A
Small Minimal Aperiodic Reversible Turing machine

Nicolas Ollinger (LIFO, Univ. Orléans, France)

joint work with J. Cassaigne, R. Torres and A. Gajardo

Journée GAMoC — June 7th, 2013
Motivation

Solve a conjecture that we had with J. Kari a few years ago:

Periodicity and Immortality in Reversible Computing

Jarkko Kari (Dpt. of Mathematics, University of Turku, Finland)
Nicolas Ollinger (LIF, Aix-Marseille Université, CNRS, France)

Toruń, Poland — August 27, 2008

Open Problems with conjectures

Conjecture 1 It is undecidable whether a given complete 2-RCM admits a periodic configuration. (proven if you remove complete or replace 2 by 3)

Conjecture 2 There exists a complete RTM without a periodic configuration. (known for DTM [BCN02])

Conjecture 3 It is undecidable whether a given complete RTM admits a periodic configuration. (known for DTM [BCN02])

Theorem To find if a given complete reversible Turing machine admits a periodic orbit is Σ_1^0-complete.
1. Dynamics of Turing machines
Turing machines

Definition A **Turing machine** is a triple \((Q, \Sigma, \delta)\) where \(Q\) is the finite set of states, \(\Sigma\) is the finite set of tape symbols and \(\delta : Q \times \Sigma \rightarrow Q \times \Sigma \times \{\leftarrow, \rightarrow\}\) is the transition function.

Transition \(\delta(s, a) = (t, b, d)\) means:

"in state \(s\), when reading the symbol \(a\) on the tape, replace it by \(b\) move the head in direction \(d\) and enter state \(t\)."

Remark We do not care about blank symbol or initial and final states, we see Turing machines as dynamical systems.
Moving head dynamics

\[X_H = Q \times \mathbb{Z} \times \Sigma^\mathbb{Z} \cup \Sigma^\mathbb{Z} \]

\[T_H : X_H \rightarrow X_H \]

Long shot
Moving tape dynamics

\[X_T = Q \times \Sigma^\mathbb{Z} \]

\[T_T : X_T \rightarrow X_T \]

Tracking shot
Trace subshift

\[S_T \subseteq (Q \times \Sigma)^\omega \]

Point of view shot
Definition A point $x \in X$ is **periodic** if it admits a period $p > 0$ such that $T^p(x) = x$.

Definition A machine is **periodic** if every point is periodic.

Remark Periodicity implies uniform periodicity: $T^p = \text{Id}$.

Theorem[KO08] The **periodicity problem** is Σ^0_1-complete.

Definition A machine is **aperiodic** if it has no periodic point.
Partial vs complete machines

Definition A TM is complete if \(\delta \) is completely defined, otherwise undefined transitions of a partial \(\delta \) correspond to halting configurations.

Definition A point is mortal if it eventually halts.

Thm[Hooper66] The immortality problem is \(\Pi^0_1 \)-complete.

Rk Mortality is different from totality which is \(\Pi^0_2 \)-complete.

Thm[KO08] The result is the same for reversible TM.
2. Reversible Turing machines
Intuitively, a TM is reversible if there exists another TM to compute backwards: “$T_2 = T_1^{-1}$”. Forget technical details...

Definition A TM is reversible if δ can be decomposed as:

$$
\delta(s, a) = (t, b, \rho(t)) \quad \text{where} \quad (t, b) = \sigma(s, a)
$$

$$
\rho: Q \rightarrow \{\leftarrow, \rightarrow\}
$$

$$
\sigma \in \mathcal{S}_{Q \times \Sigma}
$$

Remark $\delta^{-1}(t, b) = (s, a, \Diamond(\rho(s)))$
A complete RTM

It is **time-symmetric**: its own inverse up to state/symbol permutation.

\[
\begin{align*}
1 & \leftrightarrow 2 \\
b & \leftrightarrow p \\
d & \leftrightarrow q
\end{align*}
\]
We want to prove the following:

Theorem To find if a given complete reversible Turing machine admits a periodic orbit is Σ_1^0-complete.

In the partial case we use the following tool:

Prop[KO08] To find if a given (aperiodic) RTM can reach a given state t from a given state s is Σ_1^0-complete.
The partial case

Principle of the reduction Associate to an (aperiodic) RTM \mathcal{M} with given s and t a new machine with a periodic orbit if and only if t is reachable from s.

We need to find a way to **complete** the constructed machine.
3. a SMART machine
Cassaigne machine

 Conj[Kůrka97] Every complete TM has a periodic point.

 Thm[BCN02] No, here is an aperiodic complete TM.

 Rk It relies on the bounded search technique [Hooper66].

In 2008, I asked J. Cassaigne if he had a reversible version of the BCN construction...

...he answered with a small machine C which is a reversible and (drastic) simplification of the BCN machine.
Proposition The machine \mathcal{C} is aperiodic.

Idea of the proof (R. Torres)

1. The behavior starting from a tape of 0 is aperiodic;
2. Every block of 0 eventually grows;
3. Thus \mathcal{C} is aperiodic.
Minimality

The behavior of \mathcal{C} can be precisely described (R. Torres).

Proposition The behavior starting from a tape of 0 is dense.

Proposition The trace subshift of \mathcal{C} is minimal.

Proposition The trace subshift of \mathcal{C} is substitutive.
4. Embedding the machine
Embedding trick

Use the transitions of the Cassaigne machine to connect the u_i' to the u_i and the v_i' to the v_i.
Table of contents

1. Dynamics of Turing machines

2. Reversible Turing machines

3. a SMART machine

4. Embedding the machine