Substitutions et pavages | :
indécidabilité et pavabilite

Nicolas Ollinger

LIFO, Université d’Orléans

GdT GAMoC — 3 novembre 2011

LiEe



Avant-propos

Indécidabilité, pavages
et polyominos

Nicolas Ollingér
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Séminaire du LIFO — 21 février 2011

Undecidability of DP (e

Theorem|Berger 1964] DP is recursively undecidable.

Remark To prove it one needs aperiodic tile sets.

Idea of the proof

Enforce an (aperiodic) self-similar

structure using local rules. %E g%

Insert a Turing machine

computation everywhere using the

structure. ﬁ
Remark Plenty of different proofs!

2. The Polyormino Prablem

12724

The Domino Problem (DP) E

“Assume we are given a finite set of square plates of the
same size with edges colored, each in a different manner.
Suppose further there are infinitely many copies of each
plate (plate type). We are not permitted to rotate or reflect
a plate. The question is to find an effective procedure by
which we can decide, for each given finite set of plates,
whether we can cover up the whole plane (or, equivalently,
an infinite quadrant thereof) with copies of the plates
subject to the restriction that adjoining edges must have
the same color.” (Wang, 1961)

2. The Polyomino Problem 10724
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The Domino Problem (DP) E
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same size with edges colored, each in a different manner.
Suppose further there are infinitely many copies of each
plate (plate type). We are not permitted to rotate or reflect
a plate. The question is to find an effective procedure by
which we can decide, for each given finite set of plates,
whether we can cover up the whole plane (or, equivalently,
an infinite quadrant thereof) with copies of the plates
subject to the restriction that adjoining edges must have
the same color.”

(Wang, 1961)

2 [ c I |
ojojoln

1. Tilings 2/45




Wang tiles E

ofojejn

A tile set T < =% is a finite set of tiles with colored edges.

The set of T-tilings X+ < TZ is the set of colorings of 72 by
T where colors match along edges.

1. Tilings 3/45



Periodic Tilings E

Definition A tiling is periodic with period p if it is invariant
by a translation of vector p.

Lemma If a finite set of tiles admits a periodic tiling then it
admits a biperiodic tiling.

Lemma Finite sets of tiles tiling the plane biperiodically are
re (recursively enumerable).
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co-Tiling E

Lemma Finite sets of tiles tiling the plane are co-re.

Sketch of the proof Consider tilings of larger and larger square
regions. If the set does not tile the plane, by compacity, there
exists a size of square it cannot cover with tiles.

“ A
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Aperiodicity E

Definition A tiling is aperiodic if it admits no non-trivial
period.

Definition A set of tiles is aperiodic if it admits a tiling and
all its tilings are aperiodic.

Remark If there were no aperiodic finite set of tiles, the
Domino Problem would be decidable.
1. Tilings 6/45



Undecidability of DP ot

Theorem[Berger 1964] DP is undecidable.

Remark To prove it one needs aperiodic tile sets.

Seminal self-similarity based proofs (reduction from HP):
e Berger, 1964 (20426 tiles, a full PhD thesis)
e Robinson, 1971 (56 tiles, 17 pages, long case analysis)
e Durand et al, 2007 (Kleene’s fixpoint existence argument)

Tiling rows seen as transducer trace based proof:

Kari, 2007 (affine maps, short & concise, reduction from IP)
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In this talk [CiE 2008] rom

A new self-similarity based construction building on classical
proof schemes with concise arguments and few tiles:

1. two-by-two substitution systems and aperiodicity
2. an aperiodic tile set of 104 tiles
3. enforcing any substitution and reduction from HP

This work combines tools and ideas from:
[Berger 64] The Undecidability of the Domino Problem
[RObiI‘ISOh 71 ] Undecidability and nonperiodicity for tilings of the plane
[Griinbaum Shephard 891 Tilings and Patterns, an introduction
[Durand Levin Shen 05] Local rules and global order, or aperiodic tilings
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Tiling with a fixed tile

No halting tile.

1. Tilings
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Finite Tiling

1. Tilings
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Tiling with diagonal constraints E
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Topology

Definition A topological space is a pair (E, @) where
O c P(E) is the set of open subsets satisfying:

e (O contains both & and E;
e (O is closed under union;
e (O is closed under finite intersection.

S is endowed with the discrete topology: O = P(S).

s7% is endowed with the Cantor topology: the product
topology of the discrete topology.

0 = {[1X:|Xi = § A Card({ilX; = §}) < w}

Cantor topology is metric and compact.
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Cylinders

Definition The cylinder [m] < SZ% with radius > —1
generated by the pattern m € SI="71¢ s

[m] = {c c s ‘ Vp e 74, ||plle <7 = c(p) = m(p)}

L=y )

-r v

Proposition Cylinders are a countable clopen generating
set.

Notation [m] < [m'] means [m] is a sub-cylinder of [m'],
ie. [m'] c [m].
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Metric aar

Proposition Cantor topology is metric

d(c,c’)=1/8

Ve, o' € ST d(e,c)) = o~ min{[[pll.[er+cp}
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Compact

N
Proposition Every sequence of configurations (c;) € sz¢
admits a converging subsequence.

Proof by extraction:
By recurrence, let (c?) = (cj).

It is alway possible to find:
e a cylinder [m4] of radius n and

« an infinite subsequence ( "”) de ( 1+1>

such that for all i € N, c”+l € [myl.

By construction [my,4+1] C [my] and ( ”1) is a converging
subsequence of (c;) (to N[m;]): (¢ n+l (’)”2) <277,
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Koénig trees

Remark Cantor topology is essentially combinatorial.

Remark Main properties can be obtained using extraction.

Konig’s Lemma Every infinite tree with finite branching
admis an infinite branch.

Definition The Konig tree A¢ of a set of configurations
C < S is the tree (V¢, Ec) where

Ve
Ec

{fm]lCn[m] + O}
{(Im],[m']) | [m] < [m'] Ar([m']) =r([m]) + 1}

The root of the tree is the cylinder [] = SZ% of radius —1.
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Toppings

The Konig tree of a non empty set of configurations is an
infinite tree with finite branching.

i VAN
H B . HEE N |
| i

n_

To each infinite branch ([m;]) is associated a unique
configuration (\[m;].

Definition The topping A¢ of a Konig tree is the set of
configurations associated to its infinite branches.
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Koénig topology

The Konig topology is defined by its closed sets: toppings
of Konig trees.

The complementary of a closed set is the union of
cylinders that are not nodes of the tree.

Cantor and Konig topologies are the same.
Most topological concepts can be explained using trees:

e dense sets;
e closed sets with non empty interior;

compacity;
Baire’s theorem.
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Continuity

Proposition clopen sets are finite unions of cylinders.
Definition A mapping G : SZ* — §%% is local in p € 4 if
there exists a radius 7 such that:

Ve, o e ST [c‘y] = [c(r] = G(c)p =G(c)y

Proposition A mapping G : SZ* — SZ% is continuous if and
only if it is local in every point.
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Cellular automata

Definition A CA is a tuple (d,S,7, f) where S is a finite set
of states,;f € N is the neighborhood radius and
f:5@*+D% . S is the local rule of the cellular automaton.

A configuration ¢ € SZ% is a coloring of Z4 by S.

il Ul SN BN =i

The global map G : SZ* — SZ* applies f uniformly and

locally:
Vee St vzez?  F(o)(z) =flc(z=71),...,c(z+7)).
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Curtis-Hedlund-Lyndon Theorem

Definition The translation o : SZ* — SZ% with vector k € 74
satisfies:

Vc e Szd, Vp e 74, ox(C)p = Cp_k

Theorem[Hedlund 1969] Continuous mapping commuting
with translations are exactly global maps of CA.
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Symbolic dynamics

A central object in symbolic dynamics is the subshift.

Definition A subshift of SZ° is a set of configurations both
closed and invariant by translation.

Ex ...abaababaaa...

X = {ce {a,b}Z Vp €Z,cp =b = cpi1 =a}

2. Soficity 22/45



2 82
RS
SESES

Langage of a subshift

Definition The language L(X) of a subshift X is the set of
finite patterns appearing in X.

Proposition A subshift is characterized by its language.

Zz{ceszd“v’r>O,VmeS[‘T’T]d,m<c:>meL}

Warning It might be that L(L) 2 L.
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Forbidden words

Proposition A subshift is characterized by the set of its
forbidden words: the complementary of its language.

Proposition Subshifts are in bijection with minimal sets of
forbidden words (for set inclusion).

Ex X = Sy

2. Soficity 24/45
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SFT, tilings, soficity

Definition A subshift of finite type (SFT) is defined by a
finite set of forbidden words.

Remark SFT correspond to tilings: colorings with local
uniform constraints.

Definition A sofic subshift is the image of a SFT by a CA.

Proposition 1D sofic subshifts are subshifts that admit a
regular language of forbidden words.
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2D sofic subshifts

Proposition 2D sofic subshifts are tile-by-tile projections of
tilings by Wang tiles.

Goal Provide tools to manipulate and characterize 2D sofic
subshifts:

e constructions to characterize soficity;
e tools to prove non soficity.

What is a 2D rational language?

2. Soficity 26/45
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Subsitutions @E

2= {.! .’ .’ .}

S :. — . + rotations
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Two-by-two substitutions @

ol =

A 2x2 substitution s : X — X® maps letters to squares of
letters on the same finite alphabet.

e

The substitution is extended as a global map S : 3Z° — 52°
on colorings of the plane:
VzeZ7?, Vkem, S(c)(2z+k)=s(c(z))(k)
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Limit set and history @

v ()| |

The limit set As € 3Z° is the maximal attractor of S:

As= (8" (=7)),

teN

X,y EZ?

The limit set is the set of colorings admitting an history
(¢i)ien Where ¢; = S(ci+1) - U;.
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Unambiguous substitutions @

A substitution is aperiodic if its limit set Ag is aperiodic.

A substitution is unambiguous if, for every coloring C from
its limit set Ag, there exists a unique coloring C’ and a
unique translation u € @ satisfying C = u - S(C’).

Proposition Unambiguity implies aperiodicity.

Sketch of the proof. Consider a periodic coloring with
minimal period p, its preimage has period p/2. o

Idea. Construct a tile set whose tilings are in the limit set of
an unambiguous substitution system.
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Main result @

Theorem The limit set of a 2x2 substitution is sofic.

Idea To encode A; via local matching rules decorate s into
a locally checkable s* embedding a whole history.

Remark The key step is to construct an aperiodic tile set.
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Mozes 1990

Theorem[Mozes 1990] The limit set of a non-deterministic
rectangular substitution (+ some hypothesis) is sofic.
3. Substitutions 32/45



Goodman-Strauss 1998 @

Theorem[Goodman-Strauss 1998] The limit set of
homothetic substitution (+ some hypothesis) is sofic.

3. Substitutions 33/45
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combinatorial substitution (+ some hypothesis) is sofic.

Theorem[Fernique-O 2010] The limit set of a

3. Substitutions
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Coding tile sets into tile sets ¥

; X i T H|~y V/~v
A tile set T is a triple

(T,#,V) where H{ and V er2 E E M D
define hori | and ical

ol ke = 1 1 1
Definition A tile set o B . I] .

(T",H',V') codes a tile set coding tile set
(T,7H,V), according to a

codingrulet: T - T'Eif tis
injective and E
Xt ={u-t(C)|C € Xt,u € m}

coding rule

4.104 35/45



Unambiguous self-coding

Definition A tile set (T,H,"V) codes a substitution
s: T — T if it codes itself according to the coding rule s.

Proposition A tile set both admitting a tiling and coding an
unambiguous substitution is aperiodic.

Sketch of the proof. X;: € As and X + &. %

4.104 36/45



A coding scheme with fixpoint? ¥

Better scheme: not strictly layer 2 {-col  V-col corners

increasing the number of layer 2 E i i i
tiles.
- B HEN
Problem It cannot encode
- e 1 I 0
any layered tile set,

constraints between layer 1 coding tile set
and layer 2 are checked edge

by edge.

Patch Add a third layer with n -
one bit of information per

edge. coding rule
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Canonical substitution

Copy the tile in the SW corner @ o, B)
but for layer 1.

Put the only possible X in NE
that carry layer 1 of the
original tile on SW wire.

Propagate wires colors.

Let H et V tile propagate layer
3 arrows.

The substitution is injective.
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Aperiodicity: sketch of the proof ¥

1. The tile set admits a tiling:
Generate a valid tiling by iterating the substitution rule:
X'r N AS * @.

2. The substitution is unambiguous:
It is injective and the projectors have disjoined images.

3. The tile set codes the substitution:

(a) each tiling is an image of the canonical substitution
Consider any tiling, level by level, short case analysis.
(b) the preimage of a tiling is a tiling
Straightforward by construction (preimage remove
constraints).
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Enforcing substitutions via tilings

Let 71 map every tile of T(s")
to s’(a)(u) where a and u are
the letter and the value of ®
on layer 1.

Proposition. Let s’ be any
substitution system. The tile
set T(s’) enforces s’;

T (X—,—(S/)) = AS/.

i b :s(a)G)

Idea. Every tiling of T(s’) a

codes an history of S” and

every history of S” can be ' b =s(a) ()
encoded into a tiling of T(s’). a
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Back to DP 297?

Theorem The limit set of a 2x2 substitution is sofic.

Theorem[Berger 1964] DP is undecidable.

Idea Construct a 2x2 substitution whose limit set contains
everywhere squares of larger and larger size, insert Turing
computation inside those squares.

5. Conclusion 43/45



To conclude
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Encart publicitaire
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