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Discrete dynamical systems

Definition A DDS is a pair (X, F) where X is a topological
space and F : X → X is a continuous map.

The orbit of x ∈ X is the sequence (Fn(x)) obtained by
iterating F .

In this talk, X = SZ where S is a finite alphabet and X is
endowed with the Cantor topology (product of the discrete
topology on S), and F is a continuous map commuting with
the shift map σ : F ◦ σ = σ ◦ F where σ(x)(z) = x(z + 1).
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Two dynamical properties

We consider two simple dynamical properties (as opposed to
more computational properties like reachability questions).

Definition A DDS (X, F) is periodic if for all x ∈ X there
exists n ∈ N such that Fn(x) = x.

Definition A DDS (X, F) is nilpotent if there exists 0 ∈ X
such that for all x ∈ X there exists n ∈ N such that
Fn(x) = 0.

Question With a proper recursive encoding of the DDS,
can we decide given a DDS if it is periodic? if it is nilpotent?
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Cellular automata

Definition A CA is a triple (S, r , f ) where S is a finite set of
states, r ∈ N is the radius and f : S2r+1 → S is the local
rule of the cellular automaton.

A configuration c ∈ SZ is a coloring of Z by S.

The global map F : SZ → SZ applies f uniformly and locally:

∀c ∈ SZ,∀z ∈ Z, F(c)(z) = f(c(z − r), . . . , c(z + r)).

A space-time diagram ∆ ∈ SN×Z satisfies, for all t ∈ Z+,∆(t + 1) = F(∆(t)).
The associated DDS is (SZ, F).
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Space-time diagram
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S = {0,1,2}, r = 1, f(x,y, z) =
⌊
6430564760289/39x+3y+z⌋ (mod 3)
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König’s lemma

König’s lemma Every infinite tree with finite branching
admits an infinite path.

For all n ∈ N and u ∈ S2n+1, the cylinder [u] ⊆ SZ is

[u] =
{
c ∈ SZ

∣∣∣∀i ∈ [−n,n] c(i) = ui+n} .

For all C ⊆ SZ, the König tree AC is the tree of cylinders
intersecting C ordered by inclusion.

The topping AC ⊆ SZ of a König tree is the set of
configurations tagging an infinite path from the root
(intersection of the cylinders on the path).

Definition The König topology over SZ is the topology
whose close sets are the toppings of König trees.
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Curtis-Hedlund-Lyndon’s theorem

König and Cantor topologies coincide: their open sets are
unions of cylinders. Compacity arguments have
combinatorial counterparts.

The clopen sets are finite unions of cylinders.

Therefore in this topology continuity means locality.

Theorem [Hedlund 1969] The continuous maps commuting
with the shift coincide with the global maps of cellular
automata.

Cellular automata have a dual nature : topological maps with
finite automata description.
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Nilpotency

A CA is nilpotent iff there
exists a uniform bound
n ∈ Z+ such that Fn is a
constant map.

Hint Take the bound of a
universal configuration
containing all words on S.

The Nilpotency Probem (NP)
given a CA decide if it is
nilpotent.
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Periodicity

A CA is periodic iff there exists
a uniform period n ∈ Z+ such
that Fn is the identity map.

Hint Take the period of a
universal configuration
containing all words on S.

The Periodicity Probem (PP)
given a CA decide if it is
periodic.
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Undecidability of dynamical properties

Both NP and PP are recursively undecidable.

Undecidability is not necessarily a negative result:
it is a hint of complexity.

There exists non trival nilpotent and periodic CA with a very
large bound for quite simple CA (the bound grows faster
than any recursive function).

To prove these results we inject computation into dynamics.

A direct reduction of the halting problem of Turing machines
does not work.
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Back to the nilpotency problem

The limit set ΛF = ⋂n∈N Fn(SZ) of a CA F is the non-empty
subshift of configurations appearing in biinfinite space-time
diagrams ∆ ∈ SZ×Z such that ∀t ∈ Z,∆(t + 1) = F(∆(t)).
A CA is nilpotent iff its limit set is a singleton.

A state ⊥ ∈ S is spreading if f(N) = ⊥ when ⊥ ∈ N.

A CA with a spreading state ⊥ is not nilpotent iff it admits a
biinfinite space-time diagram without ⊥.

A tiling problem Find a coloring ∆ ∈ (S \ {⊥})Z2
satisfying

the tiling constraints given by f .
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Undecidability of the nilpotency problem

A classical undecidability result concerning tilings is the
undecidability of the domino problem (DP).

Theorem [Berger 1964] DP is undecidable.

Here we need a restriction on the set of tilings.

Theorem [Kari 1992] NW-deterministic DP is undecidable.

NW-deterministic DP reduces to NP for spreading CA.

Theorem [Kari 1992] NP is undecidable.
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Back to the periodicity problem

A periodic CA is reversible, which for CA is the same as
bijective and even injective.

One can reduce the periodicity problem of complete
reversible Turing machines to PP.

Immortality is the property of having at least one
non-halting orbit.

One can reduce the immortality problem of reversible
Turing machines without periodic orbit to the periodicity
problem of complete reversible Turing machines.
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Undecidability of the periodicity problem

A classical undecidability result concerning Turing machines
is the immortality problem (IP).

Theorem [Hooper 1966] IP is undecidable.

Here we need a restriction to reversible machines.

Theorem [Kari O 2008] Reversible IP is undecidable.

Reversible IP reduces to PP.

Theorem [Kari O 2008] PP is undecidable.
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Revisiting classical results

For both NP and PP, we need a stronger version of a
classical result, essentially a restriction on inputs.

The difficult part of the proofs hides into this task.

The main difficulty is to understand the dusty proofs.

Hopefully, we tend to reuse this for other variants.

Now, we will discuss the main ingredients for PP.
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The Immortality Problem (IP)

“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

A TM is a triple (S,Σ, T ) where S is a finite set of states, Σ a
finite alphabet and T ⊆ (S × {←,→}× S)∪ (S × Σ× S × Σ) is
a set of instructions.

(s, δ, t) : “in state s move according to δ and enter state t.”
(s, a, t, b) : “in state s, reading letter a, write letter b and enter
state t.”

Partial DDS (S × ΣZ, G) where G is a partial continuous map.

A TM is mortal if all configurations are ultimately halting.

2. Immortality Problem (MFCS 2008) 18/38



Aperiodicity in IP

As S × ΣZ is compact, G is continuous and the set of halting
configurations is open, mortality implies uniform mortality.

Mortal TM are recursively enumerable.

TM with a periodic orbit are recursively enumerable.

Undecidability is to be found in aperiodic TM, TM whose
infinite orbits are all aperiodic.
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In this talk

We investigate the (un)decidability of dynamical properties
of three models of reversible computation.

We consider the behavior of the models starting from
arbitrary initial configurations.

Immortality is the property of having at least one
non-halting orbit.

Periodicity is the property of always eventually returning
back to the starting configuration.
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Models of reversible computation

Counter Machines (CM)

Turing Machines (TM)

Cellular Automata (CA)

A machine is deterministic if
there exists at most one
transition from each
configuration.

A machine is reversible if
there exists another machine
that can inverse each step of
computation.
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The immortality problem (IP)

A configuration on which F is undefined is halting.

A configuration is mortal if its orbit is eventually halting.

Halting Problem Given S ∈M, is x0 ∈ X mortal for S?

S is mortal if all its configurations are mortal.

S is uniformly mortal if a uniform bound n exists such that
Fn is halting for all configuration.

Immortality Problem Given S ∈M, is S immortal?

When X is compact and the set of halting configurations is
open, uniform mortality is the same as mortality.
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The periodicity problem (PP)

S is complete if F is total.

A configuration x is n-periodic if Fn(x) = x.

S is periodic if all its configurations are periodic.

S is uniformly periodic if a uniform bound n exists such
that Fn is the identity map.

Periodicity Problem Given S ∈M, is S periodic?

When X is compact and the set of n-periodic configurations
is open, uniform periodicity is the same as periodicity.
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Results

RCM

RTM

RCA

HP IP PP

[Morita96]

[Lecerf63]

Thm 1

[KL08]

Thm 3

Thm 7 Thm 8

Thm 12

denotes many-one reductions.

J. Kari and NO. Periodicity and Immortality in Reversible Computing.
Proceedings of MFCS 2008, LNCS 5162, pp. 419–430, 2008.

Longer version under revision at JCSS.
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Reversible Counter Machines

A k-CM is a triple (S, k, T) where S is a finite set of states and
T ⊆ S × Zk × ({Z, P} ∪ {−,0,+})× S is a set of instructions.

(s,u, i, t) ∈ T : “in state s with counter i with value u,
enter state t.”

(s,φ, i, t) ∈ T : “in state s,
apply φ to counter i and enter state t.”

DDS (S ×Nk, G) where G(c) is the unique c′ such that c ` c′.
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Immortality

[Minsky67] Every recursive function is computed by a 2-DCM
and thus HP is undecidable for 2-DCM.

[Hooper66] IP is undecidable for 2-DCM.
Idea for new proof Enforce infinite orbits to go through
unbounded initial segments of an orbit from x0 to reduce HP. ♦

[Morita96] Every k-DCM is simulated by a 2-RCM.
Idea Encode a stack with two counters to keep an history of
simulated instructions. ♦

Theorem 1 IP is undecidable for 2-RCM.
Idea Morita’s simulation preserves immortality. ♦
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Periodicity

Theorem 3 PP is undecidable for 2-RCM.

Idea Reduce IP to PP:

(1) IP is still undecidable for 2-RCM with mortal reverse
(add a constantly incremented counter to the k-DCM)

(2) Let M= (S,2, T ) be a 2-RCM with mortal reverse.
M admits no periodic orbit.
Let M′ be the 2-RCM with set of states S × {+,−}
simulating M on + and M−1 on − and inversing polarity
on halting states.

(3) M′ is periodic iff M is mortal. ♦
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Reversible Turing Machines

A TM is a triple (S,Σ, T ) where S is a finite set of states, Σ a
finite alphabet and T ⊆ (S × {←,→}× S)∪ (S × Σ× S × Σ) is a
set of instructions.

(s, δ, t) : “in state s move according to δ and enter state t.”
(s, a, t, b) : “in state s, reading letter a, write letter b and
enter state t.”

DDS (S × ΣZ, G) where G(c) is the unique c′ such that c ` c′.
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Immortality: a first attempt

“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

[Hooper66] IP is undecidable for DTM.
Idea TM with recursive calls! (we will discuss this) ♦

[Lecerf63] Every DTM is simulated by a RTM.
Idea Keep history on a stack encoded on the tape. ♦

Problem The simulation does not preserve immortality due
to unbounded searches. We need to rewrite Hooper’s proof
for reversible machines.
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Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

4. Reversible Turing Machines 30/38



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

4. Reversible Turing Machines 30/38



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@
s
1111111111111x2222y search x →

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

4. Reversible Turing Machines 30/38



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@1
s′1
111111111111x2222y bounded search 1

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

4. Reversible Turing Machines 30/38



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@11
s′2
11111111111x2222y bounded search 2

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

4. Reversible Turing Machines 30/38



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111
s′3
1111111111x2222y bounded search 3

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

4. Reversible Turing Machines 30/38



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@@s
s0
xy1111111111x2222y recursive call

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

4. Reversible Turing Machines 30/38



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@@s11111x22222y
sc
x2222y ultimately in case of collision...

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

4. Reversible Turing Machines 30/38



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@@s
sb
xy1111111111x2222y ...revert to clean

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

4. Reversible Turing Machines 30/38



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@1111
s′1
111111111x2222y pop and continue bounded search 1

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

4. Reversible Turing Machines 30/38



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@11111
s′2
11111111x2222y bounded search 2

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

4. Reversible Turing Machines 30/38



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111111
s′3
1111111x2222y bounded search 3

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

4. Reversible Turing Machines 30/38



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111@s
s0
xy1111111x2222y recursive call

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

4. Reversible Turing Machines 30/38



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111@s
s0
xy1111111x2222y recursive call

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

4. Reversible Turing Machines 30/38



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111@s
s0
xy1111111x2222y recursive call

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

4. Reversible Turing Machines 30/38



Programming tips and tricks (1/2)

We designed a TM programming language called Gnirut:
http://www.lif.univ-mrs.fr/~nollinge/rec/gnirut/

First ingredient use macros to avoid repetitions:

s ax|x
→

1|2

x|x

[s|search|a〉

d
t

x|x
←

2|1

x|x

〈d|search|t]

b c→ ←
a|b

b|a

1 def [s|search|t〉 :
2 s. x ` x,u
3 u. →, r
4 r. 1 ` 2,u | x ` x, t
5

6 [s|search|a〉
7 a. →,b
8 b. a ` b, c | b ` a, c
9 c. ←,d

10 〈d|search|t]
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Programming tips and tricks (2/2)

Second ingredient use recursive calls:

s

c d

t→
0|1

←

1|1 1|0

[s|incr|t〉

b
@2|#

a
#|@2

1|@1 @1|1

1 fun [s|incr|t〉 :
2 s. →, r
3 r. 0 ` 1,b | 1 ` 1, c
4 call [c|incr|d〉 from 1 ⇐ call 1

5 d. 1 ` 0,b
6 b. ←, t
7

8 call [a|incr|b〉 from # ⇐ call 2
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Immortality: skeleton

[s|check1|t〉 satisfies s. @α1mx ` @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2〉 satisfies s. @α1mx ` @α1mx, tm[3] or . . .

RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]
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RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]
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Program it!
1 def [s|search1|t0, t1, t2〉 :
2 s. @α ` @α, l
3 l.→,u
4 u. x ` x, t0

5 | 1x ` 1x, t1

6 | 11x ` 11x, t2

7 | 111 ` 111, c
8 call [c

∣∣check1

∣∣p
〉

from 1
9 p. 111 ` 111, l

10

11 def [s|search2|t0, t1, t2〉 :
12 s. x ` x, l
13 l.→,u
14 u. y ` y, t0

15 | 2y ` 2y, t1

16 | 22y ` 22y, t2

17 | 222 ` 222, c
18 call [c

∣∣check2

∣∣p
〉

from 2
19 p. 222 ` 222, l
20

21 def [s
∣∣test1

∣∣z,p
〉

:
22 s. @αx ` @αx, z
23 | @α1 ` @α1,p
24

25 def [s
∣∣endtest2

∣∣z,p
〉

:
26 s. xy ` xy, z
27 | x2 ` x2,p
28

29 def [s
∣∣test2

∣∣z,p
〉

:
30 [s|search1|t0, t1, t2〉
31

[
t0

∣∣endtest2
∣∣z0,p0

〉
32

[
t1

∣∣endtest2
∣∣z1,p1

〉
33

[
t2

∣∣endtest2
∣∣z2,p2

〉
34 〈z0, z1, z2|search1|z]
35

〈
p0,p1,p2

∣∣search1

∣∣p
]

36

37 def [s|mark1|t, co〉 :
38 s. y1 ` 2y, t
39 | yx ` yx, co
40

41 def [s|endinc1|t, co〉 :
42 [s|search2|r0, r1, r2〉
43 [r0|mark1|t0, co0〉
44 [r1|mark1|t1, co1〉
45 [r2|mark1|t2, co2〉
46 〈t2, t0, t1|search2|t]
47 〈co0, co1, co2|search2|co]
48

49 def [s|inc21|t, co〉 :
50 [s|search1|r0, r1, r2〉
51 [r0|endinc1|t0, co0〉
52 [r1|endinc1|t1, co1〉
53 [r2|endinc1|t2, co2〉
54 〈t0, t1, t2|search1|t]
55 〈co0, co1, co2|search1|co]
56

57 def [s|dec21|t〉 :
58 〈s, co|inc21|t]
59

60 def [s|mark2|t, co〉 :
61 s. y2 ` 2y, t
62 | yx ` yx, co
63

64 def [s|endinc2|t, co〉 :
65 [s|search2|r0, r1, r2〉
66 [r0|mark2|t0, co0〉
67 [r1|mark2|t1, co1〉
68 [r2|mark2|t2, co2〉
69 〈t2, t0, t1|search2|t]
70 〈co0, co1, co2|search2|co]
71

72 def [s|inc22|t, co〉 :
73 [s|search1|r0, r1, r2〉
74 [r0|endinc2|t0, co0〉
75 [r1|endinc2|t1, co1〉
76 [r2|endinc2|t2, co2〉
77 〈t0, t1, t2|search1|t]
78 〈co0, co1, co2|search1|co]
79

80 def [s|dec22|t〉 :
81 〈s, co|inc22|t]
82

83 def
[
s
∣∣pushinc1

∣∣t, co
〉

:
84 s. x2 ` 1x, c
85 | xy1 ` 1xy,pt
86 | xyx ` 1yx,pco
87 [c

∣∣endinc1

∣∣pt0,pco0
〉

88 pt0.→, t0
89 t0. 2 ` 2,pt
90 pt.←, t
91 pco0. x ` 2,pco
92 pco.←, zco
93 zco. 1 ` x, co
94

95 def [s|inc11|t, co〉 :
96 [s|search1|r0, r1, r2〉
97

[
r0

∣∣pushinc1

∣∣t0, co0
〉

98
[
r1

∣∣pushinc1

∣∣t1, co1
〉

99
[
r2

∣∣pushinc1

∣∣t2, co2
〉

100 〈t2, t0, t1|search1|t]
101 〈co0, co1, co2|search1|co]
102

103 def [s|dec11|t〉 :
104 〈s, co|inc11|t]
105

106 def
[
s
∣∣pushinc2

∣∣t, co
〉

:
107 s. x2 ` 1x, c
108 | xy2 ` 1xy,pt
109 | xyy ` 1yy,pco
110 [c

∣∣endinc2

∣∣pt0,pco0
〉

111 pt0.→, t0
112 t0. 2 ` 2,pt
113 pt.←, t
114 pco0. x ` 2,pco
115 pco.←, zco
116 zco. 1 ` x, co
117

118 def [s|inc12|t, co〉 :
119 [s|search1|r0, r1, r2〉
120

[
r0

∣∣pushinc2

∣∣t0, co0
〉

121
[
r1

∣∣pushinc2

∣∣t1, co1
〉

122
[
r2

∣∣pushinc2

∣∣t2, co2
〉

123 〈t2, t0, t1|search1|t]
124 〈co0, co1, co2|search1|co]

125

126 def [s|dec12|t〉 :
127 〈s, co|inc12|t]
128

129 def [s|init1|r〉 :
130 s.→,u
131 u. 11 ` xy, e
132 e.←, r
133

134 def [s|RCM1|co1, co2〉 :
135 [s|init1|s0〉
136 [s0|test1|s1z,n〉
137 [s1|inc11|s2, co1〉
138 [s2|inc21|s3, co2〉
139

[
s3

∣∣∣test1
∣∣∣n’, s1p

〉
140

〈
s1z, s1p

∣∣∣test1
∣∣∣s1

]
141

142 def [s|init2|r〉 :
143 s.→,u
144 u. 22 ` xy, e
145 e.←, r
146

147 def [s|RCM2|co1, co2〉 :
148 [s|init2|s0〉
149 [s0|test1|s1z,n〉
150 [s1|inc12|s2, co1〉
151 [s2|inc22|s3, co2〉
152

[
s3

∣∣∣test1
∣∣∣n’, s1p

〉
153

〈
s1z, s1p

∣∣∣test1
∣∣∣s1

]
154

155 fun [s|check1|t〉 :
156 [s|RCM1|co1, co2, . . .〉
157 〈co1, co2, . . .|RCM1|t]
158

159 fun [s|check2|t〉 :
160 [s|RCM2|co1, co2, . . .〉
161 〈co1, co2, . . .|RCM2|t]
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Periodicity

Theorem 8 PP is undecidable for RTM.

Idea Reduce IP to PP:

(1) IP is still undecidable for RTM without periodic orbit.

(2) Let M= (S,Σ, T ) be a RTM without periodic orbit
LetM′ be the complete RTM with set of states S × {+,−}
simulating M on + and M−1 on − and inversing polarity
on halting states.

(3) M′ is periodic iff M is mortal. ♦
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Reversible Cellular Automata

A CA is a triple (S, r , f ) where S is a finite set of states, r the
radius and f : S2r+1 → S the local rule.

DDS (SZ, G) where∀z ∈ Z, G(c)(z) = f(c(z−r), . . . , c(z+r))
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Periodicity

Theorem 12 PP is undecidable for RCA.

Idea Reduce PP for RTM to PP for RCA:

(1) PP is still undecidable for complete RTM.

(2) Let M= (S,Σ, T ) be a complete RTM
Let (S′,2, f ) be the RCA with set of statesΣ× (S × {+,−} ∪ {←,→}) simulating M on + and M−1

on − on two levels.

(3) In case of local inconsistency, invert polarity.

(4) The RCA is periodic iff M is periodic. ♦
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???

Open Problems with conjectures

Conjecture 1 It is undecidable whether a given complete 2-
RCM admits a periodic configuration. (proven if you remove
complete or replace 2 by 3)

Conjecture 2 There exists a complete RTM without a periodic
configuration. (known for DTM [BCN02])

→ solved by J. Cassaigne

Conjecture 3 It is undecidable whether a given complete RTM
admits a periodic configuration. (known for DTM [BCN02])
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