
Multiple Networks for

Heterogeneous Distributed Applications

PDPTA’07

Sylvain Jubertie, Emmanuel Melin

Laboratoire d’Informatique Fondamentale d’Orléans (LIFO)
Université d’Orléans

Orléans, France

Abstract - We have experienced in our dis-

tributed applications that the network is the main

limiting factor for performances on clusters. In-

deed clusters are cheap and it is easier to add

more nodes to extend the computing capacity

than to switch to costly high performance net-

works. Consequently the developer should espe-

cially take care of communications and synchro-

nizations in its application design. The FlowVR

middleware offers a way to build distributed ap-

plications independently of a particular commu-

nication or synchronization scheme. This eases

the design of distributed applications indepen-

dently of their coupling and mapping on clus-

ters. Moreover we propose a performance pre-

diction model for FlowVR applications which is

adapted to heterogeneous SMP clusters with mul-

tiple networks. In this paper we present an analy-

sis of communication schemes based on our per-

formance prediction model. We give some ad-

vices to the developer to optimize communica-

tions in its mappings. We also show how to

use multiple networks on heterogeneous clusters

to balance network load and decrease communica-

tion times. Since the FlowVR model is very close

to underlying models of lots of distributed codes,

our approach can be useful for all developers of

such applications.

Keywords: multiple networks, distributed applica-

tions, performance prediction, FlowVR

1 Introduction

Heterogeneous distributed applications are difficult
to map efficiently on clusters. Each module of the
application can have very different requirements in
term of processor load, memory, or storage. Some

modules can be mapped on the same nodes and the
developer should consider the scheduler policy to
determine the impact of concurrency. The devel-
oper should also introduce asynchronism between
modules to exploit the intrinsic asynchronism of
clusters and at the same time ensure that the syn-
chronization scheme is still coherent. Some mod-
ules may be distributed on several nodes like for
example MPI-based applications. Consequently to
take advantage of the cluster performance the de-
veloper should design an efficient mapping. When
considering large applications this task becomes
more complex. It is even more difficult if we con-
sider clusters composed of heterogeneous nodes.

The FlowVR framework [1][2] allows to design
such distributed applications. It was primarly de-
sign with distributed Virtual Reality applications
in mind but its model is general enough to consider
non-interactive distributed applications. The de-
veloper creates each of its modules independently
and then defines communications and synchroniza-
tions between them. Each module is then mapped
on the cluster nodes. To provide an efficient map-
ping we propose in [3] a performance prediction
method for FlowVR applications. With this tool we
provide performance informations for each module
of a mapping on a given cluster.

In [3] we apply this method on a distributed ap-
plication to determine an efficient mapping. We
optimize computation performance of each module
to take advantage of the computation capacity of
SMP nodes of the clusters. Whereas we were able
to design efficient mappings for computation perfor-
mances, we were limited in several cases by network
bottlenecks. But we have performance margins for
network communications. It is possible to optimize
communication schemes or to use multiple networks
to reach even more efficient mappings.



We propose in this paper a more precise anal-
ysis of the impact of communication schemes on
performances. We first present a brief description
of the FlowVR framework and of our performance
prediction method. Then we will study influence
of several communication schemes on a distributed
application. We also present how to use multiple
networks to increase communication performances
and consider larger problems.

2 The FlowVR framework

2.1 FlowVR

FlowVR is an open source middleware dedicated to
distributed interactive applications and currently
ported on Linux and Mac OS X for the IA32, IA64,
Opteron, and Power-PC platforms. The FlowVR li-
brary is written in C++ and provides tools to build
and deploy distributed applications over a cluster.
More details can be found in [1]. We turn now to
present its main features.

A FlowVR application is composed of two main
parts, a set of modules and a data-flow network
ensuring data exchange between modules. The user
has to create modules, compose a network and map
modules on clusters hosts.

2.1.1 Modules

Modules encapsulate tasks and define a list of in-
put and output ports. A module is an endless iter-
ation reading input data from its input ports and
writing new result messages on its output ports.
Messages are also associated with lightweight data
called stamps that identify the message and al-
low routing operations. A module uses three main
methods:

• The wait function defines the beginning of a
new iteration. It is a blocking call ensuring
that each connected input port holds a new
message.

• The get function obtains the message available
on a port. This is a non-blocking call since the
wait function guarantees that a new message
is available on each module ports.

• The put function writes a message on an out-
put port. Only one new message can be writ-
ten per port and iteration. This is a non-
blocking call, thus allowing to overlap compu-
tations and communications.

Note that a module does not explicitly address
any other FlowVR component. The only way to
gain an access to other modules are ports. This fea-
ture enforces possibility to reuse modules in other
contexts since their execution does not induce side-
effect. An exception is made for parallel mod-
ules (like MPI executables) which are deployed via
duplicated modules. They exchange data outside
FlowVR ports, for example via the MPI library but
they can be apprehended as one single logical mod-
ule. Therefore parallel modules do not break the
FlowVR model.

2.1.2 The FlowVR Network

The FlowVR network is a data flow graph which
specifies connections between modules ports. A
connection is a FIFO channel with one source and
one destination. This synchronous coupling scheme
may introduce latency due to message bufferization
between modules which can induce buffer overflows.
To prevent this behavior, interactive applications
classically use a ”greedy” pattern where the con-
sumer uses the most recent data produced, all older
data being discarded. This is relevant for example
when a program just needs to know the most re-
cent mouse position. In this case older positions are
usefulness and processing them just induces extra-
latency. FlowVR enables to implement such com-
plex message handling tasks without having to re-
compile modules. To perform these tasks FlowVR
introduces a new network component called a filter.
Filters are placed between modules onto connection
and have an entire access to incoming messages.
They have the freedom to select, combine, create
or discard messages.

A special class of filters, called synchronizers,
implements coupling policies. They only receive /
handle / send stamps from other filters or modules
to take a decision that will be executed by other
filters. This detached components makes possible
a centralised decision to be broadcasted to several
filters with the aim to synchronize their policies.
For example, a greedy filter is connected to a syn-
chronizer which selects in its incoming buffer the
newest stamp available and sends it to the greedy
filter. This filter then forwards the message associ-
ated with this stamp to the downstream module.

The FlowVR network is implemented by a dae-
mon running on each host. A module sends a mes-
sage on the FlowVR network by allocating a buffer
in a shared memory segment managed by the local
daemon. If the message has to be forwarded to a
module running on the same host, the daemon only



forwards a pointer on the message to the destina-
tion module that can directly read the message. If
the message has to be forwarded to a module run-
ning on a distant host, the daemon sends it to the
daemon of the distant host. Using a shared memory
enables to reduce data copies for improved perfor-
mances. Moreover a filter does not run in its own
process. It is a plug-in loaded by FlowVR daemons.
The goal is to favor the performance by limiting
the required number of context switches. As a con-
cequence the CPU load generated by the FlowVR
network management can be considered as negligi-
ble compared to module load.

2.2 Performance prediction

Our complete performance prediction method for
FlowVR applications is described in [3]. For the
sake of clarity we only present in this paper the
main principles of our method.

To determine performances we only require few
informations. For each module we need to know :

• its execution time : the time needed to per-
form its computation and its I/O operations
when there is no concurrent modules on the
processor.

• its processor load : the percentage of the exe-
cution time used for computation and not I/O
operations.

• the amount of data sent on each output port.

If the cluster is composed of heterogeneous pro-
cessors then we need the previous informations for
each kind of processor. Because FlowVR modules
are independent it is possible to test each one with-
out having to run the whole application.

The global application performance depends on
the synchronization scheme and concurrency be-
tween modules. If a module is synchronized with
its predecessor then it should wait until it receives
a new message. We define the iteration time Tit of
a module as the time between two consecutive calls
to the wait function. If two modules are mapped on
the same node then the operating system scheduler
may interleave their executions and change their
performances. We define the concurrent execution
time Tcexec as the time needed by a module to
perform its computation and I/O operations when
other modules are mapped on the same processor.
Our goal is to provide for each FlowVR module its
iteration time Tit and its concurrent execution time
Tcexec. With these informations we will be able to
predict the amount of data sent and received on

each network interface and to determine if network
contentions may occur. We can also predict latency
between FlowVR objects which is a useful infor-
mation for interactive applications like for example
Virtual Reality ones.

2.2.1 Synchronizations

Performances are predicted from the application
graph Gappl : a set of FlowVR objects mapped on
cluster nodes and connected together with directed
FlowVR connections. Gappl contains synchroniza-
tions between modules and module locations on the
cluster. This allow to determine if some modules
are synchronized and wait for messages, and if sev-
eral modules are mapped on the same nodes. With
these constraints we are able to predict the behav-
ior of each module in the application.

We first determine if Gappl is correct. Indeed
some graph configurations are known to generate
buffer overflows or unexpected performances. We
have shown in the previous section that greedy fil-
ters are used to prevent buffer overflows. Moreover
modules connected through greedy filters are run-
ning asynchronously. This removes performance
constraints between theses modules. Consequently
we can remove greedy connections from Gappl in
our study and only keep FIFO connections. The
resulting graph Gsync may not stay connected. In
this case we have several components. Figure 1
shows an example of an application graph and its
corresponding Gsync which has two components.
We turn now to show that modules in a compo-
nent can have only one common predecessor mod-
ule or predecessor modules arranged in a cycle. In
this last case we have a predecessor cycle. If this
condition is not satisfied then there is at least a
module in the component with more than one in-
dependent predecessor. In this case these predeces-
sors may have different execution times and con-
sequently send messages to the module at differ-
ent rates. Because the wait function imposes to
have one message on all input ports, the module
waits for the message of the slowest predecessor.
Consequently the other messages are accumulated
into the buffer until it generates a buffer overflow.
Modules from the same component should have the
same iteration time because they are synchronized
by the component predecessor. If this constraint is
not respected then it means that for a module m
we have Tcexec(m) > Tit(m) i.e. m is slower than it
predecessor and consequently messages from it are
accumulated in the buffer which leads to a buffer
overflow. This way we are able to warn the de-



Figure 1: Example of an application graph Gappl and its decomposition in Gsync and Gdep

veloper if his mapping may generate errors and to
point out incorrect configurations.

2.2.2 Concurrency

To predict performances we also take into account
the concurrency between modules mapped on the
same cluster node because the scheduler may in-
terleave their executions and change the time they
need for computation. The way the processor load
is distributed between modules depends on the
scheduler policy. In our study we choose to model
the Linux scheduler policy [4, 5] which gives the
priority to modules which wait the most.

To represent concurrency relations between
modules we add edges into Gsync from concur-
rent modules to predecessor modules mapped on
the same processor. We distinguish these edges re-
lated to concurrency from synchronization edges in
Gappl. The resulting graph is called the dependency
graph Gdep. Figure 1 shows an example of an ap-
plication graph and its corresponding dependency
graph Gdep. Then we can consider independently
each component in Gdep. We first check for cycles
to determine interdependencies between predeces-
sors. In figure 1, if mod2 and mod3 were mapped
on the same node then we would have a cycle. If
several predecessors are in the same cycle then per-
formance of each predecessor depends on the per-
formance of the other ones and we are not able to
directly determine Tcexec of modules in the cycle.
In this case we propose to consider the execution
time of one predecessor module as its Tcexec and to
propagate it to determine the Tcexec of the other
modules following the cycle order. We repeat this
process along the cycle until we reach convergence
of the concurrent execution time for each module.
But in some cases concurrent execution times may
oscillate because this process changes the iteration

time of each module and can modify the priority be-
tween them. But we are able to determine for each
module its minimal and maximal Tcexec which is
obtained respectively when the scheduler gives the
highest and the lowest priority. However we should
avoid this behavior for interactive applications or
if we want a module to have the lowest possible
Tcexec. In this case the developer should tune the
scheduler to change the priority of modules or bind
modules on processors.

Once we have determined Tcexec for each prede-
cessor module, we can then compute Tcexec for the
other modules. We should also verify that for all
modules we have Tcexec ≤ Tit. If this is not the
case then it means that a module receives messages
at a higher rate than it computes. Messages are
then accumulated in the buffer leading to a buffer
overflow.

At this step for each module we have its Tcexec,
its Tit and we are able to point out a module which
can generate buffer overflows. With these infor-
mations we are able to compare mappings and to
choose the one which takes the best advantage of
the cluster processors. However we cannot guaran-
tee that the best mapping we obtain at this level
is the best application mapping. Indeed if we opti-
mize modules iteration times then we increase the
amount of communications between modules. This
can lead to network contentions. Consequently
we should study the communication scheme of the
mapping to verify if it is compatible with the mod-
ule performances.

2.2.3 Communications

In this section we determine the amount of data
sent and received on each network interface from
Gappl.

We assume that communications between ob-



jects mapped on the same node are free because
messages are stored in a shared memory and lo-
cal objects only exchange pointers to messages. In
our study we consider networks with point-to-point
connections in full-duplex mode. Each network Ni
has a given bandwidth BWi and latency Li.

We also assume that synchronizer communica-
tions are negligible compared to other communica-
tions. Indeed even if synchronizations occured at
the frequency of the fastest module involved in the
synchronization, they require only few stamp infor-
mation compared to the size of the message sent by
this module.

Consequently we define a new graph Gcomm

which is obtained from Gappl by removing synchro-
nizers. We also add additional edges in Gcomm to
represent communications out of the FlowVR com-
munication scheme, for example communications
between several instances of a MPI module. For
each iteration we add output edges and input edges
respectively to and from other MPI instances. We
define for each edge e :

• a source object src(e) which is the FlowVR
object sending a message through e.

• a destination object dest(e) which is the
FlowVR object receiving message from src(e).

• a volume V (e) of data sent through it. It is
equal to the size of the message sent by src(e).

We provide a function node(o) which returns the
node hosting a given FlowVR object o.

For the sake of clarity in the following sections
we define the frequency of a module m as follow :

F (m) =
1

Tit(m)
(1)

Indeed the volume of data sent by a module de-
pends only on its frequency.

We begin our study by a traversal of Gcomm to
determine for each filter its frequency and the data
volume it received and sent. The frequency of a fil-
ter depends on its nature. For a greedy filter fgreedy

it is equal to the frequency of the destination mod-
ule mdest : F (fgreedy) = F (mdest). For a broad-
cast filter it is equal to the frequency of the source
object osrc : F (fbroadcast) = F (osrc). The data
volume sent by a filter depends also on its nature.
For example a broadcast filter sends the message it
receives on its output ports without modifying its
size whereas a merge filter sends only one message
which contains messages it receives. For each edge
in Gcomm we are able to compute the data volume

sent through it in a second by multiplying the fre-
quency of its source object by the amount of data
sent through it.

Then we can determine for each node the band-
width BWs required to send data on a given net-
work. This is done by adding data volumes of each
edge e connected from this node (src(e)) to another
node (dest(e)) through this network :

BWs(n) =

node(src(e)) 6=node(dest(e))∑

node(src(e))=n

V (e)×F (src(e))

(2)
We can also determine the bandwidth BWr

needed by a cluster node n to receive its data :

BWr(n) =

node(src(e)) 6=node(dest(e))∑

node(dest(e))=n

V (e)×F (src(e))

(3)
If the required bandwidth is greater than the

available network bandwidth then messages are ac-
cumulated in the sending buffer until it is full and
we have a buffer overflow error. This way we are
able to point out network bottlenecks in application
mappings.

2.2.4 Latency between FlowVR objects

The latency represents the time needed by a mes-
sage to be propagated from a FlowVR object to
another through the application graph. In inter-
active applications, like Virtual Reality ones, the
latency is critical between interaction and visual-
ization modules, the user should see the result of
its interaction within the shortest possible delay to
keep an interactive feeling.

We determine the latency between two objects
from a path the message should follow between
them. A path contains a set of FlowVR objects
and edges between them. We assume that filters
like broadcast or merge ones do not introduce la-
tency. We compute the latency by adding iteration
times of each module in the path and the network
latency for each edges. This latency is reached in
the best case when a module has no concurrent and
consequently its messages are not buffered. If sev-
eral modules are mapped on the same node then
their messages are buffered and sent one by one.
This process add extra latency and in the worst
case messages from other modules mapped on the
same node and sent on the same network are stored
in the buffer. Consequently we add the time each
other message needs to be sent through the network
to the best case latency. This way we obtain the
latency in the worst case situation.



If the latency is too high then the developer
should minimize it by increasing frequencies of
modules in the path or by mapping several mod-
ules on the same node to reduce communication
latencies.

3 Case study

We illustrate our approach with our fluid-particles
application. In [3] we have shown that we were
able to optimize frequencies of the different mod-
ules. We now study optimizations of the communi-
cation schemes.

3.1 The cluster

Our cluster consists of two different sets of nodes.
The first set (nodes 1 to 8 in figure 2 ) is built with
dual Xeon processors interconnected with a gigabit
Ethernet and a Myrinet network. The second one
(nodes 11 to 18) with 8 dual-core dual Opteron pro-
cessors networked with two gigabit Ethernet inter-
faces. This cluster is giving a total of 48 processors.

To visualize our applications we use a display
wall of 4 projectors (2x2), each one connected to a
different node.

Figure 2: The cluster and its networks

3.2 The application

The fluid-particles application is composed of the
following modules :

• the flow simulation module based on an MPI
version of the Stam’s simulation [6] computes
fluid forces. The fluid is discretized on a
500x500 grid.

• the particle system module adds forces from
the simulation to a set of particles. We con-
sider a set of 400x400 particles.

Figure 3: The fluid-particle application simplified
dataflow graph

• the viewer module transforms particles into
graphical primitives.

• the renderer module displays the scene on the
screen. They must be mapped on nodes with
projectors connected to it.

• the joypad module which we is enabled if the
simulation runs at an interactive frequency to
interact with the fluid.

The data flow of the application is described in
figure 3.

The flow simulation may be distributed over sev-
eral nodes to increase its frequency. In this case
each node only consider a local subdomain of the
simulation. After each iteration of the simulation
module subdomains are sent to merge filters in or-
der to create the global domain. Then we use a bi-
nary broadcast scheme to send the global domain to
each instance of the particle system module. Par-
ticles are then transformed by the viewer module
and broadcasted to each renderer module.

An example of an automatically generated graph
with only two instances of each module is shown
in figure 4. Even in this simple case the graph
contains a total of 40 FlowVR objects. It illus-
trates the complexity for the developer to map ef-
ficiently each object of the application without a
performance model. For the sake of clarity we only
consider a simplified representation of the graph in
the following sections.



3.3 Performance predictions and re-

sults

We study three different cluster configurations to
show how to apply our approach in each case. First
the application is mapped on an homogeneous clus-
ter with only one network. Then we add a second
network and we modify the communication scheme
to show how to take advantage of the two networks.
Finally we consider an heterogeneous cluster with
three different networks. In each case we study sev-
eral mappings to show how to optimize both mod-
ule frequencies and communication schemes.

3.3.1 Homogeneous cluster connected with

one network

We first consider a cluster with eight dual proces-
sor nodes (nodes 1 to 8 in our cluster on figure 2)
connected with a gigabit Ethernet network.

Modules are mapped as described in table 1. The
simulation is mapped on four nodes with two in-
stances by node to take advantage of the dual pro-
cessors.

The particles, viewer and renderer modules are
mapped on the same nodes and we should take
care of the concurrency between them to deter-
mine their concurrent execution time. The parti-
cles and the viewer modules have a highest priority
over the renderer module because they are wait-
ing more. Thus the scheduler should map the par-
ticles and the viewer modules on different nodes
and the renderer module do not run at full speed.
We note that Tcexec(particles) + Tcexec(viewer) <
Tcexec(simulation). This means that the particles
and the viewer modules are not executed at the
same time because when a message is sent by the
simulation it is processed by the particles module
then by the viewer module and the simulation has
not yet sent a new message. The consequence of
this remark is that we can tell the scheduler to bind
the particles and the viewer modules to the same
processor. In this last case the renderer module is
bind to the other processor to take the best ad-
vantage of it. This is what we have done for this
mapping.

We first verify for each module that the concur-
rent execution time is not greater than the iteration
time. Then we compute the amount of data sent
and received by each node. The simulation grid of
500 × 500 is distributed on four nodes, each node
with a 250 × 250 (62500 cells) local grid. Each cell
in the grid contains a vector of two floats (8 bytes)
representing a force. On node 5 1.5MB are gath-
ered per iteration from the other simulation nodes

to build the full grid of 2MB which is then broad-
casted to nodes 1 and 3. The iteration time of the
simulation is equal to 80ms, consequently we have
BWr(node5) = 18.75MB/s. and BWs(node5) =
50MB/s. We apply the same reasoning to node
1 which receives simulation data from node 5 and
viewer data from nodes 2, 3 and 4. It also sends
viewer data to renderer modules on nodes 2, 3
and 4. We obtain BWr(node1) = 37MB/s and
BWs(node1) = 12MB/s. The required bandwidth
doesn’t exceed the physical bandwidth of the gi-
gabit Ethernet network. Consequently we predict
that this mapping will work.

Results of the mapping are shown in table 1.
The application runs as expected. We note that
the concurrent execution time of the renderer varies
from 25ms to 35ms because it depends on the scene
view point and the number of visible particles.

We now try the same mapping on the eight other
nodes with the same network (table 2). For each
simulation node we have four instances of the sim-
ulation to take advantage of the four processors.

We expect the simulation to be twice as fast as
in the previous mapping.

We predict a buffer overflow because the broad-
cast filter on node 15 will send messages of 2MB
per iteration to node 11 and 13. Consequently we
have BWs(node15) = 100MB/s which is greater
than the available bandwidth of the gigabit Ether-
net network.

Indeed the application failed few iterations af-
ter we launched it. Results of theses iterations are
shown in table 2. We note that the renderer mod-
ule is four times faster on theses nodes. This is
due to the different graphic cards and especially to
the larger bus between the memory and the graphic
card.

We now propose to add a second network to solve
this problem.

3.3.2 Homogeneous cluster connected with

two networks

With a second network we can decrease the com-
munication latency by splitting each message over
the two networks. This requires some work but it
is very facilitated by the FlowVR library. We need
to add scatter filters after each output port and
merge filters before each input port. Another so-
lution is to bind communications between modules
to a given network.

To remove the bottleneck of the previous map-
ping we choose this last solution. We use the two
available networks to perform the broadcast from



Module Nodes Prediction(ms) Results(ms)
Tit Tcexec Tit Tcexec

Simulation {5, 6, 7, 8} 80 80 81 81
Particles {1, 2, 3, 4} 80 20 81 20
Viewer {1, 2, 3, 4} 80 15 81 15
Renderer {1, 2, 3, 4} 40 40 30-40 30-40

Table 1: Performance on 8 homogeneous nodes (2 processors/node)

Module Nodes Prediction(ms) Results(ms)
Tit Tcexec Tit Tcexec

Simulation {15, 16, 17, 18} 40 40 42 42
Particles {11, 12, 13, 14} 40 20 42 18
Viewer {11, 12, 13, 14} 40 15 42 14
Renderer {11, 12, 13, 14} 10 10 7-12 7-12

Table 2: Performance on 8 homogeneous nodes (4 processors/node)

node 15 to node 11 and 13. Each message is sent
through a different network. With this configura-
tion only 50MB/s are emitted on each network.

Node 11 receives 50MB/s from the simulation
and also 24MB/s from the viewer modules on nodes
12, 13 and 14. Consequently we do not exceed the
network bandwidth.

Results are the same as the previous mapping
(table 2) with a single network but this time the
application runs without buffer overflows.

3.3.3 Heterogeneous cluster and networks

We now consider our application on the full cluster
with 16 nodes (figure 2). Our goal is to reduce the
execution time of the simulation to have the best
performances, to maximize the number of particles
to catch fine details like vortices in the flow, and
to have an interactive visualization with at least 20
frames per second.

Consequently we use the eight nodes with four
processors for a total of 32 processors for the simu-
lation. If we use all these processors we can predict
that the simulation execution time will decrease to
20ms because the simulation complexity is linear.
However this means that the simulation will pro-
duce 200MB/s and our networks are not able to
transmit this amount of data. Moreover in the pre-
vious mapping we have a concurrent execution time
which is equal to 40ms and which corresponds to
a frequency of 25Hz. This frequency is sufficient
if we consider that the visualization should run at
least at 20Hz to be interactive. Thus we only need
16 processors for the simulation i.e. four dual-core
dual processor nodes or eight dual processor nodes.

The next step is to increase the number of par-

ticles. We are limited in this case by the network
bandwidth but also by the graphic card capacities.
We have also a constraint on the number of proces-
sor but it is not the most restrictive one. In the first
mapping (table 2) the renderer modules on nodes 1
to 4 run at 25Hz (Tcexec(renderer) = 40ms). If we
increase the particle system then we decrease the
renderer module frequency which will not be in-
teractive anymore. Consequently we can not take
advantage of the Myrinet network to consider more
particles. We can use more powerful graphic cards
on nodes 11 to 14 to remove this bottleneck. If we
map particles and viewer modules on nodes 11 to
14 we are in the same case described in the pre-
vious section : an homogeneous cluster with two
networks. Thus we are limited by node 11 which
receives a total of 74MB/s and we are too close to
the network bandwidth to consider more particles.

The last possibility is to map particles and
viewer modules on nodes 1 to 8. We run two in-
stances of each one on each node to take advantage
of the two processors and to reduce the latency of
the application. In this case node 1 receives the
global grid from the simulation and then broad-
cast it through the Myrinet network. Then each
viewer module send its data to each renderer mod-
ule through the gigabit network which can send and
receive data at around 80MB/s. If the simulation
runs at 25Hz we can transmit a maximum of 3.2MB
of data per iteration which corresponds to a set of
around 600x600 particles.

Regarding all these parameters we propose the
mapping described in table 3. Results are really
close to our prediction. We can also show that
only four nodes are sufficient to perform the com-
putation on particles. Indeed with four nodes and



Module Nodes Prediction(ms) Results(ms)
Tit Tcexec Tit Tcexec

Simulation {15, 16, 17, 18}, 40 40 44 44
Particles {1, 2, 3,..., 8} 40 5 44 5
Viewer {1, 2, 3,..., 8} 40 4 44 4
Renderer {11, 12, 13, 14} 20 20 25-35 25-35

Table 3: Performance on an heterogeneous cluster

two instance of the particles and viewer modules
on each one we predict that Tcexec(particles) =
10ms and Tcexec(viewer) = 9ms and we
still have Tcexec(particles) + Tcexec(viewer) <
Tcexec(simulation). This information is useful on
large clusters running several applications to opti-
mize the number of nodes for each one.

4 Conclusion

The FlowVR library highly facilitates the coupling
of distributed applications. The developer can map
each part of the application and synchronize them
without adding modifications to the code. Facili-
ties provided by FlowVR are necessary to abstract
a distributed application from the underlying clus-
ter. But this is not sufficient to provide good perfor-
mance to a distributed application because FlowVR
does not provide its own performance model. Con-
sequently without performance model we are not
able to choose a mapping with expected perfor-
mances.

Our performance prediction model gives to the
developer a mean to determine its mapping perfor-
mances. This way it is possible to compare several
mappings and to find the most efficient of them.
Once again it is a useful tool but it doesn’t give in-
formations on how to obtain the best mapping for
a distributed application on a given cluster.

In this paper we have shown that it is possible
to use our performance prediction model to opti-
mize communication schemes in our applications.
Indeed it is often the main performance limitation
for applications distributed on clusters and adding
more nodes in a cluster does not solve this problem.
However this constraint limits the number of map-
pings to study and gives to the developer a mean to
obtain good mappings without having to consider
all the possible parameters. For example it can
limit the number of instances per module or the
choice of the network to use. Consequently we are
able to determine if only a subdomain of the clus-
ter is sufficient. Then the remaining available nodes
can be used for other applications. Our approach

also allows to determine if an application can run
on a given cluster with the expected performances.
If this is not the case we are able to point out the
limiting factor and to determine the least cluster
configuration able to run the application. Thus we
avoid expensive and non efficient investments.

The next step in our approach is to provide au-
tomated tools which integrates our model to as-
sist the developer in his mapping creation and op-
timization. We also plan to provide a solver for
automatic optimization of mappings based on clus-
ter constraints, like network bandwidth, and con-
straints defined by the developer, for example a
minimum frame rate for a visualization module.

References

[1] J. Allard, V. Gouranton, L. Lecointre, S. Limet,
E. Melin, B. Raffin, and S. Robert. Flowvr: a
middleware for large scale virtual reality appli-
cations. In Proceedings of Euro-par 2004, Pisa,
Italia, August 2004.

[2] J. Allard, C. Ménier, E. Boyer, and B. Raffin.
Running large VR applications on a PC clus-
ter: the FlowVR experience. In Proceedings of
EGVE/IPT 05, Denmark, October 2005.

[3] S. Jubertie and E. Melin. Mapping and
performance prediction for distributed appli-
cations on heterogeneous clusters. Techni-
cal report, LIFO, 2007. http://www.univ-
orleans.fr/lifo/rapports.php.

[4] J. Aas. Understanding the Linux 2.6.8.1
cpu scheduler. http://citeseer.ist.psu.edu/
aas05understanding.html.

[5] D. P. Bovet and M. Cesati. Understanding the
Linux Kernel, Third Edition, chapter 7. Oreilly,
2005.

[6] J. Stam. Real-time fluid dynamics for games. In
Proceedings of the Game Developer Conference,
March 2003.



scene dt keysmouse beginIt

Visu/render/0
(node1)

outdt outkeysmouse outkeys endIt

_c38_c40

scene dt keysmouse beginIt

Visu/render/1
(node1)

outdt outkeysmouse outkeys endIt

_c39 _c41

Greedy/Render/Viewer/0/sync/0
(node1)

_c58

Greedy/Render/Viewer/1/sync/0
(node1)

_c73

Greedy/Render/Viewer/0/sync/1
(node1)

_c59

Greedy/Render/Viewer/1/sync/1
(node1)

_c74

positionx positiony beginIt

Simulation/0
(node1)

velocity pointer endIt

Greedy1/in/0
(node1)

_c18

f0/1
(node1)

_c30

GreedyX/sync/0
(node1)

_c4

GreedyY/sync/0
(node1)

_c13

positionx positiony beginIt

Simulation/1
(node1)

velocity pointer endIt

Greedy1/in/1
(node2)

_c19_c31

GreedyX/sync/1
(node1)

_c5

GreedyY/sync/1
(node1)

_c14

velocity beginIt

Particles/0
(node1)

positions endIt

positions pointer beginIt

Viewer/0
(node1)

scene endIt

_c36

velocity beginIt

Particles/1
(node1)

positions endIt

positions pointer beginIt

Viewer/1
(node1)

scene endIt

_c37

Greedy1/sync/0
(node1)

_c24

MaxFrequencySynchronizor/Viewer/0
(node1)

_c79

node1

_c51

Greedy1/sync/1
(node1)

_c25

MaxFrequencySynchronizor/Viewer/1
(node1)

_c81

node1

_c66

beginIt

Joypad
(node1)

axe0 axe1 endIt

GreedyX/in/0
(node1)

_c0

GreedyY/in/0
(node1)

_c9

GreedyX/filter/0
(node1)

_c2

_c3

_c1

_c6

_c7

GreedyY/filter/0
(node1)

_c11

_c12

_c10

_c15

_c16

Greedy1/filter/0
(node1)

_c22

Greedy1/filter/1
(node1)

_c23

_c20

_c26

_c21

_c27

node1

_c32

FMerge/0
(node1)

_c47

FMerge/1
(node1)

_c48

Greedy/Render/Viewer/0/filter/0
(node1)

_c56

Greedy/Render/Viewer/0/filter/1
(node1)

_c57

Greedy/Render/Viewer/0/in/0
(node1)

_c54

_c60
Greedy/Render/Viewer/0/in/1

(node1)

_c55

_c61
Greedy/Render/Viewer/1/filter/0

(node1)

_c71

Greedy/Render/Viewer/1/filter/1
(node1)

_c72

Greedy/Render/Viewer/1/in/0
(node1)

_c69

_c75

Greedy/Render/Viewer/1/in/1
(node1)

_c70

_c76

_c8 _c17

_c28 _c29

_c62

_c63

_c77

_c78

_c80

_c82

node1

_c35

_c33 _c34

node1

_c52
node1

_c53

_c49_c50

node1

_c67

node1

_c68

_c64 _c65

Figure 4: An automatically generated application graph


