
Ambiguity in Grammars and Languages

In the grammar

1. E → I

2. E → E + E

3. E → E ∗ E

4. E → (E)
· · ·

the sentential form E + E ∗ E has two deriva-

tions:

E ⇒ E + E ⇒ E + E ∗ E

and
E ⇒ E ∗ E ⇒ E + E ∗ E

This gives us two parse trees:

+

*

*

+

E

E E

E E

E

E E

EE

(a) (b)

167

The mere existence of several derivations is not

dangerous, it is the existence of several parse

trees that ruins a grammar.

Example: In the same grammar

5. I → a

6. I → b

7. I → Ia

8. I → Ib

9. I → I0

10. I → I1

the string a + b has several derivations, e.g.

E ⇒ E + E ⇒ I + E ⇒ a + E ⇒ a + I ⇒ a + b

and

E ⇒ E + E ⇒ E + I ⇒ I + I ⇒ I + b ⇒ a + b

However, their parse trees are the same, and

the structure of a + b is unambiguous.

168

Definition: Let G = (V, T, P, S) be a CFG. We

say that G is ambiguous is there is a string in

T ∗ that has more than one parse tree.

If every string in L(G) has at most one parse

tree, G is said to be unambiguous.

Example: The terminal string a+a∗a has two

parse trees:

I

a I

a

I

a

I

a

I

a

I

a

+

*

*

+

E

E E

E E

E

E E

EE

(a) (b)

169

Removing Ambiguity From Grammars

Good news: Sometimes we can remove ambi-

guity “by hand”

Bad news: There is no algorithm to do it

More bad news: Some CFL’s have only am-

biguous CFG’s

We are studying the grammar

E → I | E + E | E ∗ E | (E)

I → a | b | Ia | Ib | I0 | I1

There are two problems:

1. There is no precedence between * and +

2. There is no grouping of sequences of op-

erators, e.g. is E + E + E meant to be

E + (E + E) or (E + E) + E.

170

Solution: We introduce more variables, each

representing expressions of same “binding strength.”

1. A factor is an expresson that cannot be

broken apart by an adjacent * or +. Our

factors are

(a) Identifiers

(b) A parenthesized expression.

2. A term is an expresson that cannot be bro-

ken by +. For instance a ∗ b can be broken

by a1∗ or ∗a1. It cannot be broken by +,

since e.g. a1+a∗ b is (by precedence rules)

same as a1+ (a ∗ b), and a ∗ b + a1 is same

as (a ∗ b) + a1.

3. The rest are expressions, i.e. they can be

broken apart with * or +.

171

We’ll let F stand for factors, T for terms, and E

for expressions. Consider the following gram-

mar:

1. I → a | b | Ia | Ib | I0 | I1

2. F → I | (E)

3. T → F | T ∗ F

4. E → T | E + T

Now the only parse tree for a + a ∗ a will be

F

I

a

F

I

a

T

F

I

a

T

+

*

E

E T

172

Why is the new grammar unambiguous?

Intuitive explanation:

• A factor is either an identifier or (E), for

some expression E.

• The only parse tree for a sequence

f1 ∗ f2 ∗ · · · ∗ fn−1 ∗ fn

of factors is the one that gives f1∗f2∗· · ·∗fn−1

as a term and fn as a factor, as in the parse

tree on the next slide.

• An expression is a sequence

t1 + t2 + · · · + tn−1 + tn

of terms ti. It can only be parsed with

t1 + t2 + · · · + tn−1 as an expression and tn as

a term.

173

*

*

*

T

T F

T F

T

T F

F

.
. .

174

Leftmost derivations and Ambiguity

The two parse trees for a + a ∗ a

I

a I

a

I

a

I

a

I

a

I

a

+

*

*

+

E

E E

E E

E

E E

EE

(a) (b)

give rise to two derivations:

E ⇒
lm

E + E ⇒
lm

I + E ⇒
lm

a + E ⇒
lm

a + E ∗ E

⇒
lm

a + I ∗ E ⇒
lm

a + a ∗ E ⇒
lm

a + a ∗ I ⇒
lm

a + a ∗ a

and

E ⇒
lm

E ∗E ⇒
lm

E +E ∗E ⇒
lm

I +E ∗E ⇒
lm

a+E ∗E

⇒
lm

a + I ∗ E ⇒
lm

a + a ∗ E ⇒
lm

a + a ∗ I ⇒
lm

a + a ∗ a

175

In General:

• One parse tree, but many derivations

• Many leftmost derivation implies many parse

trees.

• Many rightmost derivation implies many parse

trees.

Theorem 5.29: For any CFG G, a terminal

string w has two distinct parse trees if and only

if w has two distinct leftmost derivations from

the start symbol.

176

Sketch of Proof: (Only If.) If the two parse

trees differ, they have a node a which dif-

ferent productions, say A → X1X2 · · ·Xk and

B → Y1Y2 · · ·Ym. The corresponding leftmost

derivations will use derivations based on these

two different productions and will thus be dis-

tinct.

(If.) Let’s look at how we construct a parse

tree from a leftmost derivation. It should now

be clear that two distinct derivations gives rise

to two different parse trees.

177

Inherent Ambiguity

A CFL L is inherently ambiguous if all gram-

mars for L are ambiguous.

Example: Consider L =

{anbncmdm : n ≥ 1, m ≥ 1}∪{anbmcmdn : n ≥ 1, m ≥ 1}.

A grammar for L is

S → AB | C

A → aAb | ab

B → cBd | cd

C → aCd | aDd

D → bDc | bc

178

Let’s look at parsing the string aabbccdd.

S

A B

a A b

a b

c B d

c d

(a)

S

C

a C d

a D d

b D c

b c

(b)

179

From this we see that there are two leftmost

derivations:

S ⇒
lm

AB ⇒
lm

aAbB ⇒
lm

aabbB ⇒
lm

aabbcBd ⇒
lm

aabbccdd

and

S ⇒
lm

C ⇒
lm

aCd ⇒
lm

aaDdd ⇒
lm

aabDcdd ⇒
lm

aabbccdd

It can be shown that every grammar for L be-

haves like the one above. The language L is

inherently ambiguous.

180

