
Simulation and Intrinsic Universality among
Reversible Cellular Automata, the Partition
Cellular Automata Leverage

Jérôme Durand-Lose

Jérôme Durand-Lose. Simulation and Intrinsic Universality Among Reversible Cellular Automata, the Partition Cellular
Automata Leverage. In Andrew Adamatzky, editor, Reversibility and Universality, Essays Presented to Kenichi Morita
on the Occasion of his 70th Birthday, number 30 in Emergence, Complexity and Computation, pages 61–93. Springer,
2018. ISBN 978-3-319-73215-2. doi: 10.1007/978-3-319-73216-9_4.

Abstract This chapter presents the use of Partitioned Cellular Automata —intro-
duced by Morita and colleagues— as the tool to tackle simulation and intrinsic uni-
versality in the context of Reversible Cellular Automata.

Cellular automata (CA) are mappings over infinite lattices such that all cells are
updated synchronously according to the states around each one and a common local
function. A CA is reversible if its global function is invertible and its inverse can
also be expressed as a CA. Kari proved in 1989 that invertibility is not decidable
(for CA of dimension at least 2) and is thus hard to manipulate. Partitioned Cel-
lular Automata (PCA) were introduced as an easy way to handle reversibility by
partitioning the states of cells according to the neighborhood. Another approach by
Margolus led to the definition of Block CA (BCA) where blocks of cells are updated
independently. Both models allow easy check and design for reversibility.

After proving that CA, BCA and PCA can simulate each other, it is proven that
the reversible sub-classes can also simulate each other contradicting the intuition
based on decidability results. In particular, it is proven that any d-dimensional re-
versible CA (d-R-CA) can be expressed as a BCA with d+1 partitions. This proves
a 1990 conjecture by Toffoli and Margolus (Physica D 45) improved and partially
proved by Kari in 1996 (Mathematical System Theory 29). With the use of signals
and reversible programming, a 1-R-CA that is intrinsically universal —able to sim-
ulate any 1-R-CA— is built. Finally, with a peculiar definition of simulation, it is
proven that any CA (reversible or not) can be simulated by a reversible one. All
these results extend to any dimension.

Jérôme Durand-Lose
Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, FR-45067 Orléans, France
LIX, CNRS-INRIA-École Polytechnique, France
e-mail: jerome.durand-lose@univ-orleans.fr

1

jerome.durand-lose@univ-orleans.fr

2 Jérôme Durand-Lose

Key words: Block Cellular Automata ; Cellular Automata ; Intrinsic Universality ;
Invertibility ; Margolus neighborhood ; Partitioned Cellular Automata ; Reversibil-
ity ; Reversible Cellular Automata

Contents

Simulation and Intrinsic Universality among Reversible Cellular
Automata, the Partition Cellular Automata Leverage 1
Jérôme Durand-Lose

1 Introduction . 4
2 Definitions . 7

2.1 Cellular Automata . 8
2.2 Block Cellular Automata . 8
2.3 Partitioned Cellular Automata . 9
2.4 Reversibility . 10
2.5 Simulation and Intrinsic Universality 11

3 Simulations Between classes of CA . 11
3.1 Simulation of BCA by CA (and R-BCA by R-CA) 11
3.2 Simulation of CA by PCA . 13
3.3 Simulation of CA by BCA . 13
3.4 Simulation of R-CA by R-BCA . 14
3.5 Simulation of R-BCA (and R-CA) by R-PCA 18

4 Intrinsic Universality of 1-R-PCA . 18
4.1 Macroscopic Level . 19
4.2 States, Layers and Configurations at Microscopic Level . 20
4.3 Microscopic Algorithm . 21
4.4 Local Function of U . 24
4.5 Simulation . 24

5 Space-time Simulation of Irreversible CA by Reversible Ones 26
5.1 Space-time Approach . 26
5.2 Macro Dynamics . 27
5.3 Micro Dynamics . 29
5.4 State Function . 29
5.5 Generalization Sketch . 31

6 Conclusion . 32
References . 33

3

4 Contents

1 Introduction

In this chapter, it is shown how Partitioned Cellular Automata (PCA) have been the
key to tackle simulation with Block Cellular Automata (BCA) and intrinsic univer-
sality of Reversible Cellular Automata (R-CA). Partitioned Cellular Automata were
introduced [Morita and Harao, 1989, Morita, 1992a,b] to prove computation uni-
versality of 1-dimensional R-CA (1-R-CA). Before that, for lack of ways to handle
1-R-CA, computation universality of R-CA was only known in dimension 2 and
above [Toffoli, 1977].

Cellular automata (CA) model parallel phenomena and architectures since their
introduction by Ulam and von Neumann in the fifties. They form a model for mas-
sively parallel computations and physical phenomena. They have been widely stud-
ied for decades and there is a lot of results about them [Burks, 1970, Wolfram, 1986,
Sarkar, 2000, Kari, 2005].

They operate as iterative systems on d-dimensional infinite arrays of cells (the
underlying space is Zd). Each cell takes a value from a finite set of state (Q). A con-
figuration is a valuation of the whole array. An iteration of a CA is the synchronous
replacement of the state of every cell by the image of the states of the cells around it
(following a finite local neighborhood N). This replacement is done according to
a unique local function. The update is local, uniform, parallel and synchronous.

Reversibility is the capability of a dynamical system to be invertible and to have
its inverse in the same class of dynamical systems. This is interesting for physics and
computation [Bennett, 1988, Toffoli and Margolus, 1990]. It allows to unambiguous
backtrack a phenomenon to its origin. It preserves information and entropy. It may
offer a guide to design computers that consume less energy.

A CA is reversible when its global function G is bijective and its inverse (G−1)
is the global transition function of some CA. It is known that if G is one-to-one
then it is bijective [Moore, 1962, Myhill, 1963] and the corresponding CA is re-
versible [Hedlund, 1969, Richardson, 1972]. The reversibility of a CA is decidable
in dimension 1 [Amoroso and Patt, 1972] whereas it is not true anymore for greater
dimensions [Kari, 1990, 1994].

Lecerf [1963] and Bennett [1973] proved that reversible Turing machines can
simulate any Turing Machine and are thus computationally universal. In 1977, Tof-
foli [1977] proved that any CA can be simulated by a reversible CA (R-CA) one
dimension higher. In particular, this proves the existence of 2-dimensional R-CA
which are computationally universal. The computing power of R-CA as well as their
simulation capability was particularly investigated in Toffoli and Margolus [1990]
and Morita [2008].

Reversible CA are quite tricky to design and handle in their general form so that
other forms were introduced. To built computationally universal R-CA, (in dimen-
sion 2 and above) Block CA (BCA) and (in dimension 1) Partitioned CA (PCA)
were independently introduced as special CA for which reversibility is decidable.
Like regular CA, they work on infinite regular lattices where each point has a value
in a finite set of states.

Contents 5

Block CA (BCA) were introduced in the 80’s as a model for lattice gases and
other reversible physical phenomena [Margolus, 1984, 1988, Toffoli and Margolus,
1987]. A specific one called the Billiard Ball Model was defined. It has only 2 states
but is yet computationally universal.

Like for CA, the global function of a BCA is locally defined. The underlying
lattice is partitioned into identical hypercubic blocks regularly displayed. A partition
is fully determined by the size of the blocks and the position of a block (or origin).
A block transition is the parallel replacement of all the blocks of a given partition by
their images by the block function. The global function is the sequential composition
of various block transitions with the same size and block function.

Since the block function operates over a finite set (blocks and states are finite in
number), it can be bijective. The global function is reversible if and only if the block
function is a permutation, which is decidable.

Originally, BCA were named “Partitioning CA” and are also known as “CA with
the Margolus neighborhood”. To avoid any confusion with Morita’s Partitioned CA,
they are referred to as “Block CA” following Kari [1996] that named “Block Per-
mutations” bijective block functions.

Morita and colleagues introduced Partitioned CA (PCA) to prove that R-CA are
computationally universal in dimension 1 [Morita and Harao, 1989, Morita, 1992b,
1995]. In PCA, the states are partitioned according to the neighborhood. Each cell
swaps its sub-states with neighboring cells and then computes its new state. The
local function operates over the finite set of states and can be bijective. The global
function is reversible if and only if the local function is a permutation, which is
decidable.

Another important topic developed in this chapter is the relations between the
different kinds of CA, especially in terms of capability to simulate one another.
Following the survey on universalities in CA [Ollinger, 2012], one wants to consider
a homogeneous type of simulation: cellular automata simulated by cellular automata
in a shift invariant, time invariant way. Trivially, PCA (R-PCA) are CA (R-CA). By
considering macro-cells corresponding to the blocks of the first partition, CA (R-
CA) simulates BCA (R-BCA).

Block CA can simulate CA by using partitions to progressively add its next state
to each cell. PCA can simulate CA by copying the original state in each sub-part.
These constructions always generate non reversible BCA and PCA. Nevertheless
the following conjecture was made:

Conjecture 1 [Toffoli and Margolus, 1990, Conjecture 8.1] All invertible cellu-
lar automata are structurally invertible, i.e., can be (isomorphically) expressed in
space-time as a uniform composition of finite logic primitives.

A “finite logic primitives” is a representation of a local permutation of blocks t.
Kari [1996] proved Conj. 1 for dimensions 1 and 2. The construction is complex but
does not need extra states. At the end, Kari conjectures that:

6 Contents

Conjecture 2 [Kari, 1996, Conjecture 5.3] For every d ≥ 1, all reversible d-dimen-
sional cellular automata are compositions of block permutations and partial shifts.

(Partial shift means that the blocks can be shifted which is included in the present
definition of BCA.) Durand-Lose [1995, 1996] proved that R-BCA can simulate R-
CA in any dimension with extra states and then that R-PCA can also simulate R-CA
[Durand-Lose, 1997].

An important concept that stems from simulation is intrinsic universality: the ca-
pability of a single CA to simulate all the others in a class. This is different from
computation universality because it addresses infinite configurations. There exist in-
trinsically universal (regular) CA [Albert and Čulik II, 1987, Martin, 1994, Ollinger,
2001]. Durand-Lose [1995, 1998, 2001b] proved that the Billiard Ball model is in-
trinsically universal among the 2-R-CA. Using PCA, Durand-Lose [1997] extended
the result to 1-R-CA. Both results extend to higher dimensions.

One natural question is whether R-CA can simulate any (non-reversible) CA. As
already mentioned, any d-CA can be simulated by a d+1-R-CA [Toffoli, 1977].

In 95, Morita [1992a, 1995] proved with PCA that any CA can be simulated by
R-CA of the same dimension over finite configurations but the construction does not
extend to infinite configurations. A configuration is finite if all but a finite number of
cells are in a defined stable state. This is enough for computing since it only treats fi-
nite information. But for physical modeling and as mathematical abstractions, there
is no reason to restrict to such configurations. Durand-Lose [2000] provided a sim-
ulation of any CA by a R-CA but the simulation relation is so peculiar (it is not
homogeneous at all) that the problem is still open.

This chapter first provides the formal definition of all kind of CA, of their re-
versible sub-classes, of simulation and of intrinsic universality.

The simulations between the various kinds of CA are presented. They come nat-
urally but only preserve reversibility when the target is a regular CA. Simulating
CA with BCA is done by progressively adding its next state to every cells before
discarding all the previous states.

Simulating R-CA with R-BCA is more involving and corresponds to solving
conjectures 1 and 2. It uses the local function of the inverse automaton to ensure
reversibility. In this construction, a previous state is only erased when it can be re-
generated from the next ones in the block. The construction in Durand-Lose [1995]
uses 2d+1−1 partitions with blocks of size 4r (r is the greater of the coordinates
of the elements of the neighborhood of the CA and of its inverse) in dimension d.
The construction presented here is taken from [Durand-Lose, 2001a]. It needs d+1
partitions with blocks of size 3(d+1)r. One gets from a partition to the next by a
shift of (3r,3r, · · · ,3r).

By considering blocks as cells, BCA can be simulated by PCA preserving re-
versibility.

Since simulation is a transitive relation, it is enough to prove intrinsic univer-
sality on one kind of CA. The construction works on 1-R-PCA and comes from

Contents 7

[Durand-Lose, 1997]. The intrinsically universal 1-R-PCA is organized in 10 layers
(for delimitation, identification, table, value, signals, and translation of data). The
dynamic is totally driven by signals which exchange values, test for equality, update
when it should be done and move data around. It uses a posteriori tests to ensure
reversibility.

It is still an open problem whether any CA can be simulated by a R-CA of the
same dimension. Nevertheless, for a particular notion of simulation, it is possible.

A space-time diagram depicts the whole (infinite) computation of a CA on an
initial configuration. It corresponds to the sequence of all the configurations, the
orbit of the system. Space-time simulation defines an embedding relation between
the space-time diagrams of different CA. This is a peculiar simulation relation since
configurations can be encoded across infinitely many configurations.

Any CA can be space-time simulated by a R-CA of the same dimension. Un-
bounded delays are used to provide extra storage for the information needed for re-
versibility. The proof is given in dimension 1 and generalized to higher dimensions.
As a corollary, using the existence of intrinsically universal R-CA, there exists a
R-CA which is capable of space-time simulating any CA of the same dimension.

This chapter is based on Durand-Lose [1995, 1997, 2000, 2001a]. All definitions
and proofs can be read without any previous knowledge of the subject.

Section 2 formally defines the various models, simulation and intrinsic univer-
sality. Section 3 constructs various simulations between the different classes of (re-
versible) CA. Section 4 details an intrinsically universal 1-R-CA. Section 5 consid-
ers space-time simulation and provides CA simulation by R-CA. Section 6 gathers
some concluding remarks.

2 Definitions

In this chapter, the following notations are used: Ja,bK denotes the integers from
a to b included; and < and ≤, +, −, mod, div and . also denote respectively the
component-wise comparisons, ordering, addition, modulo, Euclidean division and
multiplication over Zd .

Cellular automata (CA) define mappings over d-dimensional infinite arrays over
a finite set of states Q. The supporting lattice is denoted by L (= Zd). The points of
L are called cells and each has a value in Q. The state of cell x in configuration c
is denoted by cx. The set of configurations is denoted by C (= QL). Functions on
one state/cell are naturally extended into functions over arrays of states/cells and
configurations.

For any configuration c and subset E of L, c|E is the restriction of c to E. For any
x ∈ L, σx is the shift by x over configurations (∀c ∈ C ,∀i ∈ L,(σx(c))i = ci−x).

8 Contents

2.1 Cellular Automata

A Cellular Automaton of dimension d (d-CA) is defined by (Q,N , f). The neigh-
borhood N is a finite subset of L. The local function f : QN →Q maps the states of
a neighborhood into one state. The global function G : C → C maps configurations
into themselves as follows:

∀c ∈ C , ∀x ∈ L, G (c)x = f
((

cx+µ

)
µ∈N

)
.

The new state of a cell depends only on the states of neighboring cells as depicted
in Fig. 1(a).

The radius of a cellular automaton, r, is the maximum absolute value of any coor-
dinate of any element of N . It is the smallest integer r such that: N ⊆ J− r,rKd . By
adding dummy entries, the local function can be extended to the domain J− r,rKd .
Neighborhood and radius can be used equivalently.

f f f f

(a) Cellular Automata

G

t t t t

t t t

(b) Block CA

G Φ Φ Φ Φ

(c) Partitioned CA

Fig. 1 Schematic CA, BCA and PCA updatings in dimension 1.

2.2 Block Cellular Automata

A Block CA of dimension d (d-BCA) is defined by: (Q,v,n,(o(j))1≤ j≤n, t). The
size v is an element of L such that 0 < v. The volume V is the subset J0,v1−1K×
J0,v2−1K× ·· ·× J0,vd − 1K of L. A block is a mapping from V to Q, or, equiva-
lently, an array of states whose underlying lattice is V . The set of all blocks is QV .
The block function t is a function over blocks. The number of partitions used is n.
The origins of the n partitions, (o(j))1≤ j≤n, are elements of V .

The block transition T is the following mapping over C : for any c ∈ C and i ∈
L, let a = idivv and b = imodv (a ∈ L and 0 ≤ b < v) so that i = a.v+ b, then
t(c)i = t(c|a.v+V)b. In other words, the block containing i in the regular partition
with blocks of size v is updated according to t. The same happens for all the blocks
of this partition. The configuration is partitioned into regularly displayed blocks,
then each block is replaced by its image by the block function t as in Figs. 1(b) and
2.

Contents 9

v1 v1

v2

v2

o =

ρ0,0 ρ1,0

ρ0,1 ρ1,1

t(ρ0,0) t(ρ1,0)

t(ρ0,1) t(ρ1,1)to

Fig. 2 to: the block permutation of size v and origin (o).

The block transition of origin o(j), Tj is σo(j) ◦ T◦σ−o(j) . It is the original one
with the partition shifted by o(j). The global function is the composition of the block
transitions of origins o(j): G = Tn ◦Tn−1 ◦· · ·◦T1. This is illustrated in Fig. 1(b) with
2 partitions and v = (3). The new state of a cell depends only on the states around
it.

To see that BCA are indeed CA, consider the blocks of the first partition to be
cells. At this scale, the global function commutes with any shift and is continuous
for the product topology, according to a theorem of [Hedlund, 1969, Richardson,
1972], it is a CA. A constructive proof is provided in Subsect. 3.1.

2.3 Partitioned Cellular Automata

A Partitioned Cellular Automaton of dimension d (d-PCA) is defined by: (Q,N ,Φ).
The set of states is a sub-set product indexed by the neighborhood: Q=∏µ∈N Q(µ).
The µ component of a state q is noted q(µ). The state function Φ operates over Q.
The global transition function G is defined by:

∀c ∈ C , ∀x ∈ L, G (c)x = Φ

(
∏

µ∈N
c(µ)x+µ

)
.

The local function works only with what remains and what is received. Only
partial information is accessible to a cell, even about its own state as depicted in
Fig. 1(c).

Equivalently, each state is the product of the information to be exchanged. Each
component is sent to a single cell. An intermediate state is formed by grouping
what is left and what is received. The state function Φ yields the new state from
the intermediate state. The cell only keeps a partial knowledge about its own state
and only receives a partial knowledge about the states of the neighboring cells, as
depicted in Fig. 1(c).

A PCA is indeed a CA: the formalization only prevents it from accessing the full
states of its neighbors.

10 Contents

A space-time diagram A : L×N → Q is the sequence of the iterated images
of a configuration by a CA A from an initial configuration c0. It is defined by
Ax,t = (G t(c0))x and denoted by (G ,c0) or (A ,c0).

2.4 Reversibility

A CA (resp. BCA, PCA) is reversible if and only if its global function G is bijec-
tive and G−1 is the global function of some CA (BCA, PCA). Let R-CA (R-PCA,
R-BCA) denote the class of reversible CA (BCA, PCA). Myhill [1963] and Moore
[1962] proved that for CA injectivity is equivalent to reversibility. The main decid-
ability result is:

Theorem 3 (Amoroso & Patt, Kari) The reversibility of CA is decidable in dimen-
sion 1 [Amoroso and Patt, 1972] but it is undecidable for higher dimension [Kari,
1990, 1994].

Whereas for BCA and PCA, the following lemmas hold in any dimension.

Lemma 4 (Margolus) A BCA is reversible iff its block function t is a permutation
(which is decidable).

Proof. If the block function t is a permutation, by construction, any block transition
is reversible. The global transition as a composition of transitions, is reversible.
Otherwise, t is not one-to-one, then neither is any transition, and neither is the global
transition.

Decidability comes from the finiteness of the domain of t. □

Lemma 5 (Morita) A PCA is reversible iff its state function Φ is a permutation
(which is decidable).

Proof. If Φ is a permutation, then the inverse is obtained by reversing Φ and then
sending back the pieces to corresponding neighbors. Otherwise, since Φ works on a
finite set, it is not one-to-one and it is easy to construct 2 configurations which have
the same image.

Decidability comes from the finiteness of the domain of Φ . □

The inverse PCA is not presented since the proof only assert that, as a CA it is
reversible. The inverse is

(
∏µ∈−N Q(−µ),−N ,Φ−1

)
where the state function is

computed before the sub-states are exchanged. If need, the constructions in the next
section can be used to provide the expression of the inverse as a PCA.

As far as reversibility is concerned, BCA and PCA fundamentally differ from
CA. It is known that bijectivity for CA is equivalent to reversibility [Hedlund, 1969,
Richardson, 1972] and that there exists CA that are surjective but not reversible. By
a local inspection, it is easy to prove that for any surjective BCA or PCA the block
or state function must be a permutation.

Contents 11

2.5 Simulation and Intrinsic Universality

The local updating process differs for the various kind of CA. Thus simulation has
to be defined at global level. To simplify, the definition is presented in 2 steps. The
first one does not allow any shift nor scaling. The second introduces them.

Definition 6 (Direct simulation) A is directly simulated by B if there is some
onto partial function α from QB to QA such that:

∀c ∈ CA ,α ◦GB ◦α
−1(c) = {GA (c)} .

This is denoted by A ≼ B or when dealing with functions by GA ≼ GB .

In this definition, space-time diagrams must match exactly. Any computation that
is started on a B-configuration that maps to the initial A -configuration (there exist
at least one since α is onto) generates the whole space-time diagram.

The next definition adds scaling and shifting. Let m be any element of L with pos-
itive coordinates. The m-packing, pm, is the bijective mapping from QL to (Qm)L

that correspond to identifying the blocks of the 0-partition with cells.

Definition 7 (Simulation) A is simulated by B if there are a positive vector m, an
integer τ and a vector s such that:

GA ≼ pm ◦G τ

B ◦ p−1
m ◦σs .

This is denoted by A Î B or when dealing with functions by GA Î GB .

Unpacking is used so that the direct simulation works with macro-cells, i.e.
blocks. This is used directly in Subsect. 3.1 as an example. As the chapter goes,
the different elements of the simulation are more and more implicit.

From the definition of simulation comes the following definition:

Definition 8 An XCA is intrinsically universal if it can simulate any XCA.

3 Simulations Between classes of CA

PCA (resp. R-PCA) are CA (resp. R-CA). The remaining simulations have to be
expressed or generated by transitivity.

3.1 Simulation of BCA by CA (and R-BCA by R-CA)

Theorem 9 Any d-BCA can be simulated by a d-CA. This simulation preserves
reversibility.

12 Contents

Proof. Let A = (QA ,v,n,(o(j))1≤ j≤n, t) be any BCA. The set of states of the CA
B is the set of blocks of A (i.e. QV

A). The cells represent the blocks of the first
partition. The traces of the partitions are identical in every cell. The neighborhood
is N = J−n,nKd (n is the number of partitions). The cells in N correspond to the
blocks J−n,nKd of the first partition centered on the cell.

The local function f : Q(2n+1)d
→Q makes the first block transition on an hyper-

cube of size (2n)d . It contains the blocks J− n + 1,n− 1Kd of the first partition
centered on the cell. Then f makes the second block transition on the (2(n−1))d

blocks containing the blocks J− n+ 2,n− 2Kd of the first partition centered on the
cell. Each subsequent block partition is applied on a smaller part but the central
block remains in the middle.

The values corresponding to the updated cells are taken as the image by f of the
whole neighborhood. Different partitions in dimension 2 are shown in Fig. 3. All the
block partitions are considered in one application of f . In one step of B, the images
of the cells in the block are computed.

(2n+1)2 blocks of the first partition (B-cells J−n,nK2)
(2n)2 blocks of the second partition

(2n−1)2 blocks of the first partition (B-cells J−n+1,n−1K2)
(2n−2)2 blocks of the third partition
(2n−3)2 blocks of the first partition (B-cells J−n+2,n−2K2)

Fig. 3 First and second cuttings.

To be formal with Def. 7 (simulation): pv is grouping by block, τ is 1, s is the
shift of the first partition and α (for the direct simulation) is the identity. With this
simple encoding and this f , there is a natural identification between A and B:
GA = pv ◦G τ

B ◦ p−1
v ◦σs . Since pv and σ are reversible, GB is reversible if GA is.

Reversibility is preserved. □

The size of the blocks defines the number of states of the CA while the radius
only depends on the number of partitions.

Contents 13

3.2 Simulation of CA by PCA

Proposition 10 Any d-CA can be directly simulated by a d-PCA.

Proof. The idea is to duplicate the states in every part. Let A = (Q,N , f) be any
d-CA. It is simulated by the following d-PCA: B =

(
QN ,N ,Φ

)
, with:

∀ν ∈N , Φ

(
∏

µ∈N
s(µ)µ

)
(ν)

= f
((

s(µ)µ

)
µ∈N

)
.

The onto partial function α is defined by: ∀s ∈ Q,α(sN) = s. It is undefined for
every other value in QN . □

Since Φ only maps onto the diagonal of QN , the simulating PCA is never re-
versible.

3.3 Simulation of CA by BCA

Theorem 11 Any d-CA can be directly simulated by a d-BCA.

Proof. Let A = (Q,N , f) be a CA and r be its radius: the maximum absolute co-
ordinate of the elements of N . It represents half the size of the “windows” required
to gather the information needed to update a cell.

Let B be the following BCA: (Q∪Q2,(4r, · · · ,4r),d2,{0,2r}d , t) . The order
of the partitions is irrelevant as shows the definition of t below. The state of a B-
cell represents either the previous state of a A -cell (∈ Q) or its previous and next
states (∈Q2). The previous configuration is preserved until the next configuration is
completely generated.

In each block a part is singled out: the core. It correspond to Jr,3r−1Kd : the cells
that have their full neighborhood in the block. The block function first adds to every
cell in the core its next state and then, if all cell in the block have states in Q2, all
previous states are removed and the configuration is ready for next iteration. The
choice of block size and partitions ensures that every cell is in the core of exactly
one partition.

The onto partial function α is defined by the identity on Q and is undefined on
Q2. □

This simulating BCA is not reversible because of the erasement of the previous
state.

14 Contents

3.4 Simulation of R-CA by R-BCA

To preserve reversibility, erasing is done progressively. The inverse d-R-CA of A ,
A −1, is used to impose a condition (using fA −1) to erase injectively.

The inverse CA can be computed: the CA can be effectively enumerated, com-
position of CA as well as identity test are computable. The algorithm stops in finite
time; but in any dimension greater than one this time cannot be bounded by any
computable function because of the undecidability of reversibility.

The inverse of a R-BCA is very simple to built as described in the proof of
Lem. 4. When simulating a R-CA, the simulation of it inverse is somehow built.

Theorem 12 Any d-R-CA A can be simulated by a d-R-BCA B with states Q∪
Q2, size 3(d+1)r and d+1 partitions. The origins of the partitions are: 0, 3r, 6r,
9r, . . . ,3dr where r is the vector (r,r, · · · ,r) and r is the radius of the CA.

In the construction, the state of a B-cell represents either the previous or next
state of a A -cell (∈ Q) or both its previous and next states (∈ Q2). Before proving
the theorem, some lemmas are provided to ensure the distinction between previous
and next state for single-state B-cell (i.e. in Q).

The following subsets of Z and Zd are used to locate previous and next states
during the iterations. For every θ in J0,d+1K and κ ∈ J0,dK, let

Fκ = 3κr + Jr,3(d+1)r−r−1K +(3(d+1)r) Z ,

Fκ = 3κr + J− r,r−1K +(3(d+1)r) Z ,

Fd
κ = 3κr + Jr,3(d+1)r−r−1Kd+(3(d+1)r) Zd ,

EP
θ
=

⋃
θ≤κ<d+1

Fd
κ and

EN
θ
=

⋃
0≤κ<θ

Fd
κ .

These sets are closed under all ±3(d+1)r shifts in every direction. This is not al-
ways indicated to ease the presentation.

Lemma 13 For any 0≤ θ ≤ d+1, these sets verify the symmetries EN
θ
= EP

d+1−θ
−

3(d+1−θ)r and EN
θ
=−3dr−EP

d+1−θ
−1 and the equalities: EP

d+1 = EN
0 = /0 and

EP
0 = EN

d+1 = EP
θ
∪EN

θ
= Zd .

Proof. The symmetries, the equality with /0 and EP
0 = EN

d+1 = EP
θ
∪EN

θ
are obvious.

It remains to prove that EN
d+1 = Zd . Let x be any element of Zd . The d+1 sets

(of Z) Fθ are non-empty and disjoint. Since x has d coordinates, there exists θ0 such
that none of the coordinates of x belongs to Fθ0 . This means that x belongs to Fd

θ0
,

thus to EN
d+1. □

Contents 15

Let 1 be the operator that returns the tuple of defined operand (it returns a pair,
a value or undefined). Let following configurations over the alphabet Q∪Q2 are
defined:

∀c ∈ C , ∀θ ∈ J0,d+1K, Eθ (c) = c|EP
θ

1G (c)|EN
θ

.

Lemma 13 implies that: E0(c) = c, Ed+1(c) = G (c) and that, for all θ , Eθ (c) is ev-
erywhere defined. In the following d +1 reversible block transitions, (Bθ)0≤θ<d+1,
are defined so that the diagram in Fig. 4 commutes. Then their block functions are
proven compatible to be merge into one reversible block function.

E1(c) E2(c) Ed(c)

c GA (c)
GA

B0
B1

Bd

Fig. 4 Simulation commuting diagram.

Let Bθ be a block transition of size 3(d+1)r and origin 3θr. The size of Bθ

matches the length of the shift closure of the sets EP
θ

and EN
θ

. The 2 partitions for
dimension 1 are given in Fig. 5 (they correspond to the construction of Kari [1996]).

GA

r ⇑ t1 ⇑ t1 ⇑ t1

⇑ t2 ⇑ t2

previous states next states

Fig. 5 The 2 steps in dimension 1.

The block functions tθ have to be defined so that Bθ maps reversiblely Eθ (c) into
Eθ+1(c). Each one adds next states and erases previous states. The following lemma
states that there is enough information to compute and add the next states.

Lemma 14 For any θ in J0,dK, there is enough information in Eθ (c) to compute
Eθ+1(c) in each block of the partition of Bθ .

Proof. The next states added belong to:

∆θ = EN
θ+1 \EN

θ

=
(

3θr+ Jr,3(d+1)r−r−1Kd
)
\

⋃
0≤κ<θ

(
3κr+ Jr,3(d+1)r−r−1Kd

)
.

16 Contents

For any x ∈ ∆θ , x ∈ 3θr+Jr,3(d+1)r−r−1Kd . All the cells of the neighborhood
of x should still hold their previous states in order to compute the next state of x.
Cell x and its neighbors are all in the block 3θr+J0,3(d+1)r−1Kd . It corresponds
to the block of the partition of Bθ since its origin is 3θr. It remains to verify that the
previous states needed to compute the next state of x are still present.

For any κ in J0,θ−1K, since x ̸∈ 3κr+ Jr,3(d+1)r−r−1Kd , there is some in-
dex jκ such that x jκ ̸∈ 3κr+ Jr,3(d+1)r−r−1K. So x jκ is in 3κr+ J− r,r−1K (all
is 3(d+1)r periodic following any direction). Since the sets 3κr + J− r,r−1K are
disjoint, all jκ must be different and there are θ of them.

Let y be any cell needed to compute the next value in x. It belongs to x+J−r,rKd ,
then, for all κ in J0,d−1K, y jκ must be in 3κr + J− 2r,2r−1K. By contradic-
tion, let us assume that there exists such a y which does not belong to EP

θ
then

for all λ ∈ Jθ ,d+1K, there exists some kλ such that ykλ
does not belong to

λ r + Jr,3(d+1)r−r−1K, or equivalently, ykλ
∈ 3λ r + J− r,r−1K. Since the sets

3λ r+ J− r,r−1K are disjoint, all the kλ must be different and there are d+1−θ of
them.

Altogether, there are d+1 (distinct) jκ and (distinct) kλ for d values so there
exist κ0 and λ0 such that jκ0 = kλ0 . Then the intersection of 3κ0r + J− 2r,2r−1K
and 3λ0r+ J− r,r−1K is not empty. This means that κ0 = λ0, but by construction,
κ0 < λ0.

Thus y belongs to EP
θ

and all the previous states needed to compute the next state
of x are still present in the block. The next state of x can be computed with the
information held inside the block. □

From the symmetry between EN and EP, follows:

Corollary 15 For any θ in J0,dK, there is enough information in Eθ+1(c) to com-
pute Eθ (c) in each block of the partition of Bθ .

This means that the corresponding blocks of Eθ (c) and Eθ+1(c) in the partition
of Bθ can be uniquely determined one from the other. The partial function tθ is
one-to-one.

In dimension 2, the partitions are given in Fig. 6(a) and the positions of previous
and next states are detailed in Fig. 6(b) (they do not correspond to the construction
of Kari any more).

The following lemma shows that the partial definitions of functions tθ are com-
patible so that they can be merged into a unique t to define a reversible BCA.

Lemma 16 The current block transition Bθ can be identified by the position of the
double states inside the blocks of partition.

Proof. If all cells are single, then θ = 0.
For κ in J1,dK, let εκ be the following vector inside the blocks:

Contents 17

(a) the 3 partitions

→

↙

→

previous states next states ε1 ε2
(b) the 3 steps

Fig. 6 Simulating R-CA by R-BCA in dimension 2.

ε1 = 3(d+1)r+(−3r, · · · ,−3r) ,

ε2 = 3(d+1)r+(−3r,−6r, · · · ,−6r) ,

εκ = 3(d+1)r+(−3r,−6r,−9r, · · · ,−3(κ−1)r,−3κr, · · · ,−3κr) ,

εd = 3(d+1)r+(−3r,−6r,−9r, · · · ,−3dr) .

To get the coordinate in L, a translation by 3θr have to be applied. The vectors in
dimension 2 are indicated in Fig. 6(b).

For κ in J1,dK, no coordinate of εκ belongs to J− r,r− 1K, so that εκ + 3θr
belongs to Fθ and thus to EP

θ
.

For all κ in J1,θ − 1K, no coordinate of εκ belongs in F0, so that εκ belongs to
Fd

0 and thus to EN
θ

.
For all κ in J1,dK, the coordinate value−3ir+3θr = 3(θ−κ)r prevents εκ from

being in Fθ−κ . So that εθ does not belong to Fd
θ−1∪Fd

θ−2∪·· ·∪Fd
0 = EN

θ
.

Altogether θ is the maximum κ such that εκ holds 2 states plus one. If there is
no such κ then θ = 1. □

Corollary 17 Thanks to the symmetry (Lem. 13), the positions of double states after
the block transition indicate which tθ was used.

Above Lemma and Corollary show that all the partial definitions of the block
permutations of the block transitions are compatible for domains and ranges. They
can be grouped and completed in a unique bijective block function.

Altogether, Th. 12 is proved.

18 Contents

3.5 Simulation of R-BCA (and R-CA) by R-PCA

Lemma 18 Any d-BCA can be simulated by a d-PCA. This simulation preserves
reversibility.

Proof. The idea is to identify cells with blocks. Let A =(QA ,v,n,(o(j))1≤ j≤n, t) be

any d-BCA. Let B =
(

∏µ∈N Q(µ)
B ,N ,Φ

)
be a PCA where N ={−1,0,1}d , i.e.,

coordinates which differ by at most one in any direction. The block of coordinates x
(at block scale) of the jth partition is ρ

j
x . The block ρ

j
0 holds the cell of coordinates

0. The sets of states are defined by:

Q(0)
B =

⋃
1≤ j≤n

(
{ j}×Q

(
ρ

j−1
0 ∩ρ

j
0

)
A

)
, and

∀µ ∈N ,µ ̸= 0, Q(µ)
B =

⋃
1≤ j≤n Q

(
ρ

j−1
0 ∩ρ

j
−µ

)
A .

It holds the partition number together with the intersection of the block that holds
the cell of coordinates 0 for a partitions and of the one of the next partition holding
the cell 0 translated by µ.v. Any intersection may be empty. Blocks are partitioned
according to the next partition so that every part is sent to the corresponding cell to
form whole blocks of the next partition. Identically, each cell retrieves a full block,
uses the local transition and sends the corresponding parts to the neighbors for the
next transition. The 0-sub-state identifies the partition number which indicates how
to split the image block into sub-states.

Configurations are encoded by setting the first components to 1 and by putting
states in the corresponding intersections between the last and the first partitions.
On the first iteration of B, each cell gets one entire block of the first partition and
make the first transition. Then all pieces are sent to the corresponding cells and 2 is
recorded in the cell. Each iteration of B makes a successive transition of A . After
n iterations of B, one iteration of A is made and the first component is 1 again.

This construction preserves reversibility: the partial definition of the PCA state
function Φ is one-to-one if the local transition t of the BCA is reversible. □

From above Lemma and the transitivity of simulation comes:

Theorem 19 Any d-R-CA can be simulated by a d-R-PCA.

4 Intrinsic Universality of 1-R-PCA

In this section, a 1-R-PCA U = (QU ,{−1,0,1},ΦU) is built such that:

Theorem 20 The 1-R-PCA U is intrinsically universal, i.e., able to simulate any
1-R-PCA.

Contents 19

Let A = (Q,N ,Φ) be any 1-R-PCA. With cells grouping, A can be simulated
by a 1-R-PCA with neighborhood {−1,0,1}. From now on, N = {−1,0,1}.

The construction is first done at macroscopic level (macro-cells at A scale) to
show the reversible process. Then at the microscopic level (at U scale), the steps
of the process are detailed. Macro-cells as well as U -cells are products of different
layers. The states and the local function ΦU are defined in tables 1 and 3.

4.1 Macroscopic Level

Let Bx be the xth element of Q modulo |Q|. An A -configuration is encoded by
macro-cell as in Fig. 7 in 4 layers: an index to identify the cell in the loop, an entry of
the table of ΦA (with the same id), the A -state and a signal and mode (lower/upper
case) to know the current step of the simulation. The initial configuration presented
in Fig. 7 extends infinitely on each sides. The value is denoted by V x at the beginning
and W x after exchanging parts with neighbors (and ΦA (Wx) after updating).

index

table

value
signal

. . .

Bx−2

Bx−2

ΦA (Bx−2)

Vx−2

E

Bx−1

Bx−1

ΦA (Bx−1)

Vx−1

E

Bx

Bx

ΦA (Bx)

Vx

E

Bx+1

Bx+1

ΦA (Bx+1)

Vx+1

E

Bx+2

Bx+2

ΦA (Bx+2)

Vx+2

E

. . .

Fig. 7 Initial configuration encoding at A -cell level.

From PCA definition, all A -cells first exchange their −1 and 1 parts and the
signal changes from E on right to h on left to denote this (the rule in Fig. 8(a)). The
mode changes from uppercase to lowercase.

The inner loop of the simulation starts then. First the layers holding By and
ΦA (By) are shift to the left with the rules in Fig. 8(a). The mode is preserved.

Bx

Bx

ΦA (Bx)

Vx

E

−→

Bx

Bx

ΦA (Bx)

[Ψ] Wx

h

(a) exchanging sub-states

Bx

By

ΦA (By)

Wx

h

−→

Bx

By+1

ΦA (By+1)

ΦA (Wx)

a

Bx

By

ΦA (By)

Wx

H

−→

Bx

By+1

ΦA (By+1)

ΦA (Wx)

A

(b) shifting the table

[Ψ] means −1 and 1 parts exchanged with adjacent cells.

Fig. 8 Begining of cycle and table shifting at A -cell level.

If the mode is lowercase (signal a) then if Wx to By are equal, Wx is replaced
by ΦA (By) and the signals turn to uppercase (the rules in Fig. 9(a)). If the mode is
an uppercase signal (A) then it ensures that ΦA (By) to By are different (the rules

20 Contents

in Fig. 9(b)). Finally, Bx and By are check for equality to know whether the loop is
ended (the bottom rules in Figs. 9(a) and 9(b)).

Bx

By

ΦA (By)

Wx

a

x ̸= y
By ̸=Wx
−→

Bx

By

ΦA (By)

Wx

h

Bx

By

ΦA (By)

Wx

a

x ̸= y
By =Wx
−→

Bx

By

ΦA (By)

ΦA (By)

H

Bx

By

ΦA (By)

Wx

a

x = y
By =Wx
−→

Bx

By

ΦA (By)

ΦA (By)

E

(a) lowercase mode

Bx

By

ΦA (By)

Wx

A

x ̸= y
ΦA (By) ̸=Wx−→

Bx

By

ΦA (By)

Wx

H

Bx

By

ΦA (By)

Wx

A

x = y
ΦA (By) ̸=Wx−→

Bx

By

ΦA (By)

Wx

E

(b) uppercase mode

Fig. 9 Update inside the loop at A -cell level.

4.2 States, Layers and Configurations at Microscopic Level

The U -cells are organized in 10 layers as detailed in Tab. 1. Architecture layer (A)
holds delimiters for the A -cells ([and]) and for the −1, 0 and 1 parts ($). Layer I
holds an index to store where the reading of the table started. Layers B and F hold
one entry of the table By and its image ΦA (By). The value of the A -cell (Vx or
Wx) is stocked on layer V. Signals are found on layer S. Layers L1 to L4 work like
conveyor belts to transfer data. The values in layers A and I never change.

Table 1 The 10 layers and corresponding sub-states.

Layer Name States Use
−1 0 1

1 A _ [$] Architecture: limits of cells and parts
2 I 01 A -cell identification Bx
3 B 01 Table entry By
4 F 01 Image of the table entry By, ΦA (By)

5 V 01 Value of the A -cell (Vx or Wx)
6 S Σ Σ Σ Control signals as detailed in Tab. 2

7–10 L1–L4 01 01 Shift the table of Φ and exchange values (W−1
x & W 1

x)

Contents 21

Capital (B , ΦA (B), W) are used to address the macroscopic level (A -cells) and
small symbols (i , b , f , v) for microscopic level (U -cells). All A -cells are binary
encoded. For the exchange, the codes of −1 and 1 parts must have the same length
(0’s are added if necessary).

The signals are 23 symbols typed in this police as described in Tab. 2. Up-
percase and lowercase signals behave similarly except for the table testing. This
mode distinguishes between before and after the replacement. During the simula-
tion, signals are turned from uppercase to lowercase when parts are exchanged and
back to uppercase when the value is replaced by its image.

Table 2 Signals of U .

lowercase uppercase Use
a -h Loop which tests if Wx =By and Bx =By

A -H Loop which tests if Wx =ΦA (By) and Bx =By
k Write ΦA (By) over Wx

m , n M , N Shift of the table: By and ΦA (By)

S , T Exchange of Parts W−1
x and W 1

x

The encoding of A -cells is given in Fig. 10. It takes care of the particular posi-
tions of the −1 and 1 parts from the beginning. Since V−1

x is exchanged with V 1
x+1

(V 1
x with V−1

x−1), B1
x (B−1

x) should be above it. When Φ(Wx) replaces Wx, the −1
and 1 parts are directly on the corresponding sides.

Bx

Bx

ΦA (Bx)

Vx

E

⇐⇒

B−1
x B0

x B1
x I B−1

x B0
x B1

x

[$ $] A [$ $]
B−1

x B0
x B1

x B B−1
x B0

x B1
x

ΦA (Bx)
1 ΦA (Bx)

0 ΦA (Bx)
−1 F ΦA (Bx)

1 ΦA (Bx)
0 ΦA (Bx)

−1

V 1
x V 0

x V−1
x V V−1

x−1 V 0
x V 1

x+1

E S h

4 layers for displacements L1-L4 4 layers for displacements

⇐⇒

Bx

Bx

ΦA (Bx)

Wx

h

Fig. 10 Encoding of A -cell at coordinate x, before and after the exchange.

4.3 Microscopic Algorithm

It is defined by space-time diagrams driven by signals. Signals in the different A -
cells are always exactly synchronized. The duration is the same whether or not a
test succeed or fail. The end of loop case is shorter but the test is uniformly satisfied
(or not). All the rules for lowercase signals are indicated in Tab. 3; the rules for the
uppercase are similar. The algorithm starts with E signal arriving in the rightmost
U -cell of each A -cell.

22 Contents

First, the −1 and 1 parts of the A -cell are exchanged and the signal is switched
to h as depicted in Fig. 11. The initial value of the A -Cell is Vx. The bits of V−1

x
and V 1

x+1 are swapped on the layer L1 by signals S and T on they way from].
On crossing], the flows are transferred on L2 (to avoid superposition as explained
below). Signals S and T turn back at $ and on their way back, they retrieve the bits
from L2 and put them in their destination slot with another swap. Synchronization
is very important. Signals S and T finally get back together as h at] (switching the
mode) and go back to the left end of the A -cell. This is implemented with 11 rules
in Tab. 3.

[]

[]

$ $

$ $

[]

[]

$ $

$ $

[]

[]

$ $

$ $

E

T

T

S

S

h

E

T

T

S

S

h

E

T

T

S

S

h

E

T

T

S

S

h

data on their right places data on L1 data on L2

Fig. 11 Exchanging V−1
x and V 1

x+1 to realize the rule in Fig. 8(a).

Signal h crosses the A -cell and asserts that Bx = By (for reversibility). On ar-
riving at [, h splits into m and n . These signals manage the shift of the table by one
A -cell rightward using layers L1 to L4 as illustrated in Fig. 12. Signal m sets By−1
and ΦA (By−1) on movement by swapping then on layers L1 and L3. On passing],
bits go down a layer so as not to interfere with the moving ones of the next A -cell.
On its way back, n sets By−1 and ΦA (By−1) on their final places by swapping them
from layers L2 and L4. Signals m and n gather and form a which starts the test part
of the loop. This corresponds to the last 12 rules in Tab. 3.

The test part of the loop works as follows for the lowercase mode. Value Wx
and table entry By are in place, bit below bit, to be compared. Signal a crosses the
whole A -cell to compare them. If they differ, a marker b is put on the first different
bit, and a turns to b . On the way back, b marks d the last bit which differs and
collects the marker b back (first column in Fig. 13). If Wx and By are equal, the
signal reaches [as a , turns to k , writes ΦA (By) over Wx on the way back and
switch mode (second column in Fig. 13). This special behavior takes as much time
as the regular one, keeping the synchronization. Equality (with ΦA (By)) is tested
on the way back for reversibility: going backward in time, U must make the correct
change at the adequate time, so it needs this as well as inequality for the rest of the
iterations (last two columns in Fig. 13).

Contents 23

[]

[]

[]

[]

[]

[]

h

n

n

m

m

n

n

m

m

a

h

n

n

m

m

n

n

m

m

a

h

n

n

m

m

n

n

m

m

a

h

n

n

m

m

n

n

m

m

a

h

n

n

m

m

n

n

m

m

a

data on their right places data on L1 and L3 data on L2 and L4

Fig. 12 Shifting the table to realize the rule in Fig. 8(b).

[]

[]

m n

a

b

b

b

c

d

d

d

f

g

g

g

h

[]

[]

m n

a

k

E

G

G

H

[]

[]

M N

A

B

B

B

C

D

D

D

E

part where v0 = b0 where v0 ̸= b0 part where v0 = f 0

part where i0 = b0 where i0 ̸= b0

Fig. 13 Test for replacement and for the end of A -iteration (basic cases).

In uppercase mode, it is exactly the same except that the equality is tested be-
tween Wx and ΦA (By) instead of By, and By as a requirement. Since A is re-

24 Contents

versible, each value of ΦA (By) appears once and only once in the table. After being
copied, ΦA (By) is never met again.

To know that the table was completely scanned, signal must test whether Bx and
By are equal. On the second left to right crossing, signal d (or e) gets back the
previous marker (if any) and turn to g and marks g the first different bit between
Bx and By (last column in Fig. 13). If they differ, g comes back and gets the marker
(first two columns in Fig. 13). If there are equal, it turns (or remains) e and the
process is restarted. Uppercase signals behave identically.

4.4 Local Function of U

Most of the definition of ΦU is given in Tab. 3. The values of the layers that hold
0 and 1 are not indicated. These values are tested as requirement for rules and are
not modified otherwise noted in the last column. These modifications are either
swapping or writing on v0. In the latter case, the previous value is held somewhere
else as indicated by a condition. In uppercase mode, the differences are only for the
lines with an ‘∗’: the test made is v0 = f 0 instead of v0 = b0, and b0 (instead of f 0)
is copied over v0. Since the rules are one-to-one, ΦU can be completed bijectively.

All rules are combined with the following: for the last 4 layers L1 to L4, the −1
and 1 parts are swapped so that −1 (1) parts move at speed 1 to the right (left).
For all rules with [: layers L1 and L2 (L3 and L4) are swapped. This is technical for
the flows of the table shift not to collide in the middle in Fig. 12 where 2 flows are
traveling together.

The design BCA is reversible: the provided rules are one-to-one. If the simu-
lated BCA is not reversible, then the simulation just does not work because of the
backward tests and the duplicate values in images.

4.5 Simulation

For Def. 7, the packing function p is the grouping by macro-cell, s is the null shift;
the onto function α is one-to-one as described in Fig. 10.

Let a be the width of a A -cell and b the width of the exchanged parts (0≤2b≤a
and ⌈log |Q|⌉≤a≤2⌈log |Q|⌉+2). The inner loop needs 4(a−1) iterations for the
tests and 2a for the shift of the table. It is done for every A -state, i.e., |Q|
times. To make a A -iteration, values are exchanged between neighboring cells, this
needs 2b+1 iterations. All together, τ is a constant bounded by 12 |Q| log(|Q|)+
o(|Q| log(|Q|)).

The number of states of U is 213.243, a little above 113.106.
The construction can be extended to greater dimension. The table and test are

done in one direction and sub-states exchanged on every directions must be added.

Contents 25

Table 3 Table of ΦU .
Value Image

Structure Signals Condition Signals Modification

* [a
v 0 = b0 a

v 0 ̸= b0 b b

* ‘ ’,$ a
v 0 = b0 a

v 0 ̸= b0 b b

*] a
v 0 = b0 k v 0← f 0

v 0 ̸= b0 d d
‘ ’,$ b b
‘ ’,$ b b

*] b
v 0 = b0 b

v 0 ̸= b0 c d

* ‘ ’,$ b
v 0 = b0 b

v 0 ̸= b0 c d

∗ ‘ ’,$ b b v 0 ̸= b0 d d

* [b b v 0 ̸= b0 i0 = b0 e

i0 ̸= b0 g g

∗ ‘ ’,$ b c v 0 ̸= b0 d

* [b c v 0 ̸= b0 i0 = b0 d

i0 ̸= b0 g f
‘ ’,$ c c

∗ ‘ ’,$ d v 0 = b0 d

* [d v 0 = b0 i0 = b0 d

i0 ̸= b0 g f

* ‘ ’,$ d v 0 = b0 i0 = b0 d

i0 ̸= b0 g f

* ‘ ’,$ d d v 0 ̸= b0 i0 = b0 e

i0 ̸= b0 g g

*] d d v 0 ̸= b0 i0 = b0 S T

i0 ̸= b0 h

* ‘ ’,$ e v 0 = b0 i0 = b0 e

i0 ̸= b0 g g

*] E v 0 = b0 i0 = b0 S T

i0 ̸= b0 H
‘ ’,$ f f

∗ ‘ ’,$ f d v 0 ̸= b0 g

∗] f d v 0 ̸= b0 g

∗ ‘ ’,$ g v 0 = b0 g

∗] g v 0 = b0 g
[, ‘ ’,$ g g
‘ ’,$ g g

‘ ’,$ g g i0 ̸= b0 h

[g g i0 ̸= b0 m n

‘ ’,$ h i0 = b0 h

[h i0 = b0 m n

] S S swap(v 0, l11)
‘ ’ S S swap(v 0, l11)
$ S S swap(v 0, l11)
$ S S swap(v 0, l12)

‘ ’ S S swap(v 0, l12)
] S S swap(v 0, l12)

[, ‘ ’ T T swap(v 0, l−1
1)

$ T T swap(v 0, l−1
1)

$ T T swap(v 0, l−1
2)

[, ‘ ’ T T swap(v 0, l−1
2)

] S T h

∗ ‘ ’,$ k v 0 = b0 k v 0← f 0

∗ [k v 0 = b0 E v 0← f 0

], ‘ ’ m m swap(b0, l11), swap(f 0, l13)
‘ ’,$ m m swap(b0, l11), swap(f 0, l13)
‘ ’,$ n m m n swap(b0, l11), swap(f 0, l13)

[m m
‘ ’,$] m m

[n n
‘ ’,$ n n

] n n

] n n swap(b0, l−1
2), swap(f 0, l−1

4)
‘ ’,$ n n swap(b0, l−1

2), swap(f 0, l−1
4)

[n n swap(b0, l−1
2), swap(f 0, l−1

4)
[m n a

26 Contents

5 Space-time Simulation of Irreversible CA by Reversible Ones

5.1 Space-time Approach

A space-time diagram A is embedded into another space-time diagram B when it is
possible to “reconstruct” A from B and the way that A is embedded into B.

The recovering of an embedded A -configuration is done in the following way.
A B-configuration is constructed by taking each cell at a given iteration. This B-
configuration is decoded to get an iterated configuration for A . More precisely, it is
defined as follows:

Definition 21 A space-time diagram A = (A ,a) is space-time embedded into an-
other space-time diagram B = (B,b) when there exist two functions χ : L×N→N
and ζ : CB → CA such that:

- ∀(x, t) ∈ L×N, let ct be the configuration of B such that ct
x = Bx,χ(x,t) and

- ∀t ∈ N, G t
A (a) = ζ (ct).

To recover an iterated image of a, the function χ indicates which iteration is to be
considered for each cell and ζ decodes the assembled configuration. The generation
of ct and then G t

A (a) is illustrated in Fig. 14.

A = (A ,a)

a

G t
A (a)

t = 0
t = 1
t = 2
t = 3

...

η

ζ

B = (B,η(a))

t = 0
t = 1
t = 2
t = 3

...

η(b)

ct

1

1

2

2

3

3

4

4

5

5

6

6

χ

Fig. 14 Space-time diagram A is embedded into B.

The functions χ and ζ could be complex and provide all the computation. To
avoid this, in the following definition, they are independent from the initial config-
uration, thus unable to do much of the A computation.

Definition 22 A CA B space-time simulates a CA A when there exists a function
η : CA →CB such that any space-time diagram (A ,a) is embedded into the space-
time diagram (B,η(a)) and all embeddings use the same functions χ and ζ .

This section provides a construction to prove the following lemma:

Lemma 23 Any d-CA with neighborhood {−1,0,1}d can be space-time simulated
by a d-R-PCA.

Contents 27

The proof is only detailed in dimension 1. The generalization to greater dimen-
sions is sketched at the end of this section.

5.2 Macro Dynamics

Let A =(QA ,{−1,0,1}, f) be any 1-CA. The 1-R-PCA B = (QB,{−1,0,1},Φ)
which space-time simulates A is progressively constructed. Let a be any configu-
ration in CA and A the associated space-time diagram. The space-time diagram B is
generated in order to embed A as follows.

A signal moves forth and back and updates the cells on a finite part of the config-
uration called the updating zone. Outside of this zone, the B-cell are at A -iteration
0. Inside, A -iteration number increases as B-cell are closer to the center of the
zone. As B-iterations go, the updating zone is enlarged on both sides (space) and
in iteration numbers (time) so that each cell will eventually enter the zone and reach
any iteration.

The simulated diagram A is generated according to diagonal lines, one after the
other. The updating lines of A are depicted in Fig. 15 where the numbers, the arrows
and the geometrical symbols on the last column correspond respectively to the order
in which updates are made, to their directions and to the identifications of the A -
iterations (as on B in Fig. 16).

Z

N

1 23 45 67 89

●

▲

■

★

The symbol in the last column identifies the A -iteration.
It corresponds to the embedding in Fig. 16.

Fig. 15 Order of generation inside the simulated diagram A.

The state of a cell x at iteration t in the embedded diagram A is denoted by
x\t (x\t = G t

A (a)x) and the information needed to compute x\t is denoted by [x\t]
([x\t] = (x−1\t−1, x\t−1, x+1\t−1)). Each time a cell is updated, a [x\t] is generated to keep
the data needed for undoing the update. The generated data cannot be disposed off
because GA is not necessarily one-to-one and the previous configuration might be
uncomputable from the actual one. These needed but cumbersome data are evacu-
ated by being sent away outside of the updating zone.

When a signal goes from the left to the right for the nth time on the updating
zone, as in Fig. 16, its dynamics work as follows:

28 Contents

Starting from the far left of the updating zone, the first cell encountered by the
signal holds [x\1]. The signal sets this data moving to the left to save it and evacuate it
while generating x\1. The next cell holds [x+1\2] which is also set on movement to the
right while x+1\2 is generated. This goes on until the signal reaches the middle of the
updating zone (vertical line), then no more updating is done until the signal reaches
the right end. On its way back, the signal updates the other half of the updating zone.

The signal makes n updates one way and n updates on its way back. Then it
makes n+1 and n+1 updates, then n+2 and so on. The cells corresponding to the
iteration 1 (2, 3 and 4 respectively) in A are generated on a parabola indicated by
● (▲, ■, ★ respectively) on the simulating diagram B in Fig. 16. This corresponds
to the layer-construction of A depicted in Fig. 15. Figure 16 depicts the evacuation
of the [x\t] away from the updating zone for the first 100 iterations. Evacuated data
never interact.

●

●

●
▲

●
▲

●
▲

■

●
▲

■

●
▲

■
★

●
▲

■
★

●
▲

■
★

●
▲

■
★

●
▲

■
★

●
▲

■
★

Fig. 16 Scheme of the evacuation of data ([x\t]) on the simulating diagram.

Contents 29

5.3 Micro Dynamics

Cells are organized in 3 layers: the upper layer holds the state of the simulated cell,
the middle one holds the signal that drives the dynamics and the lower one acts like
a conveyor belt to evacuate the [x\t].

The first 26 iterations are depicted in Fig. 17. In the upper layer, the cells alter-
natively hold 3 times the same state (x\t) or the states of the cell and its 2 closest
neighbors at the same iteration (x−1\t−1, x\t−1, x+1\t−1), otherwise some mix over 2 or
3 iterations. A cell can only be updated when it has the information [x\t]. By induc-
tion from the dynamics in Fig. 17, the possibility to update a cell only depends on
the parity of the sum of simulating and simulated iteration numbers.

The signal that rules the dynamics is called the suit signal. Depending on its
position, it takes the values ♣, ♠, ♥ and ♦ in B. The suit signal only moves forth
and back in the updating zone and thus appears as a zigzag in Figs. 16 and 17. It is
delayed by one on the left side to keep it synchronized with the presence of [x\t].

The updating zone is delimited by a pair of ❙ and its middle is indicated by a ⋆.
The ❙ progressively move away from each other while the ⋆ oscillates in the middle.
Starting on the left ❙, the suit signal is ♥. While passing, it makes the updates of the
simulated cells until it reaches ⋆. Afterwards it is ♠ and just moves to the other ❙.

Each time a simulated update is done, 3 values, x−1\t−1, x\t−1 and x+1\t−1, are “used
up” and become useless. They are gathered in [x\t] and moved to the lower layer to
be evacuated. Three copies of the new state x\t are made. They will be used for the
next update of the simulated cell and of its 2 neighbors.

The endless movement of the suit signal and updates (at correct parities) are
deduced by induction. Since the interaction is only local and has radius 1, global
properties are not otherwise modified. All the necessary steps for the induction can
be found on the two and a half loops of the suit signal in Fig. 17.

5.4 State Function

The R-BCA B has 100 |QA |3 (|QA |3 +1)2 states detailed in Tab. 4.

Table 4 States of B.
1 0 -1

QA QA QA

♣ ♠ ♥ ♦ _ ✚ ❙ ⋆ _ ♣ ♠ ♥ ♦ _
Q3

A ∪{_} _ Q3
A ∪{_}

Cells are depicted as 3×3 arrays as in the first line in Fig. 17. The upper layer
encodes a configuration of A . The middle layer holds the suit signal. The lower
layer is used to store the data away from the updating zone.

30 Contents

0\0 0\0 1\0 0\0 1\0 2\0

[4\2]

1\0 2\0 3\0 3\1 3\1 4\2

[5\3]

4\1 4\2 5\2 5\3 5\3 5\3 5\2 6\2 6\1
F

6\2 7\1 7\1

«
7\0 8\0 9\0 8\0 9\0 10\0 9\0 10\0 11\0 10\0 11\0 11\0

0\0 0\0 0\0

[3\1]

1\0 1\0 1\0 2\0 2\0 3\1

[4\2]

3\0 3\1 4\1 4\2 4\2 5\3

[5\3]

5\2 5\3 5\2 5\3 6\2 6\2

F «
6\1 7\1 7\0 7\1 8\0 8\0 9\0 9\0 9\0 10\0 10\0 10\0 11\0 11\0 11\0

0\0 0\0 1\0 0\0 1\0 2\0

[3\1]

1\0 2\0 3\0 3\1 3\1 4\2

[4\2]

4\1 4\2 5\2 5\3 5\3 5\3
©

[5\3]

5\2 6\2 6\1 6\2 7\1 7\1 7\0 8\0 9\0 8\0 9\0 10\0 9\0 10\0 11\0 10\0 11\0 11\0

0\0 0\0 0\0 1\0 1\0 1\0 2\0 2\0 3\1

[3\1]

3\0 3\1 4\1 4\2 4\2 4\2

ª
[4\2]

5\2 5\2 5\2
F

6\2 6\2 6\2 6\1 7\1 7\0 7\1 8\0 8\0 9\0 9\0 9\0 10\0 10\0 10\0 11\0 11\0 11\0

0\0 0\0 1\0 0\0 1\0 2\0 1\0 2\0 3\0 3\1 3\1 3\1

ª
[3\1]

4\1 4\1 5\2 5\1 5\2 6\2
F

5\2 6\2 6\1 6\2 7\1 7\1 7\0 8\0 9\0 8\0 9\0 10\0 9\0 10\0 11\0 10\0 11\0 11\0

[6\2]
0\0 0\0 0\0 1\0 1\0 1\0 2\0 2\0 2\0

ª
3\0 3\0 4\1 4\0 4\1 5\1 5\2 5\2 5\2

F
6\2 6\2 6\2 6\1 7\1 7\0 7\1 8\0 8\0 9\0 9\0 9\0 10\0 10\0 10\0

[6\2]

11\0 11\0 11\0

0\0 0\0 1\0 0\0 1\0 2\0 1\0 2\0 3\0 2\0 3\0 4\0
¨

4\1 4\1 5\2 5\1 5\2 6\2
F

5\2 6\2 6\1 6\2 7\1 7\1 7\0 8\0 9\0 8\0 9\0 10\0

[6\2]

9\0 10\0 11\0 10\0 11\0 11\0

[7\1]
0\0 0\0 0\0 1\0 1\0 1\0 2\0 2\0 2\0 3\0 3\0 4\1 4\0 4\1 5\1

«
5\2 5\2 5\2

F
6\2 6\2 6\2 6\1 7\1 7\0 7\1 8\0 8\0

[6\2]

9\0 9\0 9\0 10\0 10\0 10\0

[7\1]

11\0 11\0 11\0

0\0 0\0 1\0 0\0 1\0 2\0 1\0 2\0 3\0 2\0 3\0 4\0 4\1 4\1 5\2 5\1 5\2 6\2

« F
5\2 6\2 6\1 6\2 7\1 7\1

[6\2]

7\0 8\0 9\0 8\0 9\0 10\0

[7\1]

9\0 10\0 11\0 10\0 11\0 11\0

0\0 0\0 0\0 1\0 1\0 1\0 2\0 2\0 2\0 3\0 3\0 4\1 4\0 4\1 5\1 5\2 5\2 5\2 6\2 6\2 6\2
©

[6\2]

6\1 7\1 7\0 7\1 8\0 8\0

[7\1]

9\0 9\0 9\0 10\0 10\0 10\0 11\0 11\0 11\0

0\0 0\0 1\0

[5\2]

0\0 1\0 2\0 1\0 2\0 3\0 2\0 3\0 4\0 4\1 4\1 5\2 5\1 5\2 5\1 5\2 6\1 6\1
F

7\1 7\1 7\1

ª
[7\1]

7\0 8\0 9\0 8\0 9\0 10\0 9\0 10\0 11\0 10\0 11\0 11\0

0\0 0\0 0\0 1\0 1\0 1\0

[5\2]

2\0 2\0 2\0 3\0 3\0 4\1 4\0 4\1 5\1 5\2 5\2 5\2 5\1 6\1 6\0
F

6\1 7\0 7\0 8\0 8\0 8\0

ª
9\0 9\0 9\0 10\0 10\0 10\0 11\0 11\0 11\0

0\0 0\0 1\0

[4\1]

0\0 1\0 2\0 1\0 2\0 3\0

[5\2]

2\0 3\0 4\0 4\1 4\1 5\2 5\1 5\2 5\1 5\2 6\1 6\1
F

6\0 7\0 8\0 7\0 8\0 9\0 8\0 9\0 10\0 9\0 10\0 11\0 10\0 11\0 11\0

0\0 0\0 0\0 1\0 1\0 1\0

[4\1]

2\0 2\0 2\0 3\0 3\0 4\1

[5\2]

4\0 4\1 5\1 5\2 5\2 5\2 5\1 6\1 6\0
F

6\1 7\0 7\0
¨

8\0 8\0 8\0 9\0 9\0 9\0 10\0 10\0 10\0 11\0 11\0 11\0

0\0 0\0 1\0 0\0 1\0 2\0 1\0 2\0 3\0

[4\1]

2\0 3\0 4\0 4\1 4\1 5\2

[5\2]

5\1 5\2 5\1 5\2 6\1 6\1

F «
6\0 7\0 8\0 7\0 8\0 9\0 8\0 9\0 10\0 9\0 10\0 11\0 10\0 11\0 11\0

0\0 0\0 0\0 1\0 1\0 1\0 2\0 2\0 2\0 3\0 3\0 4\1

[4\1]

4\0 4\1 5\1 5\2 5\2 5\2
©

[5\2]

5\1 6\1 6\0 6\1 7\0 7\0 8\0 8\0 8\0 9\0 9\0 9\0 10\0 10\0 10\0 11\0 11\0 11\0

[6\1]
0\0 0\0 1\0 0\0 1\0 2\0 1\0 2\0 3\0 2\0 3\0 4\0 4\1 4\1 4\1

ª
[4\1]

5\1 5\1 5\1
F

6\1 6\1 6\1 6\0 7\0 8\0 7\0 8\0 9\0 8\0 9\0 10\0 9\0 10\0 11\0

[6\1]

10\0 11\0 11\0

0\0 0\0 0\0 1\0 1\0 1\0 2\0 2\0 2\0 3\0 3\0 3\0

ª
4\0 4\0 5\1 5\0 5\1 6\1

F
5\1 6\1 6\0 6\1 7\0 7\0 8\0 8\0 8\0 9\0 9\0 9\0

[6\1]

10\0 10\0 10\0 11\0 11\0 11\0

0\0 0\0 1\0 0\0 1\0 2\0 1\0 2\0 3\0 2\0 3\0 4\0 3\0 4\0 5\0
¨

5\1 5\1 5\1
F

6\1 6\1 6\1 6\0 7\0 8\0 7\0 8\0 9\0

[6\1]

8\0 9\0 10\0 9\0 10\0 11\0 10\0 11\0 11\0

0\0 0\0 0\0

[5\1]

1\0 1\0 1\0 2\0 2\0 2\0 3\0 3\0 3\0 4\0 4\0 5\1 5\0 5\1 6\1

« F
5\1 6\1 6\0 6\1 7\0 7\0

[6\1]

8\0 8\0 8\0 9\0 9\0 9\0 10\0 10\0 10\0 11\0 11\0 11\0

0\0 0\0 1\0 0\0 1\0 2\0

[5\1]

1\0 2\0 3\0 2\0 3\0 4\0 3\0 4\0 5\0 5\1 5\1 5\1 6\1 6\1 6\1
©

[6\1]

6\0 7\0 8\0 7\0 8\0 9\0 8\0 9\0 10\0 9\0 10\0 11\0 10\0 11\0 11\0

0\0 0\0 0\0 1\0 1\0 1\0 2\0 2\0 2\0

[5\1]

3\0 3\0 3\0 4\0 4\0 5\1 5\0 5\1 5\0 5\1 6\0 6\0
F

7\0 7\0 7\0

ª
8\0 8\0 8\0 9\0 9\0 9\0 10\0 10\0 10\0 11\0 11\0 11\0

0\0 0\0 1\0 0\0 1\0 2\0 1\0 2\0 3\0 2\0 3\0 4\0

[5\1]

3\0 4\0 5\0 5\1 5\1 5\1 5\0 6\0 7\0
F

6\0 7\0 8\0 7\0 8\0 9\0 8\0 9\0 10\0 9\0 10\0 11\0 10\0 11\0 11\0

0\0 0\0 0\0 1\0 1\0 1\0 2\0 2\0 2\0 3\0 3\0 3\0 4\0 4\0 5\1

[5\1]

5\0 5\1 5\0 5\1 6\0 6\0
F ¨

7\0 7\0 7\0 8\0 8\0 8\0 9\0 9\0 9\0 10\0 10\0 10\0 11\0 11\0 11\0

0\0 0\0 1\0 0\0 1\0 2\0 1\0 2\0 3\0 2\0 3\0 4\0 3\0 4\0 5\0 5\1 5\1 5\1
©

[5\1]

5\0 6\0 7\0 6\0 7\0 8\0 7\0 8\0 9\0 8\0 9\0 10\0 9\0 10\0 11\0 10\0 11\0 11\0

0\0 0\0 0\0 1\0 1\0 1\0 2\0 2\0 2\0 3\0 3\0 3\0 4\0 4\0 4\0

ª
5\0 5\0 5\0

F
6\0 6\0 6\0 7\0 7\0 7\0 8\0 8\0 8\0 9\0 9\0 9\0 10\0 10\0 10\0 11\0 11\0 11\0

Fig. 17 The first 26 iterations of the space-time simulation.

The suit signal is alternatively equal to ♥ and ♠. When shifting, ♥ updates cells
while ♠ does nothing. The signal becomes ♣ and ♦ to move respectively ❙ and ⋆.

The transition rules are given in Fig. 18. The first rule corresponds to the lack of
any signal. On the lower layer, the 2 values on the side are swapped, this acts like
a conveyor belt. As soon as something is put on the lower layer, it is shifted by one
cell at each iteration. This is used to evacuate data. The updating rules are on the
lines 2 and 5.

The second and third lines in Fig. 18 depicted how ♥ moves to the right and
updates cells. When it reaches the middle frontier ⋆, it moves it one step to the
right as ♦ and then turns to ♠.

Contents 31

a

α

b
γ

c

β

→
a b c

γ

β α

a, b, c and d belong to QA ,
γ equals ‘_’, ‘⋆’ or ❙,
α and β belong to Q3

A ∪{_}.

a
♥

b c
♥ →

d d d
♥

δ

a
♥

b
⋆

c
→

d d d
♦

δ

with d = f (a,b,c)
and δ = (a,b,c).

a
♦

b c
→

a b c
⋆ ♠

a
♠

b c
→

a b c
♠

a
♦

b
❙

c
→

a b c
⋆ ♣

a
♠

b
❙

c
→

a b c
♣

a
♣

b c
→

a b c
✚

a b
✚

c
→

a b c
♥ ❙ (1 delay)

a b c
♥ →

d d d
♥

δ

a b
⋆

c
♥ →

d d d
♦

δ

with d = f (a,b,c)
and δ = (a,b,c).

a b c
♦ →

a b c
♠ ⋆

a b c
♠ →

a b c
♠

a b
❙

c
♠ →

a b c
♣

a b c
♣ →

a b c
❙ ♥

Fig. 18 Definition of ΦB .

The signal ♠ turns on the right side, as depicted on the fourth line in Fig. 18. On
arriving on ❙ from the left, ♠ grabs it and turns to ♣. On the next iteration, ♣ turns
to ✚ and does nothing else. This is the delay of one iteration needed to keep up with
parity. Next iteration, ✚ regenerates the ❙ and the signal ♥ which goes back to the
left.

The signal turns back one iteration faster on the left side as depicted on the last
line in Fig. 18: the state ✚ does not appear.

The rules defined are one-to-one, thus they can be completed so that Φ is a per-
mutation; A is then reversible (Lem. 5).

The initial configuration is depicted on the first line in Fig. 17. The state of each
cell is copied 3 times in the upper layer. Markers ❙, ⋆ and ❙ are laid in the center of
3 adjacent cells and the ♥ is together with the left ❙.

With this construction, the embedded space-time diagram is bent in a parabola
shape. This makes it meaningless to access geometrical properties like, e.g., Fisher
constructibility or Firing Squad Synchronization.

5.5 Generalization Sketch

This construction can be generalized to any dimension greater than 1. The simulated
configurations are still “bent” according to the first direction in the simulating di-
agram. Along the first direction, the dynamics are exactly as explained above. The
signals are duplicated along the other directions. The updatings are still conditioned

32 Contents

by parities. There are an infinity of ❙, ⋆ and suit signals. They are arranged on
hyperplanes orthogonal to the first direction and are exactly synchronized.

Any d-CA can be simulated by a d-CA whose neighborhood is {−1,0,1}d (and
this simulation is transitively compatible). From Lemma 23 and the fact that d-R-
PCA are d-R-CA comes:

Theorem 24 Any d-CA can be space-time simulated by a d-R-CA.

Since there are d-R-CA able to simulate all d-R-CA over any configuration and
the simulations are compatible enough:

Theorem 25 There are d-R-CA able to space-time simulate any d-CA.

6 Conclusion

Conjectures 1 and 2 are true even if states in Q2 are used in intermediate configura-
tions during the simulation, the input and output are restricted to Q.

For any d, d-CA, d-BCA and d-PCA have the same power over infinite config-
urations. The same holds for d-R-CA, d-R-BCA and d-R-PCA classes. This is an
important result since reversibility is decidable for BCA and PCA while it is not for
CA. This is not a contradiction since the inverse CA is needed for the construction.

The proof of Th. 12 is more involved than the one in Durand-Lose [1995]. Nev-
ertheless, the number of block transitions needed is lowered from 2d+1−1 to d+1.
Generating and erasing are done concurrently, not one after the other. We conjecture
that it is impossible to make a representation with less that d+1 block transitions.

The expression with block transitions allows one to use reversible circuitry in
order to build R-CA. This was done in Durand-Lose [1995] to prove that, for 2≤d,
there exists d-dimensional R-CA (based on the the Billiard ball model) able to simu-
late any d-dimensional R-CA on infinite configurations. Kari [1999] provides more
information on the relation between R-CA and BCA and the inner structure of R-CA
in dimensions 1 and 2.

The U is programmed: loops, tests and conditional executions. Basic program-
ming schemes can be embedded in R-PCA when conceived reversible: a global
dynamic of move, test and replace which needs backward tests.

There exist simulations of any Turing machines with R-CA Morita [1992b] so
that all partial recursive functions can be computed by R-PCA, so that U is com-
putationally universal. The existence of an intrinsically universal R-PCA is proven
here with the use of the source code of the R-PCA. So there should be some S-m-n
theorem for R-PCA to prove that they form an acceptable programming system as
proved for CA by Martin [1994].

It is unknown whether the class of d-CA is strictly more powerful than the class
of d-R-CA on infinite configurations. Nevertheless, if a 1-R-CA can simulate a non
reversible CA, then by transitivity, U is also able to do it, so that if U cannot, none
can.

Contents 33

With space-time simulation, reversible can simulate irreversible, but this simula-
tion is not homogeneous; it is not shift invariant nor time invariant. An infinite time
is required to fully generate the configuration after one iteration. Moreover, it is not
possible to go backward before the first configuration if no such configuration were
encoded in the initial configuration —anyway, there is no guarantee that any previ-
ous configuration does exist. When the significant part of a configuration represents
only a finite part of the space, the result of the computation is given in finite time
like in Morita [1992b, 1995]. In Toffoli [1977], an extra dimension is used to store
information for reversibility, here configurations are bent to provide the room.

References

Jürgen Albert and Karel Čulik II. A simple universal cellular automaton and its one-way and
totalistic version. Complex Systems, 1:1–16, 1987.

Serafino Amoroso and Yale N. Patt. Decision procedure for surjectivity and injectivity of parallel
maps for tessellation structure. J Comput System Sci, 6:448–464, 1972.

Charles H. Bennett. Logical reversibility of computation. IBM J Res Dev, 6:525–532, 1973.
Charles H. Bennett. Notes on the history of reversible computation. IBM J Res Dev, 32(1):16–23,

1988.
Arthur W. Burks. Essays on Cellular Automata. Univ. of Illinois Press, 1970.
Jérôme Durand-Lose. Reversible cellular automaton able to simulate any other reversible one using

partitioning automata. In LATIN 1995, number 911 in LNCS, pages 230–244. Springer, 1995.
doi: 10.1007/3-540-59175-3_92.

Jérôme Durand-Lose. Automates Cellulaires, Automates à Partitions et Tas de Sable. Thèse
de doctorat, LaBRI, 1996. URL http://www.univ-orleans.fr/lifo/Members/
Jerome.Durand-Lose/Recherche/These/index.html. In French.

Jérôme Durand-Lose. Intrinsic universality of a 1-dimensional reversible cellular automaton.
In STACS 1997, number 1200 in LNCS, pages 439–450. Springer, 1997. doi: 10.1007/
BFb0023479.

Jérôme Durand-Lose. About the universality of the billiard ball model. In M. Margenstern, editor,
Universal Machines and Computations (UMC 1998), volume 2, pages 118–133. Université de
Metz, 1998.

Jérôme Durand-Lose. Reversible space-time simulation of cellular automata. Theoret Comp Sci,
246(1–2):117–129, 2000. doi: 10.1016/S0304-3975(99)00075-4.

Jérôme Durand-Lose. Representing reversible cellular automata with reversible block cellular au-
tomata. In Robert Cori, Jacques Mazoyer, Michel Morvan, and Rémy Mosseri, editors, Discrete
Models: Combinatorics, Computation, and Geometry, DM-CCG 2001, volume AA of Discrete
Mathematics and Theoretical Computer Science Proceedings, pages 145–154, 2001a. URL
http://dmtcs.loria.fr/volumes/abstracts/dmAA0110.abs.html.

Jérôme Durand-Lose. Back to the universality of the Billiard ball model. Multiple Valued Logic, 6
(5–6):423–437, 2001b. doi: None,juillet2021.

Gustav A. Hedlund. Endomorphism and automorphism of the shift dynamical system. Math
System Theory, 3:320–375, 1969.

Jarkko Kari. Reversibility of 2D cellular automata is undecidable. Phys D, 45:379–385, 1990.
Jarkko Kari. Reversibility and surjectivity problems of cellular automata. J Comput System Sci,

48(1):149–182, 1994.
Jarkko Kari. Representation of reversible cellular automata with block permutations. Math System

Theory, 29:47–61, 1996.

http://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose/Recherche/These/index.html
http://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose/Recherche/These/index.html
http://dmtcs.loria.fr/volumes/abstracts/dmAA0110.abs.html

34 Contents

Jarkko Kari. On the circuit depth of structurally reversible cellular automata. Fundamenta Infor-
maticae, 38(1–2):93–107, 1999.

Jarkko Kari. Theory of cellular automata: a survey. Theoret Comp Sci, 334:3–33, 2005.
Yves Lecerf. Machines de Turing réversibles. Récursive insolubilité en n ∈ N de l’équation u =

θ nu, où θ est un isomorphisme de codes. Comptes rendus des séances de l’académie des
sciences, 257:2597–2600, 1963.

Norman Margolus. Physics-like models of computation. Phys D, 10(1–2):81–95, 1984.
Norman Margolus. Physics and Computation. PhD thesis, MIT, 1988.
Bruno Martin. A universal cellular automaton in quasi-linear time and its S-n-m form. Theoret

Comp Sci, 123:199–237, 1994.
Edward F. Moore. Machine models of self-reproduction. In Proceeding of Symposium on Applied

Mathematics, volume 14, pages 17–33, 1962.
Kenichi Morita. Any irreversible cellular automaton can be simulated by a reversible one having

the same dimension. Technical Report of the IEICE, Comp., 92-45 (1992-10):55–64, 1992a.
Kenichi Morita. Computation-universality of one-dimensional one-way reversible cellular au-

tomata. Inform Process Lett, 42:325–329, 1992b.
Kenichi Morita. Reversible simulation of one-dimensional irreversible cellular automata. Theoret

Comp Sci, 148:157–163, 1995.
Kenichi Morita. Reversible computing and cellular automata - A survey. Theoret Comp Sci, 395

(1):101–131, 2008. doi: 10.1016/j.tcs.2008.01.041.
Kenichi Morita and Masateru Harao. Computation universality of one-dimensional reversible (in-

jective) cellular automata. Transactions of the IEICE, E 72(6):758–762, 1989.
John R. Myhill. The converse of Moore’s garden-of-eden theorem. In Proceeding of the American

Mathematical Society, volume 14, pages 685–686, 1963.
Nicolas Ollinger. Two-states bilinear intrinsically universal cellular automata. In Fundamentals of

Computation Theory, 13th International Symposium (FCT 2001), number 2138 in LNCS, pages
369–399. Springer, 2001.

Nicolas Ollinger. Universalities in cellular automata*. In Grzegorz Rozenberg, Thomas Bäck, and
Joost N. Kok, editors, Handbook of Natural Computing, pages 189–229. Springer, 2012. doi:
10.1007/978-3-540-92910-9_6.

Daniel Richardson. Tessellations with local transformations. J Comput System Sci, 6(5):373–388,
1972.

Palash Sarkar. A brief history of cellular automata. ACM Computing Surveys, 32(1):80–107, 2000.
Tommaso Toffoli. Computation and construction universality of reversible cellular automata.

J Comput System Sci, 15:213–231, 1977.
Tommaso Toffoli and Norman Margolus. Cellular Automata Machine — A New Environment for

Modeling. MIT press, Cambridge, MA, 1987.
Tommaso Toffoli and Norman Margolus. Invertible cellular automata: a review. Phys D, 45:

229–253, 1990.
Stephen Wolfram. Theory and Applications of Cellular Automata. World Scientific, 1986.

Contents 35

Table of symbols
Symbol Definition Page

CA Cellular Automaton/a 1
PCA Partitioned Cellular Automaton/a 1
BCA Block Cellular Automaton/a 1

d Dimension of a Cellular Automaton 1
R-CA Reversible Cellular Automaton/a 1

Z Set of all integers 4
Q Set of states of a Cellular Automaton 4
N Neighborhood of a Cellular Automaton 4
G Global function of a Cellular Automaton 4

R-PCA Reversible Partitioned Cellular Automaton/a 5
R-BCA Reversible Block Cellular Automata 5

t Local function of a Block Cellular Automaton (function
over blocks)

5

r Radius of a Cellular Automaton 6
L CA lattice for the Cellular Automata of a given dimension 7
c Configuration of a Cellular Automaton 7
C Set of all configurations of a Cellular Automaton 7
E Some subset of L 7
x Some vector in L 7
σ Shift over L 7
i Some vector in L 7
f Local function of a Cellular Automaton 8
µ Coordinates in the neighborhood of a CA 8
Φ Local function of a partitioned Cellular Automaton (func-

tion over states expressed as a product)
8

v Size of the block of a BCA (vector) 8
n Number of partitions of a BCA 8
o Origin of a partition of a BCA 8
V Block of a BCA (hyper-cube) 8
T Block transition 8
a Some vector in L 8
b Some vector in L 8
ρ Block in a partition 9
q State of a Cellular Automaton 9
A One space-time diagram 10

L×N Space-time lattice 10
N Set of all natural integers 10
A A Cellular Automaton 10
B Another Cellular Automaton 11
α Partial function on states for direct simulation 11
≼ Directly simulate 11
m Simulate packing vector 11
p Simulation packing function 11
τ Simulation time delay 11
s Simulation shift 11

Î Simulate 11
ν Another coordinates in the neighborhood of a CA 13

36 Contents

r Vector (r,r, · · ·,r) of Zd for a CA 14
θ Index of partition in the simulation of R-CA by R-PCA 14
κ Sub-index of partition in the simulation of R-CA by R-PCA 14
F Set bases to identify the partition in the simulation of R-CA

by R-BCA
14

E Sets to identify the partition in the simulation of R-CA by
R-BCA

14

1 Product if both defined, otherwise the defined one 15
E Set of configurations in the simulation of R-CA by R-BCA 15
B Block transition in the simulation of R-CA by R-BCA 15
y Some other vector in L 16
λ Onother sub-index of partition in the simulation of R-CA

by R-PCA
16

ε Witness vector for the simulation of R-CA by R-BCA 17
U Intrinsic universal R-CA 18

ΦU Local rule of U 18
B (for U) binary encoding of A states 19
V (for U) encoding of A -cell before exchanging 19
W (for U) encoding of A -cell after exchanging with neigh-

bors
19

E Meta-signal E 19
h Meta-signal h 19
a Meta-signal a 19
H Meta-signal H 19
A Meta-signal A 19
A Layer of U -states 20
[Left A -cell for simulation with U 20
] Right A -cell for simulation with U 20
$ Sub-state separation in A -cell for simulation with U 20
I Layer of U -states 20
B Layer of U -states 20
F Layer of U -states 20
V Layer of U -states 20
S Layer of U -states 20
L 4 layers of U -states 20
i (for U) encoding of A -cell at U -level 21
b (for U) encoding of A -cell at U -level 21
f (for U) encoding of A -cell at U -level 21
v (for U) encoding of A -cell at U -level 21
k Meta-signal k 21
m Meta-signal m 21
n Meta-signal n 21
M Meta-signal M 21
N Meta-signal N 21
S Meta-signal S 21
T Meta-signal T 21
b Meta-signal b 22
d Meta-signal d 22
c Meta-signal c 23
f Meta-signal f 23

Contents 37

g Meta-signal g 23
G Meta-signal G 23
B Meta-signal B 23
C Meta-signal C 23
D Meta-signal D 23
e Meta-signal e 24
a width of a A -cell in the U simulation 24
b width of the exchanged parts in the U simulation 24
l (for U) encoding of A -cell at U -level 25
B Another space-time diagram 26
χ Space-time simulation: get simulated time 26
ζ Space-time simulation: decoding function 26
η Space-time simulation: encoding function 26
● Layer 1 in space-time simulation 27
▲ Layer 2 in space-time simulation 27
■ Layer 3 in space-time simulation 27
★ Layer 4 in space-time simulation 27
♣ Club Signal for space-time simulation 29
♠ Space Signal for space-time simulation 29
♥ Heart Signal for space-time simulation 29
♦ Diamond Signal for space-time simulation 29
❙ Zone delimiter for space-time simulation 29
⋆ Center delimiter for space-time simulation 29
✚ Center plus delimiter for space-time simulation 29

bibtex entry
@incollection{durand-lose18rev-book,

doi = {10.1007/978-3-319-73216-9_4},
author = {Durand-{L}ose, J{\’e}r{\^o}me},
title = {Simulation and {I}ntrinsic {U}niversality {A}mong

{R}eversible {C}ellular {A}utomata, the {P}artition
{C}ellular {A}utomata {L}everage},

booktitle = {Reversibility and {U}niversality, Essays Presented to
{K}enichi {M}orita on the Occasion of his 70th
Birthday},

pages = {61--93},
editor = {Andrew Adamatzky},
series = {Emergence, Complexity and Computation},
number = {30},
publisher = {Springer},
year = {2018},
isbn = {978-3-319-73215-2},
language = {english}

}

	Simulation and Intrinsic Universality among Reversible Cellular Automata, the Partition Cellular Automata Leverage
	Jérôme Durand-Lose
	Introduction
	Definitions
	Cellular Automata
	Block Cellular Automata
	Partitioned Cellular Automata
	Reversibility
	Simulation and Intrinsic Universality

	Simulations Between classes of CA
	Simulation of BCA by CA (and R-BCA by R-CA)
	Simulation of CA by PCA
	Simulation of CA by BCA
	Simulation of R-CA by R-BCA
	Simulation of R-BCA (and R-CA) by R-PCA

	Intrinsic Universality of 1-R-PCA
	Macroscopic Level
	States, Layers and Configurations at Microscopic Level
	Microscopic Algorithm
	Local Function of U
	Simulation

	Space-time Simulation of Irreversible CA by Reversible Ones
	Space-time Approach
	Macro Dynamics
	Micro Dynamics
	State Function
	Generalization Sketch

	Conclusion
	References

