Ambiguity in Grammars and Languages

In the grammar

E—1
F—-FE+F
E— ExFE

B W=

the sentential form E + E x E has two deriva-
tions:
F=F+F=F+ExE

and
EFE=FxFE=F+ FExFE

This gives us two parse trees:

/\\ /\\
/\\ /\\

(@ (b)

167

T he mere existence of several derivations is not
dangerous, it is the existence of several parse
trees that ruins a grammar.

Example: In the same grammar

5. I —a
I —b
I — Ia
I — Ib
I — IO
10. I — 11

W NO

the string a + b has several derivations, e.q.

F=F+F=14+F=a+FEF=a+1=a-+0b
and
F=F+F=FEF+I=14+1=14+b=a-+05b

However, their parse trees are the same, and
the structure of a + b is unambiguous.

168

Definition: Let G = (V,T,P,S) be a CFG. We
say that GG is ambiguous is there is a string in
T* that has more than one parse tree.

If every string in L(G) has at most one parse
tree, (G is said to be unambiguous.

Example: The terminal string a4+ a *xa has two
parse trees:

/\\ /\\
/\\ /\\

(a) (b)

169

Removing Ambiguity From Grammars

Good news: Sometimes we can remove ambi-
guity “by hand”

Bad news: There is no algorithm to do it

More bad news: Some CFL's have only am-
biguous CFG's

We are studying the grammar

E—I|E+E|ExE|(E)
I—alb|Ia|Ib|I0]|I1

There are two problems:

1. There is no precedence between * and +

2. There is no grouping of sequences of op-
erators, e.g. is E + E + E meant to be

E4+(E+E)or (E4+E)+E.

170

Solution: We introduce more variables, each
representing expressions of same “binding strength.”

1. A factor is an expresson that cannot be
broken apart by an adjacent * or +. Our
factors are

(a) Identifiers

(b) A parenthesized expression.

2. A term is an expresson that cannot be bro-
ken by 4+. For instance a*b can be broken
by alx or xal. It cannot be broken by +,
since e.g. al +axb is (by precedence rules)
same as al 4+ (a*xb), and axb+ al is same
as (a*b)+al.

3. The rest are expressions, i.e. they can be
broken apart with * or +.

171

we'll let F' stand for factors, T for terms, and FE
for expressions. Consider the following gram-
mar:

I -al|b|la|lb|I0]|I1
F—T|(E)

T — F|TxF
E—-T|E4+T

W=

Now the only parse tree for a + a x a will be

/\\
/\\

172

Why is the new grammar unambiguous?

Intuitive explanation:

e A factor is either an identifier or (E), for
some expression E.

e [he only parse tree for a sequence

JixJfo*x--xfp_1%fn

of factors is the one that gives fi*x fox---xf,_1
as a term and f, as a factor, as in the parse
tree on the next slide.

e An expression is a sequence

t1+t2+"'+tn—1+tn

of terms t;. It can only be parsed with
t1+to+---+1t,_1 as an expression and t, as
a term.

173

/\\
/\\

TN

174

Leftmost derivations and Ambiguity

The two parse trees for a + a * a

/\\ /\\
/\\ /\\

(a (b)
give rise to two derivations:
EﬁE—l—Eﬁ]—l—Eﬁa—l—Eﬁa—l—E*E
ﬁa—l—]*Eﬁa—l—a*Eﬁa—l—a*]ﬁa—l—a*a
and
EﬁE*EﬁE—I—E*EﬁI—l—E*Eﬁa—I—E*E
ﬁa—l—[*Eﬁa—l—a*Eﬁa—l—a*]ﬁa—l—a*a

175

In General:

e One parse tree, but many derivations

e Many leftmost derivation implies many parse
trees.

e Many rightmost derivation implies many parse
trees.

Theorem 5.29: For any CFG G, a terminal
string w has two distinct parse trees if and only
if w has two distinct leftmost derivations from
the start symbol.

176

Sketch of Proof: (Only If.) If the two parse
trees differ, they have a node a which dif-
ferent productions, say A — X1 Xo--- X and
B — Yi1Y>---Yy. The corresponding leftmost
derivations will use derivations based on these
two different productions and will thus be dis-
tinct.

(If.) Let's look at how we construct a parse
tree from a leftmost derivation. It should now
be clear that two distinct derivations gives rise
to two different parse trees.

177

Inherent Ambiguity

A CFL L is inherently ambiguous if all gram-
mars for L are ambiguous.

Example: Consider L =

{a™b"c™d™ in > 1,m > 1} u{a"b"c"d" in>1,m > 1}.

A grammar for L is

S— AB|C
A — aAb| ab
B — ¢Bd | cd
C — aCd | aDd
D — bDc | be

178

Let's look at parsing the string aabbcedd.

/S\
PN
29NN

(@

/
/
/

/

(b)

179

From this we see that there are two leftmost
derivations:

S z:> AB l:> aAbB z:> aabbB z:> aabbcBd z:> aabbceedd

and

S z:> C z:> aCd z:> aaDdd l:> aabDcdd l:> aabbcedd

It can be shown that every grammar for L be-
haves like the one above. The language L is
inherently ambiguous.

180

