The Quest for Small Universal
Cellular Automata

Nicolas Ollinger*

LIP, Ecole Normale Supérieure de Lyon, 46, allée d’Italie
69 364 Lyon Cedex 07, France

Abstract. We formalize the idea of intrinsically universal cellular au-
tomata, which is strictly stronger than classical computational universal-
ity. Thanks to this uniform notion, we construct a new one-dimensional
universal automaton with von Neumann neighborhood and only 6 states,
thus improving the best known lower bound both for computational and
intrinsic universality.

1 Why Study Small Universal Machines ?

Designing very small universal machines is an old and fascinating challenge,
introduced by Shannon in 1956 [10], which usually involves tricky encodings.
This problem has been also explored for other computational machines like Post
machines [4]. As an abstract computing model, cellular automata provide the
same concerns. Because of its uniformity — there is no separation between control
and data — and parallelism, the cellular automata model also provides a kind of
intrinsic universality.

An intrinsically universal cellular automaton can simulate, using macro-cells
to encode single cells and a linear time slowdown, any given cellular automaton.
Understanding how to construct very small automata of this kind involves un-
derstanding the way to structure data in both space and time, the way complex
computation can be transfered from the local rule to the global one.

In his pioneer study of self-reproduction, Von Neumann [12] introduced a
computationally universal (unformally, able to simulate any Turing machine)
automaton — in fact, it can be proved intrinsically universal. As far as we know,
the question to find very small universal automata was first studied by Smith III
[11] and Banks [2] was the first to consider intrinsic universality. Banks closed
the problem in dimension 2 and higher. In the case of one-dimensional cellular
automata, the problem is more difficult. Until now, there was a gap between
the smallest computationally universal automaton and the smallest intrinsically
universal one. The different results are reviewed on Table 1.

In the present paper, we fill the gap by exhibiting an intrinsically universal
cellular automaton with first-neighbors neighborhood and only 6 states. More
material, like simulation programs and big colorfull space-time diagrams, is avail-
able on the Web at the url http://www.ens-1lyon.fr/“nollinge/6st/.

* Nicolas.0llinger@ens-lyon.fr

year author

1966 von Neumann [12]
1968 Codd [3]

1970 Banks [2]

states universality

d v

2 5 29 intrinsic

2 5 8 intrinsic

2 5 2 intrinsic

1 3 18 intrinsic
1971 Smith IIT [11] 27 7 computation
1 3 18 computation
1 3 14 intrinsic
1 3

7 computation

1987 Albert and Culik TT [1]
1990 Lindgren and Nordhal [5]

here d is the dimension of the cellular automaton and v its
neighborhood size: 5 corresponds to the von Neumann neigh-
borhood and 3 to the first-neighbors neighborhood.

Table 1. Some previously known universal cellular automata

2 Definitions

A cellular automaton A is a quadruple (Zd,S, N, 5) such that Z< is the d-
dimensional regular grid, S is a finite set of states, N is a finite set of v vectors
of Z% called the neighborhood of A and ¢ is the local transition function of A
which maps S” to S.

A configuration C of a cellular automaton A maps Z? to the set of states of
A. The state of the i-th cell of C is denoted as C;. The local transition function
0 of A is naturally extended to a global transition function G4 which maps
a configuration C of A to a configuration C’ of A satisfying, for each cell i,
the equation C; =& (Cituvys--+sCitn,), where {v1,...,v,} is the neighborhood
of A. A space-time diagram of a cellular automaton A is an infinite sequence
of configurations (C;),cy such that, for every time ¢, C;11 = G4 (C;). The usual
way to represent space-time diagrams is to draw the sequence of configurations
successively, from bottom to top.

A sub-automaton! of a cellular automaton corresponds to a stable restriction
on the states set. A cellular automaton is a sub-automaton of another cellular
automaton if (up to a renaming of states) the space-time diagrams of the first
one are space-time diagrams of the second one. To compare cellular automata,
we introduce a notion of rescaling space-time diagrams. To formalize this idea,
we introduce the following notations:

o*. Let S be a finite state set and k be a vector of Z¢. The shift o¥ is the bijective
map from SZ% onto SZ* which maps a configuration C to the configuration
C’ such that, for each cell i, the equation C;, = C; is satisfied.

o™. Let S be a finite state set and m = (mq,...,mg) be a finite sequence of
strictly positive integers. The packing map o™ is the bijective map from Szt

! The prefix sub emphasizes the fact that (S’%,G) is an (algebraic) sub-structure of

(SZ, G). One could have also used the terminology divisor as the set of space-time
diagrams of one automaton is included into the one of the other.

d
onto (§™1ma)"" which maps a configuration C to the configuration ¢’ such
that, for each cell 4, the equation C; = (Cmi, e Cm(i+1)—1) is satisfied. The
principle of 0(32) is depicted on Fig. 1.

(3,2)

Fig. 1. The way o cuts a two-dimensional configuration

Definition 1. Let A be a d-dimensional cellular automaton with states set S. A

m, n, k)-rescaling of A is a cellular automaton A™7R) with states set §™1 M
b b g

and global transition function Gi‘mm,k‘) =cFoo™o G oo~

m:
Definition 2. Let A and B be two cellular automata. Then B simulates A if
there exists a rescaling of A which is a sub-automaton of a rescaling of B.

The relation of simulation is a quasi-order on cellular automata. It is a gen-
eralization of the order introduced by Mazoyer and Rapaport [6]. In [8], we
motivate the introduction of this relation and discuss its main properties. In
particular, it induces a maximal equivalence class which exactly corresponds to
the set of intrinsically universal cellular automata as described by Banks [2] and
Albert and Culik IT [1].

Definition 3. A cellular automaton A is intrinsically universal if, for each cel-
lular automaton B, there exists a rescaling of A of which B is a sub-automaton.

In the remaining part of this paper, we will especially consider cellular au-
tomata of dimension 1. As any cellular automaton can be simulated by a one-
way cellular automaton, that is a cellular automaton with neighborhood {0, —1},
there exist intrinsically universal one-way cellular automata. Therefore, to prove
that a particular cellular automaton is intrinsically universal, it is sufficient to
prove that it can simulate any one-way cellular automaton.

3 A Simple 8 State Universal Cellular Automaton

Describing in details the behavior of a particular cellular automaton is not an
easy task. The following text attempts to give a feeling of the way things work.
To verify the correctness of the universality, one only needs the local transition
function and the rules to encode a particular cellular automaton. These details
will also be given.

We present the automaton in two steps. First, we describe the macroscopic
idea behind the simulation. Secondly, we consider the microscopic encoding of
those ideas into a cellular automaton.

3.1 Macroscopic Considerations

To simulate a cellular automaton, one has to iterate and compute in parallel
a local transition function ¢ : S — S. Let = be the binary alphabet {0,1}
and n = [log, |S|]. We can encode S on =" and decompose d into n boolean
functions 6; : EN™ — =. A sample cellular automaton, which will be used to
illustrate our simulation, is presented on Fig. 2. As the single boolean operator
NAND, denoted |, is a complete basis? for boolean functions computation, we can
consider the functions (d;) as boolean circuits involving only the NAND operator.
So, to simulate a cellular automaton, it is sufficient to compute n boolean circuits
in parallel in constant time.

Al [1

61 62

Fig. 2. A sample cellular automaton and its decomposition

Rather than usual circuits, we consider leveled circuits with two kind of
gates: copy and NAND. The gates of a leveled boolean circuit are partitioned into
a finite number of levels Lo, L1, ..., L, such that every variable is on level Lg,
the output is on level L, and any gate on level L;;; takes its inputs on level
L;. Sample representations of boolean functions by leveled circuits are given on
Fig. 3. To simulate cellular automata, we want to simulate such circuits. In order
to do so, we must flatten the circuit to encode it on some SZ. We introduce the
idea of a boolean circuit cellular automata simulator.

51(%972,75) (52(%%2175)

e variable
g NAND

o copy

o (z,y,z,t) =z |t do(z,y,2,t) =y |y
Fig. 3. Boolean functions and their leveled circuit representations

Definition 4. A boolean circuit cellular automata simulator is a discrete dy-
namical model. Each cell of the model contains a stored boolean value which is
updated at each time step according to some read-only information: an operator
(copy or NAND) and the relative position of the operands.

2 A complete basis B for boolean functions is a set of boolean functions such that any
boolean function can be obtained by circuits which doors compute functions from
B. For an introduction on boolean functions, see [13].

As the operands can be arbitrarily far away, a boolean circuit cellular au-
tomata simulator is not a cellular automaton but it can simulate any cellular
automaton, by local simulation of cellular automata cells and local transition
function. We simply build a leveled circuit for each §;. Each circuit, padded with
copy-only levels if necessary, must have the same height 7. A cell s; of the cel-
lular automaton is encoded on the simulator by a macro-cell: a block of cells
consisting of concatenation of the circuits of the (d;). Variables are extracted
from the circuits outputs of the other macro-cells. In T time steps, each macro-
cell s; achieves exactly one transition of the simulated automaton. A sample
encoding is depicted in Fig. 4.

boolean value -?7x 7?77y 7?7z 7?7t 72u?7?v.-
operator | C CC | | C CC | | C CC |
operand 1 11891 1189111891
operand 2 9 2.9 2.9 2

M 51 s

In this example, the macro-cells s; encode the cells of the sample cellular
automaton. Only the encoding boolean values are given, ? correspond to noise.
For the operators encoding, | corresponds to NAND and C to copy. One step of
the simulation is achieved by 2 time steps of the simulator (one step by level).

Fig. 4. Encoding cells using the boolean circuit cellular automata simulator

When simulating a cellular automaton, the simulator uses only finitely many
different kind of cells. So, it accesses operands at a bounded distance m (an upper
bound for m is n times the size of the biggest circuit over NAND for a boolean
function with Nn inputs). To simulate the boolean circuit cellular automata
simulator with a cellular automaton, the idea is to encode one circuit cell by
a macro-cell consisting of circa m cells. Every circuit cell will send its boolean
value to each m neighbors circuit cells on its right. When the i-th information
cross the macro-cell, the macro-cell reads the i-th cell of its block and, depending
on its contents, stores the value, applies an operand or ignores the value. When
m values have crossed a macro-cell, the macro-cell has got its new boolean value
and will be able to send it to its neighbors.

3.2 Microscopic Encoding

Background layer. We choose to represent a circuit cell by m + 2 cells of our
universal automaton, where m is the maximal distance to look at. We use three
kinds of states. The first kind, Op state, concerns m cells and memorizes the
way to handle incoming information, as described above. One state cell is of the
second kind Val and is used to store the boolean value of the macro-cell. The last
cell state is of the third kind Sig and transmits a boolean value from macro-cell

to macro-cell. A computation is done each time the three kinds of state meet.
The details of the interactions are depicted on Fig. 5.

¢ Op
¢ Val
X Sig

Fig. 5. Three kinds of states to move the information

On the figure, time goes from bottom to top. The Val states are the ones
which stay on a same column. The Sig states are the ones which go at real time
to the right. The Op states go slowly to the left when crossing Sig cells. We just
defined a cellular automaton with von Neumann neighborhood and 3 states. The
local transition function is given on Table 2.

st [sm] se [0 (s, 8m.s0)|[st [sm] 50 [0 (s1,5m. s0)]
Op|Op|Op Op Sig|Op|Op Sig
Op|Op|Sig Op Sig|Op|Sig Val
Op|Op|Val Op Sig|Op|Val Sig
Op|Sig|Op Op Sig|Sig|Op Op
Op|Sig|Sig Sig Sig|Val|Op Sig
Op|Sig|Val Sig Val|Op|Op Op
Op|Val|Op Val Val|Op |Sig Op

Table 2. Local transition function of the 3 state automaton

Computational layer. To achieve the construction, we split the three kinds
of states into sub-kinds. The Sig kind is split in Sig, and Sig; boolean signals.
The Val kind is also split in Valp and Val; boolean values. The Op kind is split
in Opy, Ope. Opp, and Op| to encode respectively, the end of a macro cell,
the copy of the incoming signal, the absence of operation, and a NAND between
incoming and stored values. We obtain an 8 state intrinsically universal cellular
automaton, whose transition function is completely described on Table 3.

Encoding of a circuit cell. The exact encoding of a circuit cell, starting from
a macro-cell of the boolean circuit cellular automata simulator, is the following:

Let m be the maximum relative position of an operand used in the macro-cell
operators (for example m = 9 on Fig. 4). The basic shape for cells-encoding is

w(z,dy,...,dp 1) = Val, Op,, ---Op,,_, Sig,Op, . Op, ,Opy | Opy -

‘ S |sm| Sr |5(sl,sm7sr)“ S | Sm | Sr |5(sl,sqn,7sr)‘
Op;|Op; | Op;, Op; Sig, | Op; | Op, Sig,
Op,|Op, | Sig, Op;, Sig,, | Op; |Sig,/| Val, (i)
Op;|Op; | Val, Op;, Sig, | Op, |Val, Sig,
Op;|Sig, | Op; Op; Sig, [Sig, | Op; Op;
Op;, |Sig, |Sig, Sig, Sig, |Valyr| Op; | Sigy v i)
Op, |Sig, |Val, Sig,r Val,| Op; | Op; Op;
Op,|Val,| Op, Val, Val,| Op; |Sig, Op;

v’ ifi =C,
where ¢(v,i,v") =< w|v ifi=], and ¢Y(v,v',i) = {

v else,

v if i =1,

v else.

Table 3. Local transition function of the 8 state universal automaton

Cells are encoded as instanciations of the operators of these basic shape :

copy cell §, wi(z) = w(x, F,..., F)
copy cell ¢ with k > 1, w¢(z)=w(z,F,...,F,C,F,...,F)
k k . ,
| | k—2
NAND cell 1, wi(z) =w(z, F,...,F,|,F,....F)
k k SN——
| | k—2
NAND cell x with & > 1, wx(z) =w(z, F,....F,C.F,...,F.|,F,.... F)
1 1 N—— N——
k—2 I—k—1
Let w1, ..., w, be the sequence of encoding cells corresponding to the macro-cell
we want to simulate. Let vy, ..., v,, be the initial boolean values to put into the

circuit to encode a particular state. The macro-cell to use on the 8 state cellular
automaton is then, shifting to ensure good synchronization:

wa(v1)w3(v2) « - Wi (V1) w1 (Vy).

One step of the simulation is then achieved in m(m + 2)T steps of the simulator
where T' is the number of levels of the circuit. This transformation was applied
to the configuration on Fig. 4 to obtain the configuration on Fig. 6.

4 Tuning the Number of States

In the previous section, an 8 state universal cellular automaton was built. Now,
by a careful analysis of the previous automaton, we first show that only 7 of the
8 states are really necessary to achieve universality. Secondly, we briefly explain
how the number of Op states can be reduced to 2 sub-kinds, leading to a 6 state
universal cellular automaton.

(0,0) 1----- h==-#0-====/~+-#0----~ /——+#0|-—-=/--—#0-—--- /—=#
(0,1) 1----- h==-#0-====/~+-#0----~ [——+#0|-——=/-——#1-—-—- h=1#
(1,0) 1----- h--—#1-—--=Yf-+-#0----- /==+#0|---=/-——#0----- /-=#
(1,1) 1-=---- h===#1-====Y=+-#0-—--~ /——+#0|-——=/--—#1-—--- h—1#

The symbols -, +, #, and | respectively encode the operators Opg, Opc, Opy,
and Opl. The symbols 0 and 1 encode the values Valy and Val;. The symbols /
and % encode the signals Sig, and Sig;. One step of the simulation is achieved
in 198 time steps of the simulator.

Fig. 6. Encoding of the sample automaton on the 8 state universal automaton

4.1 Emulate copy: from 8 to 7 states

When used with constants, the NAND operator acts as follows: z |0 =1 and
z | 1 = —z. In the previous simulation, we replace each signal Sig, by a triple of
signals Sig;, Sig,., Sig,. We can then use these constants to emulate Op because
of the equality
L(z](0]y)==.

The Op¢ cells are replaced by the sequence Op|, Op|, Op| and the three other
sub-kinds of Op cells are kept but guarded by an Opy on the left and on the
right to ignore the constant signals. This transformation was applied to the
configurations on Fig. 6 to obtain the configurations on Fig. 7. When applying
these transformation, the time to simulate one time step on the simulator grows
from m(m + 2)T to m(3m + 4)T" time steps of the simulator.

R — Umm—Yh-—==/==#= (0,1) L-m-mmmmmmmmmm- e =
0---mmmmmmm - U= 1/ 1| ==/~ 0--—-mmmmmmmmoem B 1/ 1) ==/ =~
0-m-mmmm e Ymmm=/ == 1 1/1-#= 0=-mmmmmmmmmmem lmm==/== 11/ -#-
e Yimmm= ===~/ === 0= [===mmmmmmmem ===/ === /===
0---mmmmmm - e fmmmmm e (== ==Yh=== | /=

R e — fm==~Yp===/ === (1,1) L=m=mmmmmmmmeee e e =
Lommmmmm oo Ym== 1% | ==/ === e lm== %] | == /===
0=m-mmmmmm e Ym===/==11/1=8= 0=-mmmmmmmmmmem lm===/== 11/ | -#=
e Yimmm= ===~/ === 0= [===mmmmmmmem ===/ === /===
0---mmmmmm - e fmmmmm e fm===Yh=== | /==

‘The symbols -, #, and | respectively encode the operators Opy, Opy, and Op;.
The symbols 0 and 1 encode the values Valp and Val;. The symbols / and %
encode the signals Sig, and Sig,. One step of the simulation is achieved in 558
time steps of the simulator.

Fig. 7. Encoding of the sample automaton on the 7 state universal automaton

So, we obtain a 7 state intrinsically universal cellular automaton by removing
the Op. state from the previous 8 state intrinsically universal automaton.

4.2 Split the operators: from 7 to 6 states

To obtain a 6 state intrinsically universal cellular automaton, we will now show
how to modify the preceding automaton to use only 2 Op sub-kinds.

right Op

left Op

the 7 states case the 6 states case

Fig. 8. Location of the computations in the universal cellular automata

The trick is displayed on Fig. 8. In the case of the 7 state automaton, the
only active computations concern Opy and Op| and are applied by looking at
the Op on the right of the collision between Val and Sig. We now split the Op in
a left Op and a right Op. The two sub-kinds of Op are the boolean values Op,
and Op;. The left Op controls the modification of the Val value: if it is equal to
Op;, a NAND between the Sig and the Val is applied and stored in the Val; if it
is equal to Opy, the Val keeps its value. The right Op controls the modification
of the Sig value: if it is equal to Op;, the Val value is stored in the Sig; if it is
equal to Opy, the Sig keeps it value. The 3 old Op are emulated as explained on
Table 4.

old Op left Op right Op

Opg Opy Opy
Opy Opy Op,
Op, Op, Op,

Table 4. Emulation of the 7 state Op by the 6 state Op

The problem now is that we need to make the Val advance through the Op
two by two. To achieve this, we add a new Sig between every two consecutive
Sig. The purpose of this garbage signal is not to carry useful information, it only
moves the Op.

By doing this, we introduce two new problems. First, we must take care
that the garbage signals do not perturb the computation. Secondly, in order to
preserve the injectivity of the simulation, we need to clean the information of
the garbage signals at the end of every macro-cell transition.

F.F.F,...F.FF,I,I,IF.FF... FFF(FI|F)FFF, . . F#F

F"F~#'# '# 'F"F"F™F F®"F™F # 'F°F

|- F

Fig. 9. Encoding of a cell with in subscript the operations of the garbage signals

Perturbation of the computation. We first consider the problem of the
perturbation of the computation. On Fig. 9 is represented the typical sequence
of Op cells for an encoding using the 7 state universal cellular automaton. In
subscript are displayed the operations performed by the garbage signals between
the useful signals. The only case where the Val value is modified is by applying a

NAND at the end. This will erase the information. But, the time before, the value
of the Val has been saved on a Sig signal. In fact, just after the Opy is executed,
the next starting configuration is entirely contained in the sequence of useful
signals. We will put everything back in the Val when cleaning the garbage.

Cleaning of the garbage. The cleaning of the garbage is rather technical.
The main trick is the partial configuration given on Fig. 10. After going through
these configuration, the garbage signal of the Sig, and Sig; guards contain the
value Sig;, the garbage signal of the Sig, signal contains Sig; and the value cell
on its left contains Val,. Thus, to avoid synchronization problems, the encoding
algorithm goes as follows, starting from the 7 state macro-cell configuration.

signal 0 = 1 0 y 1
main op | F F [
garbage op # F F # # # F
cell value ? 1 1 1 1 g vy

Fig. 10. Sequence of operations to clean the garbage

First, for each subword encoding a cell of the boolean circuit cellular au-
tomata simulator, which consists of 3m cells of the kind Op, concatenate n — 2
times the configuration Opr Opp Opr where n is the size of the boolean circuit
cellular automata simulator macro-cell. Then, concatenate the cleaning pattern
of Fig. 10, that is Op| Opr Opp Op| Op| Op|. Finally, apply the 7 states to 6
states conversion as described on Table 4. This will let enough space between
signals to insert the garbage signals at a distance at least 4 after each coding
signal. Finally, the time to simulate one time step on the simulator grows from
m(3m +4)T to (m + n)(6(m + n) + 7)T time steps of the simulator.

Once again, we apologize for the difficulty to read such statements. We hope
it will at least help the interested reader to understand the ideas and path
which led to this universal 6 state cellular automaton. For a formal proof, it is
sufficient to extract the encoding of the meta-cells from the text and use the local
transition function given in Table 5 to simulate another intrinsically universal
cellular automaton.

5 The Quest just Begins

Usually the construction of very small computationally universal cellular au-
tomata involves very tricky encodings. The main problem is to encode, and be
able to differentiate between both the control part of the sequential device and
the passive data collection with as few states as possible. Therefore, the universal
sequential device which is encoded into a cellular automaton must already be in
some sense minimal, as in Lindgren and Nordhal [5] automaton. Those two lev-
els of optimization lead to difficulties to understand how to effectively compute
with the obtained cellular automata and the choice of the minimal sequential

(0,0) -1 R At AL VA

The symbols - and + respectively encode the operators Op, and Op;. The
symbols 0 and 1 encode the values Valp and Val;. The symbols / and % encode
the signals Sig, and Sig,;. One step of the simulation is achieved in 2548 time
steps of the simulator.

Fig. 11. Encoding of the sample automaton on the 6 state universal automaton

‘ S1 |5m| Sr |5(5lssmvs7’)H S1 | Sm | Sr |5(5175m,737‘)‘

Op; OPj Opy, Opj Sig, | Op; Opj Sig,
Op;|Op, | Sig, Op;, Sig, | Op; |Sig, Val,
Op,|Op; | Val, Op;, Sig, | Op, |Val, Sig,,
Op,|Sig, | Op, Op; Sig, [Sig, | Op; Op;
Op;, |Sig, [Sig,: Sig, Sig, |Valy | Op; | Sigy (4,014
Op;|Sig, |Valyr| Sig, ;0.1 ||Vals| Op; | Op; Op;,
Op; |Val,| Op; Val, Val, | Op, |Sig, Op;
. , v if 7 =0, .. v ifi=0,
where p(j,v,v") = {v o =1, and ¢(v,0',i) = {v' i1

Table 5. Local transition function of the 6 state universal automaton

device turns back to problems of non-uniformity like transfer between control
and data, between letters and states.

If, as we believe, cellular automata must be considered as an acceptable
programming system, that is as a clean computing model, universality investi-
gations must be done inside the model itself and not through doubtful notions
of extrinsic simulation. The notion of intrinsic universality try to respond to
this necessity. As it is defined on top of a notion of intrinsic simulation which
respects both the locality and the uniformity of cellular automata, the notion of
intrinsically universal cellular automaton is formal (thus allowing to prove that
some cellular automata are not universal which is impossible without a formal
definition), uniform and involves full parallelism. This helped us to design an 8
states universal cellular automaton without any tricky encoding. The trick to
go from 8 states to 7 states was also very simple. Thus, we were able to do as
good as [5] without beginning to really encode. Our tricky encoding lies into the
transformation from 7 to 6 states.

The problem to find the smallest intrinsically universal cellular automaton
is still open. We think that, using very tricky encodings, it should be possible
to transform our automaton into an intrinsically universal automaton with 4
states.

References

1. J. Albert and K. Culik II, A simple universal cellular automaton and its one-way
and totalistic version, Complex Systems, 1(1987), no. 1, 1 16.

2. E. R. Banks, Universality in cellular automata, in Conference Record of 1970
Eleventh Annual Symposium on Switching and Automata Theory, pages 194-215,
IEEE, 1970.

3. E. Codd, Cellular Automata, Academic Press, 1968.

4. M. Kudlek and Y. Rogozhin, New small universal circular Post machines, in
R. Freivalds, editor, Proceedings of FCT’2001, volume 2138 of LNCS, pages 217
226, 2001.

5. K. Lindgren and M. G. Nordahl, Universal computation in simple one-dimensional
cellular automata, Complex Systems, 4(1990), 299-318.

6. J. Mazoyer and I. Rapaport, Inducing an order on cellular automata by a grouping
operation, Discrete Appl. Math., 218(1999), 177-196.

7. M. Minsky, Finite and Infinite Machines, Prentice Hall, 1967.

8. N. Ollinger, Toward an algorithmic classification of cellular automata dynamics,
2001, LIP RR2001-10, http://www.ens-1lyon.fr/LIP.

9. N. Ollinger, Two-states bilinear intrinsically universal cellular automata, in
R. Freivalds, editor, Proceedings of FCT’2001, volume 2138 of LNCS, pages 396—
399, 2001.

10. C. E. Shannon, A wuniversal Turing machine with two internal states,
Ann. Math. Stud., 34(1956), 157-165.

11. A. R. Smith III, Simple computation-universal cellular spaces, J. ACM, 18(1971),
no. 3, 339-353.

12. J. von Neumann, Theory of Self-reproducing Automata, University of Illinois Press,
Chicago, 1966.

13. 1. Wegener, The complexity of boolean functions, Wiley-Teubner, 1987.

