Finite Automata and Regular Expressions

SITE: http://www.info.univ-tours.fr/~mirian/
Theorem

If $L = L(A)$ for some DFA, then there is a regular expression R such that $L = L(R)$.

- We are going to construct regular expressions from a DFA by eliminating states.
- When we eliminate a state s, all the paths that went through s no longer exist in the automaton.
- If the language of the automaton is not to change, we must include, on an arc that goes directly from q to p, the labels of paths that went from some state q to state p, through s.
- The label of this arc can now involve strings, rather than single symbols (may be an infinite number of strings).
- We use a regular expression to represent all such strings.
- Thus, we consider automata that have regular expressions as labels.
Constructing a regular expression from a finite automaton

1. For each accepting state \(q \), apply the reduction process to produce an equivalent automaton with regular expression labels on the arcs. Eliminate all states except \(q \) and the start state \(q_0 \).

2. If \(q \neq q_0 \), then we shall be left with a two-state automata:

 ![Automaton Diagram](image)

 One regular expression that describes the accepted strings: \((R + SU^*T)^* SU^*\)

3. If the start state is also a final state, then we are left with a one-state automaton and the regular expression denoting strings that it accepts is \(R^* \)

4. The desired regular expression is the union of all the expressions derived from the reduced automata for each accepting states.
Example

Example: NFA accepts strings of 0 and 1 such that either the second or the third position from the end has a 1. Represented by the regular expression

$$(0 + 1)^* 1 (0 + 1) + (0 + 1)^* 1 (0 + 1) (0 + 1)$$
Theorem

Every language defined by a regular expression is also defined by a finite automaton.

- Suppose $L = L(R)$ for a regular expression R. We show that $L = L(E)$ for some $\varepsilon-NFA$ E with
 1. Exactly one accepting state
 2. No arcs into the initial state
 3. No arcs out of the accepting state

- The proof is by structural induction on R, following the recursive definition of regular expressions.
Proof

Basis

The basis of the construction of fsa from regular expressions:

1. Expression ϵ: the language of the FSA is $\{\epsilon\}$.
2. Expression \emptyset: \emptyset is the language of FSA.
3. Expression a: the language of the FSA is $\{a\}$.

All these automata satisfies the three initial conditions
Proof

Induction
The inductive step of the construction of fsa from regular expressions

1. The expression is $R + S$ for some smaller expressions R and S.
2. The expression is RS for some smaller expressions R and S.
3. The expression is R^* for some smaller expression R.
4. The expression is (R) for some smaller expression R.