
PIPELINED PARALLELISM IN MULTI-JOIN QUERIES ON
HETEROGENEOUS SHARED NOTHING ARCHITECTURES

Mohamad Al Hajj Hassan and Mostafa Bamha
LIFO, University of Orléans, BP 6759, 45067 Orléans cedex2, France

alhassan@univ-orleans.fr, bamha@univ-orleans.fr

Keywords: PDBMS (Parallel Database Management Systems), Intra-transaction parallelism, Parallel joins, Multi-joins,
Data skew, Dynamic load balancing.

Abstract: Pipelined parallelism was largely studied and successfully implemented, on shared nothing machines, in sev-
eral join algorithms in the presence of ideal conditions of load balancing between processors and in the absence
of data skew. The aim of pipelining is to allow flexible resource allocation while avoiding unnecessary disk
input/output for intermediate join results in the treatment of multi-join queries.
The main drawback of pipelining in existing algorithms is that communication and load balancing remain
limited to the use of static approaches (generated during query optimization phase) based on hashing to re-
distribute data over the network and therefore cannot solvedata skew problem and load imbalance between
processors on heterogeneous multi-processor architectures where the load of each processor may vary in a
dynamic and unpredictable way.
In this paper, we present a new parallel join algorithm allowing to solve the problem of data skew while
guaranteeing perfect balancing properties, on heterogeneous multi-processor Shared Nothing architectures.
The performance of this algorithm is analyzed using the scalable portable BSP (Bulk Synchronous Parallel)
cost model.

1 INTRODUCTION

The appeal of parallel processing becomes very
strong in applications which require ever higher per-
formance and particularly in applications such as :
data-warehousing, decision support, On-Line Analyt-
ical Processing (OLAP) and more generally DBMS
(Liu and Rundensteiner, 2005; Datta et al., 1998).
However parallelism can only maintain acceptable
performance through efficient algorithms realizing
complex queries on dynamic, irregular and distributed
data. Such algorithms must be designed to fully ex-
ploit the processing power of multi-processor ma-
chines and the ability to evenly divide load among
processors while minimizing local computation and
communication costs inherent to multi-processor ma-
chines.

Research has shown that the join operation is par-
allelizable with near-linear speed-up on Shared Noth-
ing machines only under ideal balancing conditions.

Data skew can have a disastrous effect on perfor-
mance (Mourad et al., 1994; Hua and Lee, 1991; De-
Witt et al., 1992; Bamha and Hains, 2000; Bamha and
Hains, 1999) due to the high costs of communications
and synchronizations in this architecture.

Many algorithms have been proposed to handle
data skew for a simple join operation, but little is
known for the case of complex queries leading to
multi-joins (Lu et al., 1994; DeWitt et al., 1992; Hua
and Lee, 1991). However, these algorithms cannot
solve load imbalance problem as they base their rout-
ing decisions on incomplete or statistical information.
On the contrary, the algorithms we presented in
(Bamha and Hains, 1999; Bamha and Hains, 2000;
Bamha, 2005) for treating queries involving one join
operation use a total data-distribution information in
the form of histograms. The parallel cost model we
apply allows us to guarantee that histogram manage-
ment has a negligible cost when compared to the effi-
ciency gains it provides to reduce the communication

cost and to avoid load imbalance between processors.
However the problem of data skew is more acute with
multi-joins because the imbalance of intermediate re-
sults is unknown during static query optimization (Lu
et al., 1994).

To this end, we introduced in (Bamha and
Exbrayat, 2003) a pipelined version of OSFA-Join
based on a dynamic data redistribution approach al-
lowing to solve the problem of Attribute Value Skew
(AVS) and Join Product Skew (JPS) and guaranteeing
perfect load balancing on homogeneous distributed
Shared Nothing architecture.

In homogeneous multi-processor architectures,
these algorithms are insensitive to data skew and guar-
antee perfect load balancing between processors dur-
ing all the stages of join computation because data
redistribution is carried out jointly by all processors
(and not by a coordinator processor). Each processor
deals with the redistribution of the data associated to
a subset of the join attribute values, not necessarily its
“own” values. However the performance of these al-
gorithms degrades on heterogeneous multi-processor
architectures where the load of each processor may
vary in a dynamic and unpredictable way.

To this end we introduced in (Hassan and Bamha,
2008) a parallel join algorithm calledDFA-Join (Dy-
namic Frequency Adaptive parallel join algorithm) to
handle join queries on heterogeneous Shared Noth-
ing architectures allowing to solve the problem of data
skew while guaranteeing perfect balancing properties.

In this paper, we present a pipelined version of
DFA-Joinalgorithm calledPDFA-Join(Pipelined Dy-
namic frequency Adaptive join algorithm). The aim
of pipelining in PDFA-Join is to offer flexible re-
source allocation and to avoid unnecessary disk in-
put/output for intermediate join result in multi-join
queries. We show thatPDFA-Joinalgorithm can be
applied efficiently in various parallel execution strate-
gies making it possible to exploit not only intra-
operator parallelism but also inter-operator paral-
lelism. These algorithms are used in the objective
of avoiding the effect of load imbalance due to data
skew, and to reduce the communication costs due to
the redistribution of the intermediate results which
can lead to a significant degradation of performance.

2 LIMITATIONS OF PARALLEL
EXECUTION STRATEGIES
FOR MULTI-JOIN QUERIES

Parallel execution of multi-join queries depends
on the execution plan of simple joins that compose it.

The main difference between these strategies lies in
the manner of allocating the simple joins to different
processors and in the choice of an appropriate degree
of parallelism (i.e. the number of processors) used to
compute each simple join.

Several strategies were proposed to evaluate
multi-join queries (Liu and Rundensteiner, 2005;
Wilschut et al., 1995). In these strategies intra-
operator, inter-operator and pipelined parallelisms
can be used. These strategies are divided into four
principal categories presented thereafter.

Sequential Parallel execution is the simplest strat-
egy to evaluate, in parallel, a multi-join query. It does
not induce inter-operator parallelism. Simple joins
are evaluated one after the other in a parallel way.
Thus, at a given moment, one and only one simple
join is computed in parallel by all the available pro-
cessors.

This strategy is very restrictive and does not pro-
vide efficient resource allocation owing to the fact that
a simple join cannot be started until all its operands
are entirely available, and whenever a join operation
is executed on a subset of processors, all the other
processors remain idle until the next join operation.
Moreover this strategy induces unnecessary disk In-
put/Output because intermediate results are written to
disk and not immediately used for the next operations.

To reach acceptable performance, join algorithms
used in this strategy should reduce the load imbalance
between all the processors and the number of idle pro-
cessors must be as small as possible.

Parallel Synchronous execution uses in addition to
intra-operator parallelism, inter-operator parallelism
(Chen et al., 1992b). In this strategy several simple
join operations can be computed simultaneously on
disjoint sets of processors.

The parallel execution time of an operator depends
on the degree of parallelism. The execution time de-
creases by increasing the number of processors un-
til the arrival at a point of saturation (called opti-
mal degree of parallelism) from which increasing the
number of processors, increases the parallel execution
time (Rahm, 1996; Chen et al., 1992b). The main dif-
ficulty in this strategy lies in the manner of allocating
the simple joins to the available processors and in the
choice of an appropriate degree of parallelism to be
used for each join.

In this strategy, the objective of such allocation is
to reduce the latency where the global execution time
of all operators should be of the same order. This also
applies to the global execution time of each operator
in the same group of processors where the local com-
putation within each group must be balanced.

This Strategy combines only intra- and inter oper-
ator parallelism in the execution of multi-join queries
and does not introduce pipelined parallelism and large
number of processors may remain idle if aren’t used
in inter-operator parallelism. This constitutes the
main limitations of this strategy for flexible resource
allocation in addition to unnecessary disk/input oper-
ation for intermediate join result.

Segmented Right-Deep execution Contrary to a par-
allel synchronous strategy, aSegmented Right-Deep
execution(Chen et al., 1992a; Liu and Rundensteiner,
2005) employs, in addition to intra-operator paral-
lelism, pipelined inter-operator parallelism which is
used in the evaluation of the right-branches of the
query tree.
This strategy offers more flexible resource allocation
than parallel synchronous execution strategy : many
joins can be computed on disjoint sets of processors to
prepare hash tables for pipelined joins. Its main lim-
itation remains in the fact that pipelined parallelism
cannot be started until all the hash tables are com-
puted. Moreover no load balancing between proces-
sors can be performed whenever pipelined parallelism
begins.

Full Parallel execution (Wilschut et al., 1995; Liu
and Rundensteiner, 2005) uses inter-operator paral-
lelism and pipelined inter-operator parallelism in ad-
dition to intra-operator parallelism. In this strategy,
all the simple joins, associated to the multi-join query,
are computed simultaneously in parallel using dis-
joint sets of processors. Inter-operator parallelism and
pipelined inter-operator parallelism are exploited ac-
cording to the type of the query tree.
The effectiveness of such strategy depends on the
quality of the execution plans generated during the
query optimization phase and on the ability to evenly
divide load between processors in the presence of
skewed data.

All existing algorithms using this strategy are
based on static hashing to redistribute data over the
network which makes them very sensitive to data
skew. Moreover pipelined parallelism cannot start un-
til the creation of hash tables of build relations. We
recall that all join algorithms used in these strategies
require data redistribution of all intermediate join re-
sults (and not only tuples participating to the join re-
sult) which may induce a high cost of communication.
In addition no load balancing between processors can
be performed when pipelined parallelism begins, this
can lead to a significant degradation of performance.

In the following section we will presentPDFA-
Join (Pipelined Dynamic Frequency Adaptive Join):
a new join algorithm which can be used in different

execution strategies allowing to exploit not only intra-
operator but also inter-operator and pipelined paral-
lelism. This algorithms is proved to induce a mini-
mal cost for communication (only relevant tuples are
redistributed over the network), while guaranteeing
perfect load balancing properties in a heterogeneous
multi-processor machine even for highly skewed data.

3 PARALLELISM IN MULTI-JOIN
QUERIES USING PDFA-JOIN
ALGORITHM

Pipelining was largely studied and successfully
implemented in many classical join algorithms, on
Shared Nothing (SN) multi-processor machine in the
presence of ideal conditions of load balancing and
in the absence of data skew (Liu and Rundensteiner,
2005). Nevertheless, these algorithms are generally
based on static hash join techniques and are thus very
sensitive to AVS and JPS.

The pipelined algorithm we introduced in (Bamha
and Exbrayat, 2003) solves this problem and guaran-
tees perfect load balancing on homogeneous SN ma-
chines. However its performance degrades on hetero-
geneous multi-processor architectures.

In this paper, we propose to adaptDFA-Join to
pipelined multi-join queries to solve the problem of
data skew and load imbalance between processors on
heterogeneous multi-processors architectures.
DFA-Joinis based on a combination of two steps :
• a static step where data buckets are assigned to

each processor according to its actual capacity,
• then a dynamic step executed throughout the join

computation phase to balance load between pro-
cessors. When a processor finishes join process-
ing of its assigned buckets it asks a local head
node for untreated buckets of another processor.

This combination of static and dynamic steps allows
us to reduce the join processing time because in par-
allel systems the total executing time is the time taken
by the slowest processor to finish its tasks.

To ensure the extensibility of the algorithm, pro-
cessors are partitioned into disjoint sets. Each set has
a designed local head node. Load is first balanced
inside each set of processors and whenever a set of
processors finishes its assigned tasks, it asks a head
node of another set of processors for additional tasks.

3.1 Detailed algorithm

In this section, we present a parallel pipelined exe-
cution strategy for the multi-join query,Q = (R ⋊⋉a1

S) ⋊⋉b1 (U ⋊⋉a2 V), given in figure 1 (this strategy can
be easily generalized to any bushy multi-join query)
whereR, S, U andV are source relations anda1, a2
andb1 are join attributes.

We will give in detail the execution steps to eval-
uate the join queryQ1 = R⋊⋉a1 S(the same technique
is used to evaluateQ2 = U ⋊⋉a2 V).
We first assume that each relationT ∈ {R,S,U,V} is

4

2

3

1

V

a2a1

b1

c1

R S U

....

Figure 1: Parallel execution of a multi-join query using
PDFA join algorithm.

horizontally fragmented amongp processors and:
• Ti is the fragment ofT placed on processori,
• Histx(T) denotes the histogram1 of T with respect

to the join attributex, i.e. a list of pairs(v,nv)
wherenv 6= 0 is the number of tuples ofT having
valuev for x. The histogram is often much smaller
and never larger than the relation it describes,

• Histx(Ti) denotes the histogram of fragmentTi
placed on processori,

• Histxi (T) is processori’s fragment of the global
histogram of relationT,

• Histx(T)(v) is the frequency (nv) of valuev in T,
• Histx(Ti)(v) is the frequency of valuev in Ti ,
• ‖T‖ denotes the number of tuples ofT, and
• |T| is the size (in bytes or number of pages) ofT.

Our algorithm (Algorithm 1) can be divided into
the following five phases. We give for each phase an
upper bound of the execution time using BSP (Bulk
Synchronous Parallel) cost model (Skillicorn et al.,
1997; Valiant, 1990). NotationO(...) only hides small
constant factors : they depend only on the implemen-
tation, but neither on data nor on the BSP machine
parameters.

Phase 1. Creating local histograms:
In this phase, we create in parallel, on each proces-

sor i, the local histogramHista1(Ri) (resp. Hista1(Si))
(i = 1, . . . , p) of block Ri (resp. Si) by a linear traver-
sal of Ri (resp. Si) in time maxi=1,...,p(ci

r/w ∗ |Ri|)

(resp.maxi=1,...,p(ci
r/w ∗ |Si |)) whereci

r/w is the cost to

1Histograms are implemented as balanced trees (B-tree):
a data structure that maintains an ordered set of data to allow
efficient search and insert operations.

Algorithm 1 Parallel PDFA-Join computation steps
to evaluate the join of relationsRandSon attributea1
and preparing the next join on attributeb1.
In Parallel (on each processor)i ∈ [1, p] do
1◮ Create local histogramsHista1(Ri) of Ri and, on the fly,

hash the tuples of relationRi into different buckets
according to the values of join attributea1,

⊲ Create local histogramsHista1(Si) of Si and, on the fly,
hash the tuples of relationSi into different buckets,

2◮ Create global histogram fragment’sHista1
i (R) of R,

⊲ Create global histogram fragment’sHista1
i (S) of S,

⊲ MergeHista1
i (R) andHista1

i (S) to createHista1
i (R⋊⋉ S),

3◮ Create communication templates for only relevant tuples,
⊲ Filter generated buckets to create tasks to execute on

each processor according to its capacity,
⊲ Create local histogramsHistb1(Ri ⋊⋉ Si) of join result

on attributeb1 of the next join using histograms and
communication templates (See Algorithm 2.),

4◮ Exchange data according to communication templates,
5◮ Execute join tasks and store join result on local disk.

Loop until no task to execute
⊲ Ask a local head node for jobs from overloaded

processors,
⊲ Steal a job from a designated processor and execute it,
⊲ Store the join result on local disk.

End Loop
End Par

read/write a page of data from disk on processori.
While creating the histograms, tuples ofRi (resp.Si)
are partitioned on the fly intoN buckets using a hash
function in order to facilitate the redistribution phase.
The cost of this phase is:

Timephase1 = O
(

maxi=1,...,p ci
r/w∗ (|Ri |+ |Si |)

)

.

Phase 2. Computing the histogram of R⋊⋉ S:
In this phase, we computeHista1

i (R ⋊⋉ S) on each
processori. This helps in specifying the values of the
join attribute that participate in the join result, so only
tuples ofR and S related to these values are redis-
tributed in a further phase which allows us to mini-
mize the communication cost. The histogram ofR⋊⋉ S
is simply the intersection ofHista1(R) andHista1(S), so
we must first compute the global histogramsHista1

i (R)
andHista1

i (S) by redistributing the tuples of the local
histograms using a hash function that distributes the
values of the join attribute in a manner that respects
the processing capacity of each processor.
The cost of this step is:

Timephase2.a = O
(

min
(

max
i=1,...,p

ωi ∗ p∗ (g∗ |Hista1 (R)|+

γi ∗ ||Hista1(R)||), max
i=1,...,p

ωi ∗ (g∗ |R|+ γi ∗ ||R||)
)

+min
(

max
i=1,...,p

ωi ∗ p∗ (g∗ |Hista1 (S)|+ γi ∗ ||Hista1(S)||),

max
i=1,...,p

ωi ∗ (g∗ |S|+ γi ∗ ||S||)
)

+ l
)

.

whereωi is the fraction of the total volume of data

assigned to processori such that:ωi = (1
γ j

)/(∑p
j=1

1
γ j

),

γi is the execution time of one instruction on proces-
sor i, g is the BSP communication parameter andl
the cost of synchronization (Skillicorn et al., 1997;
Valiant, 1990) (reviewproposition 1of appendix A
for the proof of this cost (Hassan and Bamha, 2008)).

Now we can easily createHista1
i (R⋊⋉ S) by comput-

ing in parallel, on each processori, the intersection of
Hista1

i (R) andHista1
i (S) in time of order:Timephase2.b =

O
(

maxi=1,...,p
(

γi ∗min(||Hista1
i (R)||, ||Hista1

i (S)||)
)

)

.

While creatingHista1
i (R ⋊⋉ S), we also store for

each valuev ∈ Hista1
i (R ⋊⋉ S) an extra information

index(v) ∈ {1,2} such that:






index(v) = 1 if Hista1(R)(v) ≥ fo or Hista1(S)(v) ≥ fo
(i.e. values associated to high frequencies)

index(v) = 2 elsewhere (i.e. values of low frequencies).

The used threshold frequency isfo = p∗ log(p).
This information will be useful in the phase of the cre-
ation of communication templates.
The total cost of this phase is the sum ofTimephase2.a
and Timephase2.b. We recall that the size of a his-
togram is, in general, very small compared to the size
of base relations.

Phase 3. Creating the communication template:
In homogeneous systems workload imbalance

may be due to uneven distribution of data to be joined
among the processors, while in heterogeneous sys-
tems it may be the result of allocating to processors
an amount of tuples that is not proportional to actual
capabilities of used machines (Gounaris, 2005).
So in order to achieve an accepted performance, the
actual capacity of each machine must be taken into
account while assigning the data or tasks to each pro-
cessor. Another difficulty in such systems lies in the
fact that available capacities of machines in multi-user
systems may rapidly change after load assignment :
the state of an overloaded processor may fastly be-
come underloaded while computing the join operation
and vice-versa. Thus to benefit from the processing
power of such systems, we must not have idle pro-
cessors while others are overloaded throughout all the
join computation phase.
To this end, we use, as inDFA-join algorithm, a two-
step (static then dynamic) load assignment approach
which allows us to reduce the join processing time.

3.a. Static load assignment step:
In this step, we compute, in parallel on each processor
i, the size of the join which may result from joining
all tuples related to valuesv ∈ Hista1

i (R ⋊⋉ S). This is
simply the sum of the frequenciesHista1

i (R⋊⋉ S)(v) for
all valuesv of the join attribute inHista1

i (R⋊⋉ S). This
value is computed by a linear traversal ofHista1

i (R⋊⋉ S)

in time: O
(

max
i=1,...,p

γi ∗ ||Hista1
i (R⋊⋉ S)||

)

.

After that all processors send the computed value to a
designated head node which in its turn calculates the
total number of tuples inR⋊⋉ S(i.e. ||R⋊⋉ S||) by com-
puting the sum of all received values in time of order:
O(p∗g+ l).
Now the head node uses the value of||R⋊⋉ S|| and the
information received earlier to assign to each proces-
sor i a join volume (voli ∗ ||R⋊⋉ S||) proportional to its
resources where the value ofvoli is determined by the
head node depending on the actual capacity of each

processori such that
p

∑
i=1

voli = 1.

Finally, the head node sends to each processori the
value ofvoli ∗ ||R⋊⋉ S|| in time of order:O(g∗ p+ l).
The cost of this step is:

Timephase3.a = O
(

max
i=1,...,p

γi ∗ ||Hista1
i (R⋊⋉ S)||+ p∗g+ l

)

.

3.b. Communication templates creation step:
Communication templates are list of messages that
constitute the relations redistribution. Owing to fact
that values which could lead to AVS (those having
high frequencies) are also those which may cause join
product skew in ”standard” hash join algorithms, we
will create communication templates for only values
v having high frequencies (i.e.index(v) = 1). Tuples
associated to low frequencies (i.e.index(v) = 2) don’t
have effect neither on AVS nor on JPS. So these tuples
will be simply hashed into buckets in their source pro-
cessors using a hash function and their treatment will
be postponed to the dynamic phase.
So first of all, Hista1

i (R ⋊⋉ S) is partitioned on each

processori into two sub-histograms:Hist(1)
i (R ⋊⋉ S)

and Hist(2)
i (R ⋊⋉ S) such that: v ∈ Hist(1)

i (R ⋊⋉ S) if

index(v) = 1 andv ∈ Hist(2)
i (R ⋊⋉ S) if index(v) = 2.

This partitioning step is performed while computing
∑vHista1

i (R⋊⋉ S)(v) in step 3.a in order to avoid read-
ing the histogram two times.
We can start now by creating the communication tem-
plates which are computed, in a fist time, on each pro-
cessori for only valuesv in Hista1

i (R ⋊⋉ S) such that
the total join size related to these values is inferior
or equal tovoli ∗ ||R⋊⋉ S|| starting from the value that
generates the highest join result and so on.

It is important to mention here that only tuples
that effectively participate in the join result will be
redistributed. These are the tuples ofRi = Ri ⋉ Sand
Si = Si ⋉R. These semi-joins are implicitly evaluated
due to the fact that the communication templates are
only created for valuesv that appear in join result
(i.e. v∈ Hista1(R⋊⋉ S)).
In addition, the number of received tuples ofR (resp.
S) must not exceedvoli ∗ ||R|| (resp. voli ∗ ||S||). For
each valuev in Hista1

i (R ⋊⋉ S), processori creates
communicating messages order to send(j, i,v)

asking each processorj holding tuples ofR or Swith
valuesv for the join attribute to send them to it.
If the processing capacity of a processori doesn’t
allow it to compute the join result associated to all
valuesv of the join attribute inHista1

i (R ⋊⋉ S) 2, then
it will not ask the source processorsj holding the
remaining valuesv to redistribute their associated
tuples but to partition them into buckets using a
hash function and save them locally for further join
processing step in the dynamic phase. Hence it sends
an order to save(j,v)message for each processorj
holding tuples having valuesv of the join attribute.
The maximal complexity of creating the communi-
cation templates is:O

(

maxi
(

ωi ∗ p ∗ γi ∗ ||Hist(1)(R ⋊⋉

S)||
)

)

, because each processori is responsible of cre-
ating the communication template for approximately
ωi ∗ ||Hist(1)(R ⋊⋉ S)|| values of the join attribute and
for a given valuev at most(p− 1) processors can
send data.
After creating the communication templates,
on each processori, order to send(j, i, .) and
order to save(j, .) messages are sent to their
destination processorsj when j 6= i in time:

O
(

maxi
(

g∗ωi ∗ p∗ |Hist(1)(R⋊⋉ S)|
)

+ l
)

.

The total cost of this step is the sum of the above two
costs.
3.c. Task generation step:
After the communication templates creation, each
processori obeys theorder to send(., ., .) messages
that it has just received to generate tasks to be exe-
cuted on each processor. So it partitions the tuples
that must be sent to each processor into multiple num-
ber of buckets greater thanp using a hash function.
This partition facilitates task reallocation in the join
phase (phase 5) from overloaded to idle processors if
a processor could not finish its assigned load before
the others. After this partition step, each bucket is
sent to its destination processor. The cost of this step
is : O

(

maxi=1,...,pγi ∗ (||Ri ||+ ||Si||)
)

.
In addition, each processori will partition tu-

ples whose join attribute value is indicated in
order to save() messages into buckets using the same
hash function on all the processors. However, these
buckets will be kept for the moment in their source
processors where their redistribution and join pro-
cessing operations will be postponed till the dynamic
phase.

During this step, local histogram of the join result,
(Histb1(R⋊⋉ S), on attributeb1 is created directly from
Hista1(Ri) andHista1(Si) using Algorithm 2.

2This is the case ifvoli ∗||R⋊⋉ S||< ∑vHista1
i (R⋊⋉ S)(v)

on processori.

Algorithm 2 : Join result histogram’s creation algo-
rithm on attributeb1.
Par (on each node) i ∈ [1, p] do
⊲ Histb1(Ri ⋊⋉ Si)=NULL (Create an empty B-tree)
For each tuplet of each bucket of relationRi do
⊲ f req1 = Hista1(S)(t.a1) (i.e. frequency oft.a1 of tuplet)
If (f req1 > 0) (i.e. tuplet will be present inR⋊⋉ S) Then
⊲ f req2 = Histb1(Ri ⋊⋉ Si)(t.b1)
If (f req2 > 0) (i.e valuet.b1 ∈ Histb1(Ri ⋊⋉ Si)) Then
⊲ UpdateHistb1(Ri ⋊⋉ Si)(t.b1) = f req1+ f req2

Else
⊲ Insert a new couple(t.b1, f req1) into Histb1(Ri ⋊⋉ Si)

End If
End If

End For
End Par

Owing to the fact that the access to the histogram
(equivalent to a search in a B-tree) is performed in a
constant time, the cost of the creation of the histogram
of join result is :O

(

maxi=1,...,pγi ∗ ||Ri ||
)

.

The global cost for this step:

Timephase3.c =
(

maxi=1,...,pγi ∗ (||Ri ||+ ||Si||)
)

.

Phase 4. Data redistribution:
According to communication templates, buckets

are sent to their destination processors.
It is important to mention here that only tuples ofR
andSthat effectively participate in the join result will
be redistributed. So each processori receives a par-
tition of R (resp. S) whose maximal size isvoli ∗ ||R||
(resp. voli ∗ ||R||). Therefore, in this algorithm, com-
munication cost is reduced to a minimum and the
global cost of this phase is:

Timephase4 = O
(

g∗maxi
(

voli ∗ (|R|+ |S|
)

+ l
)

.

Phase 5. Join computation:
Buckets received by each processor are arranged

in a queue. Each processor executes successively the
join operation of its waiting buckets. The cost of this
step of local join computation is:

Timelocal join = O
(

max
i

(

ci
r/w∗voli ∗(|R|+|S|+|R⋊⋉ S|)

)

)

.

If a processor finishes computing the join related to
its local data and the overall join operation is not fin-
ished, it will send to the head node a message asking
for more work. Hence, the head node will assign to
this idle processor some of the buckets related to join
attribute values that were not redistributed earlier in
the static phase. However, if all these buckets are al-
ready treated, the head node checks the number of non
treated buckets in the queue of the other processors
and asks the processor that has the maximal number
of non treated buckets to forward a part of them to the

idle one. The number of sent buckets must respect the
capacity of the idle processor.

And thus, the global cost of join computation of
two relationsR andSusingPDFA-Joinalgorithm is:

TimePDFA− join = O

(

max
i=1,...,p

ci
r/w ∗ (|Ri |+ |Si |)+ l +

min
(

max
i=1,...,p

ωi ∗ p∗ (g∗ |Hista1(R)|+ γi ∗ ||Hista1(R)||),

max
i=1,...,p

ωi ∗ (g∗ |R|+ γi ∗ ||R||)
)

+ max
i=1,...,p

γi ∗
(

||Ri||+ ||Si ||
)

+min
(

max
i=1,...,p

ωi ∗ p∗ (g∗ |Hista1(S)|+ γi ∗ ||Hista1(S)||),

max
i=1,...,p

ωi ∗ (g∗ |S|+ γi ∗ ||S||)
)

+g∗ max
i=1,...,p

(

voli ∗ (|R|+ |S|
)

+

max
i=1,...,p

(

ωi ∗ p∗ (g∗ |Hist(1)(R⋊⋉ S)|+ γi ∗ ||Hist(1)(R⋊⋉ S)||)
)

+ max
i=1,...,p

(

ci
r/w ∗voli ∗ (|R|+ |S|+ |R⋊⋉ S|)

)

)

.

Remark:
Sequential evaluation of the join ofR andS on pro-
cessori requires at least the following lower bound:
boundin f1 = Ω

(

ci
r/w ∗ (|R|+ |S|+ |R⋊⋉ S|)+

γi ∗ (||R||+ ||S||+ ||R⋊⋉ S||)
)

.

Therefore, parallel join processing onp heteroge-
neous processors requires:
boundin fp = Ω

(

maxi
(

ci
r/w∗ωi ∗ (|R|+ |S|+ |R⋊⋉ S|)+

γi ∗ωi ∗ (||R||+ ||S||+ ||R⋊⋉ S||)
)

)

.

PDFA-Join algorithm has optimal asymptotic com-
plexity when:
max

i=1,...,p

(

ωi ∗ p∗ |Hist(1)(R⋊⋉ S)|
)

≤

maxi
(

ci
r/w ∗ ωi ∗ max(|R|, |S|, |R ⋊⋉ S|)

)

,

this is due to the fact that the other terms in
TimePDFA− join are bounded by those ofboundin fp.
Inequality(1) holds if the chosen threshold frequency
fo is greater thanp (which is the case for our thresh-
old frequencyfo = p∗ log(p)).

3.2 Discussion

To understand the whole mechanism ofPDFA-Join
algorithm, we compare existing approaches (based on
hashing) to our pipelined join algorithm using dif-
ferent execution strategies to evaluate the multi-join
query Q = (R⋊⋉a1 S) ⋊⋉b1 (U ⋊⋉a2 V) .

A Full Parallel execution of DFA-Join algorithm
(i.e. a basic use of DFA-Join where we do not use
pipelined parallelism) requires the evaluation ofQ1 =
(R⋊⋉a1 S) and Q2 = (U ⋊⋉a2 V) on two disjoint set
of processors, the join results ofQ1 andQ2 are then
stored on the disk. The join result of queryQ1 andQ2
are read from disk to evaluate the final join queryQ .

Existing approaches allowing pipelining first start
by the evaluation of the join queriesQ1 andQ2, and

then each generated tuple in queryQ1 is immediately
used to build the hash table. However the join result
of queryQ2 is stored on the disk.
At the end of the execution ofQ1, the join result of
queryQ2 is used to probe the hash table. This induces
unnecessary disk input/output. Existing approaches
require data redistribution of all intermediate join re-
sult (not only relevant tuples) this may induce high
communication cost. Moreover data redistribution
in these algorithms is based on hashing which make
them very sensitive to data skew.

In PDFA-Join algorithm, we first compute in par-
allel the histograms ofR andSon attributea1, and at
the same time we compute the histograms ofU and
V on attributea2. As soon as these histograms are
available, we generate the communication templates
for Q1 andQ2 and by the way the histograms of the
join results ofQ1 andQ2 on attributeb2 are also com-
puted. Join histograms on attributeb2 are used to cre-
ate the communication templates forQ which makes
it possible to immediately use the tuples generated by
Q1 andQ2 to evaluate the final join queryQ .

PDFA-Join algorithm achieves several enhance-
ments compared to pipelined join algorithm presented
in the literature : During the creation of communica-
tion templates, we create on the fly the histograms for
the next join, limiting by the way the number of ac-
cesses to data (and to the disks). Moreover data re-
distribution is limited to only tuples participating ef-
fectively to join result, this reduces communication
costs to a minimum. Dynamic data redistribution in
PDFA-Join makes it insensitive to data skew while
guaranteeing perfect load balance during all the stages
of join computation.

PDFA-Joincan be used in various parallel strate-
gies, however in the parallel construction of the his-
tograms for source relations, we can notice that the
degree of parallelism might be limited by two fac-
tors : the total number of processors available, and
the original distribution of data. A simultaneous con-
struction of two histograms on the same processor
(which occurs when two relations are distributed, at
least partially, over the same processors) would not be
really interesting compared to a sequential construc-
tion. This intra-processor parallelism does not bring
acceleration, but should not induce noticeable slow-
down : histograms are generally small, and having
several histograms in memory would not necessitate
swapping. On the other hand, as relations use to be
much bigger than the available memory, we have to
access them by blocks. As a consequence, accessing
one or several relations does not really matter. Our
pipeline strategy will really be efficient if different
join operators are executed on disjoint (or at least par-

tially disjoint) sets of processors. This brings us to
limit the number of simultaneous builds. As a conse-
quence, we have to segment our query trees, similarly
to segmented right-deep trees, each segment (i.e. a
set of successive joins) being started when the former
is over. Once the histograms are produced for both
tables, we can compute the communication template,
then distribute data, and finally compute the join. Un-
fortunately, the computation of the communication
template is the implicit barrier within the execution
flow, that prohibits the use of long pipeline chains.

4 CONCLUSION

In this paper, we presentedPDFA-Joina pipelined
parallel join algorithm based on a dynamic data re-
distribution. We showed that it can be applied effi-
ciently in various parallel execution strategies offer-
ing flexible resource allocation and reducing disks in-
put/output of intermediate join result in the evaluation
of multi-join queries. This algorithm achieves several
enhancements compared to solutions suggested in the
literature by reducing communication costs to only
relevant tuples while guaranteeing perfect balancing
properties on heterogeneous multi-processors shared
nothing architectures even for highly skewed data.

The BSP cost analysis showed that the overhead
related to histogram management remains very small
compared to the gain it provides to avoid the effect
of load imbalance due to data skew, and to reduce
the communication costs due to the redistribution of
the intermediate results which can lead to a significant
degradation of the performance.

Our experience with the BSP cost model and
the tests presented in our previous papers (Bamha
and Hains, 1999; Bamha and Hains, 2000; Hassan
and Bamha, 2008) prove the effectiveness of our ap-
proach compared to standard hash-join pipelined al-
gorithms.

REFERENCES

Bamha, M. (2005). An optimal and skew-insensitive join
and multi-join algorithm for distributed architectures.
In Proc. of DEXA’2005 International Conference.
Copenhagen, Danemark, pages 616–625.

Bamha, M. and Exbrayat, M. (2003). Pipelining a skew-
insensitive parallel join algorithm.Parallel Process-
ing Letters, 13(3), pages 317–328.

Bamha, M. and Hains, G. (2000). A skew insensitive al-
gorithm for join and multi-join operation on Shared
Nothing machines.Proc. of DEXA’2000 International
Conference, pages 644–653, London, UK.

Bamha, M. and Hains, G. (1999). A frequency adaptive
join algorithm for Shared Nothing machines.PDCP
Journal, Volume 3, Number 3, pages 333-345.

Chen, M.-S., Lo, M. L., Yu, P. S., and Young, H. C. (1992a).
Using segmented right-deep trees for the execution of
pipelined hash joins.Proc. of VLDB’92 International
Conference, 1992, Vancouver, Canada, pages 15–26.

Chen, M.-S., Yu, P. S., and Wu, K.-L. (1992b). Scheduling
and processor allocation for the execution of multi-
join queries. InInternational Conference on Data En-
gineering, pages 58–67, Los Alamos, Ca., USA.

Datta, A., Moon, B., and Thomas, H. (1998). A case for
parallelism in datawarehousing and OLAP. InProc.
of DEXA 98 International Workshop, IEEE Computer
Society, pages 226–231, Vienna.

DeWitt, D. J., Naughton, J. F., Schneider, D. A., and Se-
shadri, S. (1992). Practical Skew Handling in Parallel
Joins. InProceedings of the 18th VLDB Conference,
pages 27–40, Vancouver, British Columbia, Canada.

Gounaris, A. (2005). Resource aware query processing on
the grid. Thesis report, University of Manchester, Fac-
ulty of Engineering and Physical Sciences.

Hassan, M. A. H. and Bamha, M. (2008). Dynamic data re-
distribution for join queries on heterogeneous shared
nothing architecture. Technical Report 2, LIFO, Uni-
versité d’Orléans, France.

Hua, K. A. and Lee, C. (1991). Handling data skew in mul-
tiprocessor database computers using partition tun-
ing. In Proc. of VLDB 17th International Conference,
pages 525–535, Barcelona, Catalonia, Spain.

Liu, B. and Rundensteiner, E. A. (2005). Revisiting
pipelined parallelism in multi-join query processing.
In Proc. of VLDB’05 International Conference, pages
829–840.

Lu, H., Ooi, B.-C., and Tan, K.-L. (1994).Query Process-
ing in Parallel Relational Database Systems. IEEE
Computer Society Press, Los Alamos, California.

Mourad, A. N., Morris, R. J. T., Swami, A., and Young,
H. C. (1994). Limits of parallelism in hash join algo-
rithms. Performance evaluation, 20(1/3):301–316.

Rahm, E. (August 1996). Dynamic load balancing in par-
allel database systems.in: Proc. EURO-PAR’96 Con-
ference, LNCS, Springer-Verlag, Lyon.

Schneider, D. and DeWitt, D. (1989). A performance eval-
uation of four parallel join algorithms in a shared-
nothing multiprocessor environment.Proc. of 1989
ACM SIGMOD International Conference, Portland,
Oregon, pages 110–121, New York, NY 10036, USA.

Skillicorn, D. B., Hill, J. M. D., and McColl, W. F. (1997).
Questions and Answers about BSP.Scientific Pro-
gramming, 6(3):249–274.

Valiant, L. G. (1990). A bridging model for parallel compu-
tation. Communications of the ACM, 33(8):103–111.

Wilschut, A. N., Flokstra, J., and Apers, P. M. (1995). Paral-
lel evaluation of multi-join queries. InProc. of ACM-
SIGMOD, 24(2):115–126.

