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I| était une fois...

1998 MIM1 training period: “Universality of 1D cellular automata”
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a 10 years trip from Metz to Nice (10h by train)
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Complex systems

From well understood local entities...
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Complex systems

...Io complex global emerging behaviors
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Buzzwords

From cellular automata to complex systems
A homogenous collection of well understood entities with local
interactions from which global complex behaviors emerge.

From universality to different forms of computation
Computing is all about moving and combining quanta of information.

Our researches focus on complexity and emergence in complex
systems driven by computational processes. Deterministic
computations can lead to unpredictable behaviors.
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External programming
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detection of special behaviors of complex systems
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Internal programming
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Programming by reduction
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Recursive encoding of any object of a first family as an object of a
second family preserving given properties to transfer some
complexity result (ex. undecidability)
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1. cellular automata, geometry and computation



Cellular automata

Simple discrete continuous uniform complex systems

Definition A CAis atriple (S,r,f) where S is a finite set of states,
r € Nis the radius and f : S**' — S is the local rule.

A configuration ¢ € S” is a coloring of Z by S.

N BN e

The global map F : SZ — S applies f uniformly and locally:

Ve e SNz e Z, F(c)(z) =flc(z—r),...,clz+7r)).

A space-time diagram A € SV*Z satisfies, forall t € Z™,
Alt+1) = F(A(t)).
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Space-time diagram

time goes up

S =1{0,1,2},r =1, f(x,y,z) = |6430564760289/3% ¥ *?| (mod 3)

1. cellular automata, geometry and computation 10/44



Discrete dynamical systems

Definition A DDS is a pair (X, F) where X is a topological space
and F : X — X s a continuous map.

N NN S
AN AN S S

The orbit of x € X is the sequence (F"(x)) obtained by iterating F.

In this talk, X = S% where S is a finite alphabet and X is endowed
with the Cantor topology (product of the discrete topology on S),
and F is a continuous map that commutes with the shift map o
Fo o = 0oFwhere 0(x)(z) =x(z+1).

1. cellular automata, geometry and computation
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Hedlund-Richardson’s theorem

Foralln € Nandu € $*"*, the cylinder [u] C SZis

[u] = {c S SZ|VI € [—n,n] c(i) = u,-+n}

The clopen sets are finite unions of cylinders.
Therefore in this topology continuity means locality.

Theorem [Hedlund 1969] The continuous maps commuting with
the shift coincide with the global maps of cellular automata.

Cellular automata have a dual nature: topological maps with finite
automata description.
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Cellular Automata 101

Introduced by von Neumann at the end of the 40s, cellular automata
have been extensively studied from different points of view.

As a rudimentary model for experimentation (self-reproduction,
physical phenomena, biology, etc)

As a model of massive parallelism where specific programming
techniques and algorithms where developped (FSSP, signals, etc)

As a discrete dynamical system to study deterministic chaos,
sensitivity to initial conditions and other dynamical properties

As a simple kind of complex system cellular automata are
considered for themselves as a playground to understand the
emergence of complexity.
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Wolfram’s experimental classification

Wolfram (1984) First unformal classification

“[...] In class 1, the behavior is very
simple, and almost all initial condi-
tions lead to exactly the same uniform
final state.

In class 2, there are many different
possible final states, but all of them
consist just of a certain set of simple
structures that either remain the same
forever or repeat every few steps.

S. Wolfram [ANKOS, chapter 6, pp. 231-235]

1. cellular automata, geometry and computation

In class 3, the behavior is more com-
plicated, and seems in many respects
random, although triangles and other
small-scale structures are essentially
always at some level seen.

And finally [...] class 4 involves a mix-
ture of order and randomness: local-
ized structures are produced which
on their own are fairly simple, but
these structures move around and in-
teract with each other in very compli-
cated ways. [...]”
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Wolfram’s experimental classification

Wolfram (1984) First unformal classification

Class 1. Nilpotency

In class 2, there are many different
possible final states, but all of them
consist just of a certain set of simple
structures that either remain the same
forever or repeat every few steps.

.ﬁ..L ca a.ﬂ LA
S. Wolfram [ANKOS, chapter 6, pp. 231-235]
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Wolfram’s experimental classification

Wolfram (1984) First unformal classification

Class 3. Chaoticity
Numerous classifications and
tools to understand deterministic
chaos, cf [Formenti 1998]

And finally [...] class 4 involves a mix-
ture of order and randomness: local-
ized structures are produced which
on their own are fairly simple, but
these structures move around and in-
teract with each other in very compli-
cated ways. [...]”

S. Wolfram [ANKOS, chapter 6, pp. 231-235]
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Wolfram’s experimental classification

Wolfram (1984) First unformal classification

Class 3. Chaoticity
Numerous classifications and
tools to understand deterministic
chaos, cf [Formenti 1998]

Class 4. Complexity
Particles, collisions...
Quanta of information
Computation ?

S. Wolfram [ANKOS, chapter 6, pp. 231-235]
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Towards a refined and formal classification

Our first field of contribution to the study of CA concerns formal
algebraic classifications capturing algorithmic complexity.

Starting from the grouping algebraic classification of [Mazoyer
and Rapaport 1999], we extended it to capture universality and
studied its structural properties in [NO PhD 2002]. The study was
further developed in [Theyssier PhD 2005].

A survey in two papers is in preparation [U1,U2].
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The sub-automaton relation

A CA A is algorithmically simpler than a CA B if all the space-time
diagrams of A are space-time diagrams of 5.

Formally, A C B if there exists @ : S4 — Sg injective such that
PoGyu=Gpo@

That is, the following diagram commutes:

c —= 9

Remark Different elementary relations can be considered.

1. cellular automata, geometry and computation 16/44



Bulking

We quotient the set of CA by discrete affine transformations, the
only geometrical transformations preserving CA.

The (m, n, k) transformation of A satisfies:
G g(mny = 000" 0 G 00"
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The bulking quasi-order is defined by A < B if there exists
(m,n, k) and (m’,n’ k) such that
Almnk) C Bm’ 'K
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The big picture

no recursive “\/-1” Ivl

Up
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Intrinsic universality

Our second field of contribution to the study of CA concerns
universalities, more precisely intrinsic universality.

For decision problem, creative sets play the role of universal
objects. A good definition of universality for Turing machines
remains to be found.

Bulking provides a natural notion of intrinsic universality.

A CA U is intrinsically universal if it is maximal for <,
i.e. [NO PhD 2002] for all CA A, there exists o such that A C U/,

1. cellular automata, geometry and computation 19/44



Universalities

Theorem [U2] There exists Turing universal CA that are not
intrinsically universal.

Theorem [U1] There exists no real-time intrinsically universal CA.

Theorem [NO STACS 2003] It is undecidable, given a CA to
determine if it is intrinsically universal.

The proof proceeds by reduction of the nilpotency problem on
spatially periodic configurations.

1. cellular automata, geometry and computation 20/44



6 states

right Op
left Op

We constructed a 6 states intrinsically
universal CA of radius 1 embedding boolean
circuits into the line [NO ICALP 2002].

i i
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4 states

Using our framework for particles and collisions, this was improved
to 4 states by arithmetical encoding [NO Richard CSP 2008].
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Back to class 4

Our third field of contribution to the study of CA concerns the

study of backgrounds,

particles and collisions.
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Algorithmic of CA

Algorithmic of CA makes heavy usage of signals and linear algebra
synchronization constraints resolution.

Generals
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synchronization
process set up by the
left-end automaton
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Part of the
synchronization
process set up by the
right-end automaton

Break signals

Signals at
‘maximal speed

O 2

Pictures from Mazoyer 1996

Particles and collisions exhibit the characteristics of signals.
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Map Automata

Backgrounds, particles and collisions are characterized as regular
colorings produced by finite counter-automata painting the plane

[NO Richard TCS 2009].

Bakgrounds are captured

e by 0-counter map
automata
v " Particles are captured by
7 v 1-counter map automata

Collisions are captured by
e aperiodic 2-counter map

automata

.
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Computing with PaCo systems

Bindings of collisions can be manipulated as catenation schemes:
planar maps with collisions as vertices and particles as edges. Valid
catenation schemes can be recursively captured by semi-linear sets
[NO Richard IFIP-TCS 2008].
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Advertisement

Systémes de particules et collisions discrétes
dans les automates cellulaires

Gaétan Richard

le 4 décembre 2008, a 14h
au CMI, Chateau-Gombert, salle 001

Université de Provence (Aix-Marseille 1)
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2. undecidability, machines and aperiodicity



Turing machines

ATMiis a triple (S, X, T) where S is a finite set of states, X a finite
alphabetand T C (S X {«+—, =} x S)U (S X X x S x X) is aset
of instructions.

(s,0,t) : “in state s move according to & and enter state t.”

(s,a,t,b) : “in state s, reading letter a, write letter b and enter state t.”

A configuration ¢ € S x X% is a coloring of Z by X plus a state of
S, the state of the head looking at cell 0.

m

A DTM is a TM where at most one instruction can be applied from
any configuration.

Partial DDS (S x X% G) where G is a partial continuous map.
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Undecidability

By adding an initial state and encoding input words on finite
configurations, classical problems on TM can be considered.

Theorem [Turing 1936] The halting problem for TM is undecidable.

Combine this result on machines with many-one reductions to
establish undecidability results.

Many-one reduction A <, B if there exists a recursive ¢ such that
forallx,x €A & @(x) €B

We study decidability of some properties of complex systems and
establish 0/ -completeness results.
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The Domino Problem (DP)

Our first field of contribution to the study of decidability of
properties of complex systems concerns decidability in tilings.

“Assume we are given a finite set of square plates of the same size with edges
colored, each in a different manner. Suppose further there are infinitely many copies
of each plate (plate type). We are not permitted to rotate or reflect a plate. The
question is to find an effective procedure by which we can decide, for each given
finite set of plates, whether we can cover up the whole plane (or, equivalently, an
infinite quadrant thereof) with copies of the plates subject to the restriction that
adjoining edges must have the same color.”

(Wang, 1961)

B O H
ojojoja
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Aperiodicity in DP

The set of tilings of a tile set T is a compact subset of TZ.

By compacity, if a tile set does not tile the plane, there exists a
square of size n X n that cannot be tiled.

Tile sets without tilings are recursively enumerable.
A set of Wang tiles with a periodic tiling admits a biperiodic tiling.
Tile sets with a biperiodic tiling are recursively enumerable.

Undecidability is to be found in aperiodic tile sets, tile sets that only
admit aperiodic tilings.

Theorem [Berger 1964] DP is undecidable.
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Undecidability of DP

Composition technique [Robinson 1971, NO 2008] Define an
unambiguous substitution, encode it with local constraints to obtain an
aperiodic tile set. Modify the tile set to insert everywhere prefixes of
unbounded length of TM computation.

Fixpoint technique [Durand, Romashchenko, Shen 2008] Define a
tile set with prototiles enforcing tiling constraints using a Turing machine. A
fixpoint tile set is aperiodic. Modify the tile set to insert everywhere prefixes
of unbounded length of TM computation.

Transducer and sturmian words [Kari 2007] Consider lines of tilings
as a transducer coding a relation on biinfinite words. Encode tuples of real
numbers in a sturmian way, the transducer enforcing affine relations.
Reduce the immortality problem of Turing machines to the immortality
problem of affine maps.
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104 tiles

We factorized proof techniques from several authors into a
convenient aperiodic set of 104 tiles [NO CiE 2008].

(1) Every unambiguous substitutions has an aperiodic subshift.

(2) Enforce an unambiguous 2 X 2 substitution with Wang tiles.

= —)H .H. .|—>

(3) Decorate this tile set to encode any given 2 X 2 substitution.
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Undecidability of the nilpotency problem

A tile set is NW-deterministic if, for each pair of colors, there exists
at most one tile with these colors on N and W sides.

Theorem [Kari 1992] NW-deterministic DP is undecidable.
The limit set /\r of a CA F is the non-empty subshift

Ar = (Nhen F"(S%) of configurations appearing in biinfinite
space-time diagrams A € SZ*Z gych that

Vte Z,Alt+1) = F(A(t)).

NW-deterministic DP reduces to NP.

Theorem [Kari 1992] NP is undecidable.

Variations permit to obtain numerous undecidability results on CA
(Rice theorem on limit sets, Intrinsic Universality, etc).
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The Immortality Problem (IP)

Our second field of contribution to the study of decidability of
properties of complex systems concerns mortality properties of
various models.

“(T,) To find an effective method, which for every Turing-machine M
decides whether or not, for all tapes / (finite and infinite) and all states B,
M will eventually halt if started in state B on tape I” (Bdchi, 1962)

A TM is mortal if all configurations are ultimately halting.
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Aperiodicity in IP

AsS x XZis compact, G is continuous and the set of halting
configurations is open, mortality implies uniform mortality.

Mortal TM are recursively enumerable.
TM with a periodic orbit are recursively enumerable.

Undecidability is to be found in aperiodic TM, TM whose infinite
orbits are all aperiodic.
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Undecidability of IP

Theorem [Hooper 1966] IP is undecidable.

Reduction reduce HP for 2-CM (s, @1"x2"y)

Problem unbounded searches produce immortal configurations.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls to initial
segments of the simulation of increasing sizes:
@@, xy1111111111x2222y recursive call
So
The TM is immortal iff the 2-CM halts from (s, (0,0)).
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Programming tips and tricks

We designed a TM programming language with recursive calls:
http://www.lif.univ-mrs.fr/~nollinge/rec/gnirut/

o[t

#@, g ( - 7 O\ — W t @l#

11[ ‘10
S
e [s[incrlt) @
i fun [s[incr]t) : s call [alincr|b) from # < call 2
2 S. —/,r

s rOF1b|1F1c

« call [cfincr]d) from 1 ¢ call 1
s d.1+0,b

6 b. «,t
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Program it!

®

0

2

def [ssearchylty, t;,t) ©
5.0 - @,
L =u
uxFxty
| 1xF1x, 4
| 11x - 11x,t,
[111F111c
call [c|check|p) from 1
p. 111 111,/

def [ssearcholty, t;,t) ©
soxbxl
L —u
uykyt
|2y F2y,ts
| 22y - 22y,t;
| 222+ 222,¢
call [c|check,|p) from 2
p. 222+ 222,1

def [s|testl[z,p) :
5. @ux bk @ux,z
|@xlF@al,p

def [slendtest2(z,p) :
s.oxy b xy,z
[x2Fx2,p

def [sltest2z,p) :
[slsearchlty, t1, t2)
[tolendtest2lzo, po)
[ty endtest2fz,, py )
[tzlendtest2|zz, p,)
(20,21, 25|search, 2]
(Poy Py, Palsearchy o]

def [slmarki |, co) :
s.ylb2y,t
| yx F yx,co
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def [slendine, 1, co) :
[slscarchyro, 1, r2)
[rolmarkyto, coo)
[rslmark;lt,, cor)
[rajmark|tz, co)
(ta, to, ty|search, 1]
{cos, coy, coplsearchslco]
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(to, ty, to[searchy |f]
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def [sidec2, ) :
(s, coline2 1

def [simark,lt, co) :
s.y2 2yt
| yx = yx,co

def [slendinc,lt, co) :
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(c0o, coy, coplsearch, lco]
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def [s|pushinc,
s.x2F Ix,c
[ xy1 - 1xy, pt
| xyx F 1yx,pco
[clendinc,|pto, pco0)
pto. —,t0
t0. 2+ 2,pt
pt. =t
pco0. x - 2, pco
peo. ,zco
2c0.1F x,co

t,co)

def [sfincl, t, co) :
[slsearchylro, r1, 2)
[ro|pushinc,|t5, con)
[r+|pushine, ¢, co;)
[r2|pushine, |t2, co)
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{cog, coy, cop|search |co]

def [s|decl;t) :
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s.x2bixc
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| xyy - 1yy, pco
[clendinc,|pto, pco0)
pto. —,t0

0.2+ 2,pt
pt.et

pco0. x - 2,pco
peo. ¢, zco
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def [s|incl,lt, co) :
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11 [pushing,|t;, co;)
ra|pushing, |, co,)
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126 def [s|declft) :
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™
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w oS U

w o ullkxye

e e,r

1o def [sS[RCM;|coy,cos) ©
v [slinitlso)

e [soltestl]siz,n)

W lsilinclylsy, cor)

w soline2ylss, cos)

o [ssftestln’,sqp)

w o (sizspltestl]sy]

o def [sfinitslr) :
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W w22k xye
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we  [slinitylso)
[softest1]ss,n)

w  [silinclylsy cor)

i [s2linc2,ss, cop)

152 [ssltest1]n’, s15)
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s fun [slcheck,t) :

ws [SRCM;[coy, cos, ...}

w  (cor,cop,.. RCM,

s fun [slcheckylt) :

@ [SIRCM,leoy, cos, ..
W (c0y,cop,.. JRCM, ]
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Undecidability of the periodicity problem

A TM is reversible if it is deterministic with a deterministic inverse.
Theorem [Kari NO MFCS 2008] reversible IP is undecidable.

This implies to prove Hooper’s result again with more constraints
(no easy reduction to the reversible case preserving mortality).

A CA is periodic if one of its iterates is the identity map.
Reversible IP reduces to PP.
Theorem [Kari NO MFCS 2008] PP is undecidable.

Variations might provide new undecidability results?
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3. perspectives



Going further...

One selected technical question by topic:

Bulking Identify precise tools to prove negative simulation results
(the general problem is undecidable).

Universality Is rule 110 (or 54) intrinsically universal?

Particules and collisions Characterize CA with emerging particles
and collisions.

(Un)decidability Study the decidability of dynamical properties
(positive expansivity, etc)

3. perspectives 44/44
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