
 - Computing
 - Few speeds
- Simple cases
 - 2 speeds or less
 - 4 speeds or more
- 4 3 speeds
 - Rational (numbers) case (Q)
 - Irrational accumulating case
 - Irrational computing case
- Results and future work

Rational case (\mathbb{Q})

- Rational speed
- Rational initial positions
- Collisions at rational positions as the solution of systems of two rational linear equations

Implemented in Java

- Exact precision (on Q)
- Tons of space-time diagrams

Rational space-time diagrams

Embedded in a mesh

- Some gcd computations [Becker et al., 2013]
- Embedded in a mesh [Becker et al., 2013, Durand-Lose, 2013]

Results

- No accumulation [Becker et al., 2013]
- No computation [Durand-Lose, 2013]

- 1 Signal machines
- 2 Problematics
 - Accumulating
 - Computing
 - Few speeds
- Simple cases
 - 2 speeds or less
 - 4 speeds or more
- 4 3 speeds
 - Rational (numbers) case (Q)
 - Irrational accumulating case
 - Irrational computing case
- **5** Results and future work

Simple fractal construction [Becker et al., 2013, Durand-Lose, 2013]

$$arphi$$
 must satisfy $\dfrac{arphi}{1}=\dfrac{1}{arphi-1}$

arphi is the Golden ratio

- Signal machines
- 2 Problematics
 - Accumulating
 - Computing
 - Few speeds
- Simple cases
 - 2 speeds or less
 - 4 speeds or more
- 4 3 speeds
 - ullet Rational (numbers) case ($\mathbb Q$)
 - Irrational accumulating case
 - Irrational computing case
- 5 Results and future work

How to enlarge the tape?

• Use the fractal... but do not generate it!

- Signal machines
- 2 Problematics
 - Accumulating
 - Computing
 - Few speeds
- Simple cases
 - 2 speeds or less
 - 4 speeds or more
- 4 3 speeds
 - ullet Rational (numbers) case ($\mathbb Q$)
 - Irrational accumulating case
 - Irrational computing case
- Results and future work

Results

Rational signal machines

- Up to normalization (→ rational ratios)
- At least 4 speeds to accumulate or compute

With an irrational ratio between initial distances

- 3 (rational) speeds are enough to accumulate and compute
- Turing-universal 25-meta-signal 3-speed signal machine with the Golden ratio

With an irrational ratio between speeds

- Can be used to get an irrational ratio between distances
- 3 (rational) speeds are enough both to accumulate and compute

Future work

- Use irrational values as oracle
- Black hole (hyper-)computation
- Analog computation?

Becker, F., Chapelle, M., Durand-Lose, J., Levorato, V., and Senot, M. (2013).

Abstract geometrical computation 8: Small machines, accumulations & rationality.

Draft.

Durand-Lose, J. (2011).

Abstract geometrical computation 4: small Turing universal signal machines.

Theoret. Comp. Sci., 412:57-67.

Durand-Lose, J. (2013).

Irrationality is needed to compute with signal machines with only three speeds.

In CiE '13, LNCS. Springer.