
Personalized

Environment for

Querying Semantic

Knowledge Graphs: a

MapReduce Solution

Mostafa Bamha, Jacques Chabin, Mirian Halfeld
Ferrari, Béatrice Markho↵, Thanh Binh Nguyen

LIFO, Université d’Orléans

Rapport no RR-2017-06

2

Personalized Environment for Querying

Semantic Knowledge Graphs: a MapReduce

Solution

?

Mostafa Bamha1, Jacques Chabin1, Mirian Halfeld-Ferrari1, Béatrice
Markho↵2, and Thanh Binh Nguyen??1

1 Université Orléans, INSA CVL, LIFO EA, Orléans, France
{bamha, jchabin, mirian, binh}@univ-orleans.fr

2 Université François Rabelais de Tours, LI EA, Blois, France
markho↵@univ-tours.fr

Abstract. Querying according to a personalised context is an increas-
ingly required feature on semantic graph databases. We define contexts
by using constraints imposed on queries and not on data sources. No
correction trial is performed on an inconsistent database but answers
are ensured to be valid. Data confidence according to provenance is also
taken into account. As constraint validation and query evaluation are two
independent modules, our approach can be tested with di↵erent query
evaluators. This paper focus on a MapReduce query environment.

Keywords: graph database, RDF, constraint, context, MapReduce.

1 Introduction

Constraint verification, usually neglected in modern scenarios due to velocity
and volume exigencies, is a fundamental issue when answer quality and con-
text personalisation are required. The Resource Description Framework (RDF)
is a graph-based data model which is not only restricted to web semantics but
increasingly popular for sharing data in di↵erent knowledge areas ([6,17]). Pro-
viding valid or context dependent answers to one working on distributed RDF
data is a growing necessity.

This paper describes a query environment over semantic graph databases
(or knowledge graphs) involving a mechanism for filtering answers according
to a customised context that settles global constraints and confidence degrees.
Inconsistency on sources is allowed but query answers are filtered to ensure
consistency w.r.t. constraints. Figure 1 illustrates our data graph system. A
global system o↵ers a graph schema containing global predicates and constraints.
A local system o↵ers data access and tools to compute answers. It is composed
by di↵erent data sources which stores a distributed instance of the graph. Queries
are built over the global schema but evaluated over local sources.

? Work partially supported by APR-IA GIRAFON.
?? Supported by a PhD grant Orléans-Tours.

2 Bamha et al.

Di↵erent query evaluation system can be adapted to this general model. In
this paper, we focus on an organization that provides distributed sources over a
MapReduce platform to store and query its data. In this context, we discuss the
benefits of data distribution according to confidence degrees and we o↵er a first
performance analysis of our constraint validation proposal.

Fig. 1. Query system overview

We use the university domain ontology (LUBM3) to illustrate our approach.

Example 1. Let us suppose a context with only two constraints:
c
P0 : professor(Xprof)! masters(Xprof,Xuniv)

c
N0 : masters(Xstud,Xuniv), undergrad(Xstud,Xuniv)! ?

The first positive constraint states that a professor must have a master degree.
The second negative constraint does not accept students having an (undergrad-
uate) degree and a master degree from the same university. We assume the
following sources of a distributed database with their truth confidence degree
(⌧) and facts.

Source ⌧ True facts

S1 0.6 professor(Bob), professor(Lea)
S2 0.8 professor(Alice), professor(Louise)
S3 0.7 masters(Louise,Orleans), masters(Lea,Orleans), masters(Alice,Orleans)
S4 0.6 undergrad(Alice,Orleans),undergrad(Bob,Orleans),undergrad(Lea,Tours)

In this scenario we consider query q(Xprof) professor(Xprof). Let
q’s required confidence degree be ⌧

in

= 0.6, indicating that sources having a
smaller confidence degree should not be taken into account. The answer is the
set {(Louise), (Lea)}. Neither tuple (Bob) nor (Alice) are answers due to viola-
tions to c

P0 and c
N0 , respectively. However, if ⌧in = 0.7 then (Lea) is no more

an answer but (Alice) becomes an answer. As undergrad(Alice,Orleans) is no
longer available (with ⌧ = 0.6), no reliable violation for c

N0 is detected. ⇤
3 LUBM: Lehigh University Benchmark developed to facilitate the evaluation of Se-
mantic Web repositories; http://swat.cse.lehigh.edu/projects/lubm/

Personalized Environment for Querying Semantic Graphs 3

Validating RDF data deserves considerable attention and bright to light dif-
ferent ways of considering constraints: the so-called ontology constraints are
seen as inference rules, contrary to classical database constraints ([9]). As our
global constraints customize user’s exigencies we deal with them in a traditional
database viewpoint. In the above example, Bob is a professor but no information
concerning his master degree is available from the data sources. Constraint c

P0

is not supposed to infer the missing information concerning Bob.

Paper organisation: Important definitions are summarized in Section 2. Sec-
tion 3 focuses on the semantics of constrained queries over sources with di↵erent
confidence degrees. Section 4 summarizes query evaluation over a MapReduce
platform; while experimental results are discussed in Section 5. Section 6 presents
some related work and Section 7 concludes the paper.

2 A Graph Database

2.1 Preliminaries

Alphabet and atomic formulas. Let A be an alphabet consisting of constants,
variables, predicates, the equality symbol (=), quantifiers (8 and 9) and the
symbols > (true) and ? (false). We consider four mutually disjoint sets, namely:
(1) A

C

, a countably infinite set of constants, called the underlying database
domain; (2) A

N

, a countably infinite set of fresh labelled nulls which are place-
holders for unknown values; (3) var an infinite set of variables used to range
over elements of A

C

[A

N

and (4) pred, a finite set of predicates or relation
names (each predicate is associated with a positive integer called its arity). The
only possible terms are constants or variables. An atomic formula (or atom) has
one of the forms: (i) P (t1, ..., tn), where P is an n-ary predicate, and t1, ..., tn are
terms; (ii) expressions > (true) and ? (false) or (iii) t1 = t2 (where t1 and t2 are
terms). A conjunction of atoms is often identified with the set of all its atoms.
We denote by X sequences of terms X1 . . . Xk

where k � 0 (in the context one
can understand when only variables are used).

Substitution. A substitution from one set of symbols E1 to another set of symbols
E2 is a function h : E1) E2. A homomorphism from a set of atoms A1 to a set
of atoms A2, both over the same schema R, is a substitution h from the set of
terms of A1 to the set of terms of A2 such that: (i) if t 2const, then h(t) = t,
and (ii) if r(t1, ..., tn) is in A1, then h(r(t1, ..., tn)) = r(h(t1), ..., h(tn)) is in A2.
The notion of homomorphism naturally extends to conjunctions of atoms.

Database schema and instances. Databases are represented as a relational data-
base in the logic programming perspective. A database schema S is composed
by a finite set of predicate symbols S. A fact (or a ground atom) over S 2 S is
an atom of form S(u) where u 2 A

n

C

. Under the logic-programming perspective,
an instance over S is a finite set of instantiated atoms over S while an instance
over schema S is a finite set S which is the union of instances over S, for all
S 2 S.

4 Bamha et al.

Queries. A conjunctive query (CQ) q of arity n over a given schema is a formula
of the form q(X) �(X,Y), where �(X,Y) is a conjunction of atoms over the
schema and q is a n-ary predicate. A boolean conjunctive query (BCQ) is a CQ of
arity zero. We denote by body(q) (respect. head(q)) the set of atoms composing
the body (respect. the head) of a given query q. Let I be an instance for the
given schema. The answer to a CQ q of arity n over I, denoted as q(I), is the set
of all n-tuples t 2 A

n

C

for which there exists a homomorphism h
t

: X [Y) A

C

such that h
t

(�(X,Y)) ✓ I and h
t

(X) = t. We denote by h
t

a homomorphism
used to obtain an answer tuple t. Technically, the answer false (i.e., a negative
answer) for a BCQ corresponds to the empty result set and the answer true (i.e.,
a positive answer) corresponds to the result set containing the empty tuple. A
positive answer over I is denoted by I |= q.

2.2 Graph database, constraints and provenance

Our query environment is composed by two independent modules (Figure 1):
a validator and an evaluator. In the validator, a query q1 is built from the
initial query q and a part of the set of constraints and sent to the evaluator. The
evaluator computes answers to q1 by consulting distributed data sets and returns
them to the validator, which starts a constraint verification step over the answer
sets. This validation processes may require the generation of other subsidiary
queries. Once this ’dialogue’ between the validator and the evaluator is finished,
i.e., all constraint verifications are done, valid answers are available to the user.
The evaluator integrates query translation and planning mechanisms.

In this context, the following aspects of our approach are worth underling:

1. A graph schema G is a finite set of predicate symbols or relation names
G1 . . . Gm

associated to a set of constraints C defined over G.
2. Local data sources (S1, ⌧1), . . . , (Sn

, ⌧
n

) store a distributed graph instance.
For 0  i  n, each S

i

is a data source instance respecting a local schema
S
i

and each ⌧
i

is the source confidence degree, represented by a number in
the interval [0, 1].

3. We assume the existence of a mapping between global and local systems (e.g.
via a LAV approach). In general, when a global query q has a non-empty
set of answers then there exists at least one re-writing of q in terms of sub-
queries q01 . . . q

0
m

where each q0
j

(1  j  m) is a sub-query expressed over
local relations. These mapping aspects are out of the scope of this paper and
to simplify explanations, our examples consider identical relation schemas
for global and local systems.

4. Our proposal can be implemented over di↵erent evaluation mechanisms. This
paper focus on a MapReduce solution. When confidence degrees are disre-
garded we write S |= q, a shorthand of S1 t · · ·tSn

|= q, to denote that the
answer of a BCQ q is positive w.r.t. local databases. We see local databases
as a whole, i.e., a system (or distributed database) capable of answering our
global query. We denote by ans(q,S) the set of tuples obtained as answers
for a conjunctive global query q over the distributed database S.

Personalized Environment for Querying Semantic Graphs 5

5. When data provenance is considered, we associate a confidence degree to each
source and a minimal confidence degree (⌧

in

) to the query. These measures
are settled by the user, according to his knowledge of source accuracy or
proposed by a recommendation system. Our system o↵ers some flexibility in
how to use veracity information (cf. Section 3). We write (S, ⌧) |= q : ⌧

in

and we denote by ans(q : ⌧
in

, (S, ⌧)) the set of tuples obtained as answers
for a conjunctive global query q : ⌧

in

over a distributed database (S, ⌧).
6. Answers for a given query q are filtered according to quality restrictions set-

tled for an application. An user may establish the context in which a certain
number of queries is evaluated and choose another context for other queries.
The customization of this quality context is provided by constraints, i.e.,
restrictions imposed on queries. Only data respecting them are allowed as
query answers. Inconsistencies on sources are allowed and our approach does
not aim at correcting them, but at discarding them during query evaluation.
The following definition introduces the constraints used in this paper.

Definition 1 (Global Constraints). A constraint c is a rule and we denote by
body(c) and head(c), the left hand-side and the right hand-side of c, respectively.
A set C of constraints over G is composed by three subsets, as follows:
(1) Positive constraints (C

P

): Each positive constraint has the form
8X,Y L1(X,Y)! 9Z L2(X,Z)

where L1 and L2 are atoms, such that for every constraint c whose head has a
non-empty Z, there is no other constraints c1 2 C

P

(c1 6= c) for which body(c1)
and head(c) are unifiable.
(2) Negative constraints (C

N

): Each negative constraint has the form
8X �(X) ! ?

where �(X) is an atom L1(X) or a conjunction of two atoms L1(X1), L2(X2),
having a non-empty intersection between the terms in X1 and in X2.
(3) Equality-generating dependency constraints without nulls (C

K

) (also
called key constraints): Each EGD has the general form

8X1, X2,Y,Z1,Z2 L1(Y, X1,Z1), L2(Y, X2,Z2)! X1 = X2.
where Y is a sequence having at least one term. Notice that EGD include func-
tional dependency having the form L1(Y, X1,Z1), L1(Y, X2,Z2)! X1 = X2 ⇤

Notice that positive constraints are a special case of linear TGD (Tuple Gen-
erating Dependency ([4])): they contain only one atom in the head and do not
allow a fresh null propagation (atoms with existential variables are not unifiable
with another atom in a rule’s body). Our constraints generalize the well known
functional and inclusion dependencies in relational databases and extend the
active rules introduced in [10]. When the body of a positive constraint matches
a ground atom, the (now instantiated) constraint triggers side e↵ects, setting
other facts which should also be true in the distributed database. To formally
define this behaviour, we introduce an immediate consequence operator.

Definition 2 (Immediate consequence operator). Let T be an operator
over C and I be a set of facts. We define TC(I) = I [{⌫0(head(c)) | c 2
C and ⌫(body(c)) ✓ I and ⌫0 ✓ ⌫ is an extension of ⌫ such that , for each

6 Bamha et al.

existential variable Z
i

2 head(c), we have h0(Z
i

) = z
i

, where z
i

2 �
N

is a fresh
labelled null not introduced before }. ⇤

3 Querying Environment with Constraints and

Confidence

This section presents our personalized querying environment over a distributed
semantic graph. Original aspects of our approach are:
(i) A constraint violation implies discarding only invalid answers (not the whole
database). However, no answer built on the basis of non-valid data is accepted.
(ii) The distributed database (local system) may contain non valid data which
are filtered when involved in a global query.
(iii) Constraints are active rules imposing a dialogue between the global and
the local levels: on the global level, they are triggered by facts in the query
body (facts resulting from query instantiation, during evaluation). Triggered
constraints usually impose extra verifications on the local level (e.g. testing if
another fact is true in the distributed database).
(iv) Answer computation also takes into account the confidence degree of data
provenance, discarding data considered as not faithful.
(v) The flexibility of our approach includes settling constraints appropriate to a
given application, choosing confidence degrees of data sources and establishing
how to use confidence information to compute answers.

3.1 Formal definition and properties

When data sources are associated to confidence degrees, a query q can have a
required confidence degree ⌧

in

and one can expect that only data coming from
sources whose confidence degrees respect a given condition w.r.t. ⌧

in

are taken
into account to build answers for q.

Definition 3 (Local querying with confidence). Let (S, ⌧) be a local source
database where S is a database instance and ⌧ is the truth or confidence degree
of the database. Let q be a query over (S, ⌧) with the minimum required truth
degree ⌧

in

. The answer of q : ⌧
in

over (S, ⌧) is the set ans(q :⌧
in

, (S, ⌧)) =
{(t : ⌧

out

) | ⌧
out

= ⌧ and t 2 q(S) and cond(⌧
in

, ⌧)}, where cond(⌧
in

, ⌧) is a
condition we may establish to avoid considering some sources. ⇤

In this paper, cond(⌧
in

, ⌧) = (⌧ � ⌧
in

) discarding all sources whose confidence
is inferior to ⌧

in

. In Example 1, if ⌧
in

= 0.7, the tuple (Lea) is no more an answer
for q because professor(Lea) comes from S1 with ⌧ = 0.6.

The system can be parametrized with other conditions, and even no condition
can be settled at this step (i.e. all sources are considered in the computation
of ⌧

out

). Details on how the confidence degrees are computed are out of the
scope of the paper. One can suppose that they are given by the user or by a
recommendation routine.

Personalized Environment for Querying Semantic Graphs 7

To compose the response for a query q :⌧
in

, we put together answers produced
by di↵erently trusted database. Firstly, we need a set of possible candidate an-
swers: tuples t that are trustable w.r.t. ⌧

in

.

Definition 4 (Candidate answer over (S, ⌧)). Let (S, ⌧) be a graph database
instance composed of n local databases having di↵erent truth degrees. A cou-
ple (t : ⌧

out

) is a candidate answer for a global query (q : ⌧
in

, (S, ⌧)) if the
following conditions hold: (1) tuple t is an answer obtained from local sources,
i.e. t 2 ans(q,S); (2) ⌧

in

 ⌧
out

and the computation of ⌧
out

is defined by
⌧
out

= f(⌧
in

, {⌧1
outSi

, . . . , ⌧m
outSl

}) where:
(i) each ⌧k

outSj
denotes the degree of the tuples in ans(q

k

: ⌧k
in

, (S
j

, ⌧
j

)) for the

sub-query q
k

(1  k  m) generated to be evaluated on the local source (S
j

, ⌧
j

)
during the evaluation process of q (where i, j, l 2 [1, n]) and
(ii) function f computes a confidence degree taking as input the query confidence
degree and the confidence degrees of data sources concerned by q. ⇤

A user can parametrize the use of confidence degrees by choosing di↵er-
ent functions f and by combining this choice with cond in Definition 3. For
example, consider that cond(⌧

in

, ⌧) = true. In this case, the selection of t is
based only on the confidence degree computed by f . If f is the average, the
resulting ⌧

out

computes the average of all data sources involved in the query
answering. If however a condition such as ⌧

out

� 0.5 is used in Definition 3, only
sources respecting it are used in the average computation. Our examples consider
that f(⌧

in

, {⌧1
outSi

, . . . , ⌧m
outSl

}) corresponds to min({⌧1
outSi

, . . . , ⌧m
outSl

}), and as
stated above, we disregard sources whose confidence is inferior to ⌧

in

. Thus, in
Example 1, the answer set for q : 0.6 is {((Lea) : 0.6), ((Louise) : 0.7)}.

Global query answers are restrained by constraints in C. To find an answer t
to a query q means to find an instantiation h

t

(cf. paragraph Queries, Section 2)
for the body of q that generates t. Verifying whether h

t

(body(q)) is valid w.r.t.
C ensures the validity of our answer. In the following definition we put together
constraint and confidence degree verification to answer global queries. Let q :⌧

in

be a conjunctive global query and C = C
P

[C
N

[C
K

be a set of constraints over
G. Valid candidate answers are those that respect constraints and are obtained
by trusted databases.

Definition 5 (Valid candidate answers). The set of valid candidate an-
swers of a query q : ⌧

in

, restrained by C, over a database (S, ⌧), denoted by
valCandAns (q :⌧

in

, C, (S, ⌧)) is defined by the set {(t : ⌧
out

)} respecting the
following conditions: (1) t is a candidate answer as in Definition 4 and h

t

is a
corresponding homomorphism (Section 2); (2) there exists h1 such that for all
L 2 h1(T ⇤

CP
(h

t

(body(q))) the following conditions hold:

(i) there is a positive answer for q() L : ⌧
in

on (S, ⌧);
(ii) for each c 2 C

N

of the form L1, L2 ! ?, if there is a homomorphism ⌫
such that ⌫(L

i

) = L, then there is no homomorphism ⌫0 that extends ⌫ and for
which there is a positive answer for q0() ⌫0(L

i

) : ⌧
in

(In our notation, if i = 1
then i = 2 and vice-versa.) and

8 Bamha et al.

(iii) for each c 2 C
K

of the form L1(Y, X1,Z1), L2(Y, X2,Z2)! X1 = X2 if
there is a homomorphism ⌫ such that ⌫(L

i

(Y, X
i

,Z
i

)) = L, then the answer of
q(X

i

) ⌫(L
i

(Y, X
i

, Z
i

)) : ⌧
in

is a singleton containing the tuple value ⌫(X
i

). ⇤

It is important to understand that constraints are triggered by atoms in
the body of a query. Let us suppose a query q over database S1, on a context
defined by C, where c 2 C

P

has an existential variable in its head. We assume
that h

t

is the homomorphism used to produce tuple t as an answer for q on
S1, that f is a fact in h

t

(body(q)) and that there is an homomorphism ⌫ for
which ⌫(body(c)) = f . Constraint c produces atom h0

t

(head(c)) where h0
t

is an
extension of h

t

where the existential variable is associated to a new fresh null
in A

N

. Then, to decide whether the answer t is valid w.r.t. c, we need to check
whether there is a homomorphism h1 : A

N

! A

C

such that h1(h0
t

(head(c))) is
a fact in S1. The example below illustrates this situation.

Example 2. We consider a new context defined by the following constraints:

• c
P1 : AssistantProfessor(X) �! 9Y TeacherOf(X,Y)

Every AssistantProfessor is the teacher of a course.
• c

P2 : GraduateStudent(X) �! 9Y TakesCourse(X,Y)
For every GraduateStudent, there is a course followed by him.

• c
N1 : TeacherOf(X,Y), TakesCourse(X,Y) �! ?

One cannot be the teacher and a student of the same course.

In this scenario, query q1(X) AssistantProfessor(X), GraduateStudent(X)
asks for people who are both AssistantProfessor and GraduateStudent. Let us
suppose that a distributed database S o↵ers the following instantiations for
body(q) from which the answers are built. These instantiations are represented
by two homomorphisms, namely:

– h
t

which associates variables of atoms in body(q) to constants in S.
Here, we have the answer h

t

: {X/Bob} with
h
t

(body(q)) = {AssistantProfessor(Bob), GraduateStudent(Bob)}.
– h1 which associates nulls in A

N

to constants appearing in S.
When positive constraints are triggered from facts in h

t

(body(q)), we obtain
TeacherOf(Bob,N1) and TakesCourse(Bob,N2) whereN1 andN2 are fresh
nulls. By instantiating these new fresh nulls, we assume that four answers
to q1 are possible:

h11 = { AssistantProfessor(Bob), GraduateStudent(Bob),
T eacherOf(Bob,BDD), TakesCourse(Bob,BDD)}

h12 = {AssistantProfessor(Bob), GraduateStudent(Bob),
T eacherOf(Bob,BDD), TakesCourse(Bob,Maths)}

h13 = {AssistantProfessor(Bob), GraduateStudent(Bob),
T eacherOf(Bob,Algo), TakesCourse(Bob,BDD)}

h14 = {AssistantProfessor(Bob), GraduateStudent(Bob),
T eacherOf(Bob,Algo), TakesCourse(Bob,Maths)}

Personalized Environment for Querying Semantic Graphs 9

The three first instantiations are not valid due to negative constraint c
N1 . For

instance, in h13 , TakesCourse(Bob,BDD) triggers c
N1 . As TeacherOf(Bob,

BDD) is in S, the instantiation h13 is discarded. On the other hand, the last
instantiation respects all the constraints (neither TakesCourse(Bob,Algo) nor
TeacherOf(Bob,Maths) are true in S). Thus, in conclusion, Bob is a valid
answer to our query. Indeed, in our approach, we are looking for an instantiation
(built from data of S) for which the following condition holds:

h1(T ⇤
CP

(h
t

(body(q))) |= 8X9Y, 9Y 0AssistantProfessor(X)^
GraduateStudent(X)^ TeacherOf(X,Y) ^ TakesCourse(X,Y 0)^
¬TeacherOf(X,Y 0)^ ¬TakesCourse(X,Y) ⇤

Given a query q : ⌧
in

, restrained by C, over (S, ⌧), we stress that our method
renders all and only valid answers.

Proposition 1. The set valCandAns over (S, ⌧), for a query q : ⌧
in

, defined
on G with constraints C is correct and complete. ⇤
Proof: straightforward from Definition 5.

3.2 Implementation issues

As mentioned in Section 2.2, to perform constraint validation, our validator (on
the upper global level) establishes a dialogue with a query evaluator (on the
lower, local, distributed level). This dialogue has two main steps. The first step
concerns a rewritten version of the user’s query on the basis of some selected
constraints. The second step deals with several new simpler queries generated
on the basis of the remaining constraints and the answers obtained during the
first step. Algorithm 1 summarizes this role process.

On line 3 of Algorithm 1, function RewritreWithConstraint is called to per-
form the rewriting of q : ⌧

in

into a new query q1 whose body is q’s body com-
pleted by positive or negative atoms, according to chosen constraints in C

rew

.
For instance, suppose that in C

rew

we have constraints c1 : A(X) ! B(X),
c2 : A(X), D(X) ! ?, query q(X) A(X) and a distributed database (S, ⌧).
In the rewriting phase, q is translated into q1(X) A(X), B(X),¬D(X) with
minimum confidence degree ⌧

in

. Clearly, answers for q1 : ⌧
in

will respect the
given constraints4. The query q1 is sent to the evaluator (Eval1, on line 4) and
answers are stored in a set Solutions. They are valid w.r.t. C

rew

.
The advantage of validating through rewriting is that validation and query

evaluation are performed together, in just one step. The disadvantage concerns
the need of a (lower-level) query evaluator capable of dealing with non conjunc-
tive queries (and this is not always the case when working with new distributed
query environments focusing on large amount of data). Another problem is that

4 Notice that, during this re-writing, consistency of the query’s body is verified w.r.t.
C
N

(e.g. a query such as q2(X) A(X), D(X) is detected as inconsistent and
discarded).

10 Bamha et al.

Algorithm 1: PersonalizedQuerying(q : ⌧
in

, (S, ⌧), C)
Input :
– Global conjunctive query q with minimum confidence degree ⌧

in

– Distributed data source (i.e., the corresponding links to data access)
– Global constraint set C, settled for the application.

Output: Answers of q on (S, ⌧) respecting C and confidence degree ⌧

in

.
1 AnsSet := ;;
2 C

rew

:= Choose(C, (S, ⌧))
3 q1 := RewritreWithConstraint(q, C

rew

);

4 Solutions := Eval1(q1 : ⌧
in

, (S, ⌧));
5 Cache := CreateCache();
6 C

check

:= C \ C
rew

7 foreach (sol, ⌧
out

) 2 Solutions where sol = (t, h
t

) do
8 if Valid(sol, C

check

, ⌧

in

,Cache) then
9 AnsSet := AnsSet [{(t, ⌧

out

)};
10 end

11 end
12 return AnsSet;

the evaluation of such a completed and more complex query is not necessarily
more e�cient than the evaluation of many simpler queries.

The set Solutions (line 4) contains pairs (sol, ⌧
out

) where sol is the pair (t, h
t

).
Then, on line 8, function Valid performs two main actions:
(i) It generates auxiliary queries from the instantiation of each remaining con-
straint c (not in C

rew

), triggered by a fact appearing in h
t

(body(q)). For instance,
from the example above, suppose now that C

rew

= ; and thus C
check

= {c1, c2}.
If the evaluation of q on (S, ⌧) results in h

t

= {X/a}, then auxiliary queries
q
a

() B(a) and q
b

() D(a) (both with minimum confidence degree ⌧
in

) are
generated in other to verify constraints c1 and c2.
(ii) It returns only the valid answers, which are stored in the answer set. All
answers produced with data which do not respect constraints are discarded.

Determining whether it is better to evaluate many simple queries instead
of rewriting the user’s query into a complex one is a tricky problem. E�ciency
depends not only on the query evaluator, but also on the database schema and in-
stances. For this reason, our approach o↵ers flexibility. On line 2 of Algorithm 1,
one can choose which constraints are going to be used in the rewriting perspec-
tive. This choice can be tuned up gradually according to the needs of database
administrators and users. Feasibility tests were performed with GraalDatalog,
MySQL and Virtuoso SPARQL query service on DBpedia.

4 Query Evaluation using MapReduce

MapReduce is a simple yet powerful framework for implementing applications in
large scale distributed systems without having extensive prior knowledge of issues

Personalized Environment for Querying Semantic Graphs 11

related to data redistribution, or task allocation and fault tolerance ([5,11]).
Most MapReduce frameworks includes Distributed File Systems (DFS) designed
to store very large files with streaming data access patterns and data replication
for fault tolerance while guaranteeing high disk I/O throughput. We use an open
source version of MapReduce called Hadoop developed by The Apache Software
Foundation. Hadoop framework includes a distributed file system called HDFS5

designed to store very large files. In MapReduce frameworks the access to data
requires a full scan of input data from DFS, which may increase disk/IO and
communication costs in applications involving very large datasets. Many data
management frameworks have been introduced to allow e�cient access to large
datasets stored in a DFS. In these frameworks, only relevant columns/data can
be accessed and queried using ”e�cient” SQL-like query languages. Apache Hive,
Hbase and Pig are examples of such data management frameworks.

In this paper, we use Hive with RDF data. Hive provides data indexing
and partitioning for e�cient data analysis. Queries in HiveQL (an SQL-like
language) are converted to a sequence of MapReduce jobs. The main motivation
to use Hive is its ability to manage huge amount of compressed datasets. Each
table can be divided into partitions (each partition corresponds to one or more
HDFS buckets/splits), providing a more e�cient execution of queries involving
large datasets with di↵erent confidence degrees. Communication costs, HDFS
disk I/O and data analysis processing time decrease because only table’splits
corresponding to, at least, a given confidence factor are selected for data analysis.
Figure 1 places Hive and MapReduce in our general architecture.

5 Experimental Results

Our experimental results comprise two steps. We study the impact of data dis-
tribution guided by confidence degrees on the query evaluator. Then, we analyse
the use of this query evaluator in conjunction with our constraint validator.

5.1 The impact of data distribution using confidence factors

To evaluate the performance of our table’s partitioning using confidence factors,
we compare the execution of di↵erent HiveQL queries using both partitioned
and non-partitioned LUBM data sources (w.r.t. confidence factors). In parti-
tioned LUBM data sources, records of each table are stored into blocks and
each block contains only records corresponding to a unique confidence factor.
For non-partitioned data, each block of data, of each table, may have di↵erent
confidence factors.

To study the e↵ect of confidence factor in partitioning our LUBM bench-
mark (about 100GB of source data corresponding to approximately 8GB of
compressed tables), we consider confidence factors ranging from 25% to 95%
(i.e. 0.25, 0.95). We have run a large series of experiments where 24 Virtual

5 HDFS: Hadoop Distributed File System.

12 Bamha et al.

Machines (VMs) were randomly selected from our university cluster using Open-
Nubula software for VMs administration. Each VM has the following character-
istics : 1 Intel(R) Xeon@2.53GHz CPU, 2 Cores, 8GB of Memory and 100GB of
Disk. Setting up a Hadoop cluster consists of deploying each centralised entity
(namenode and jobtracker) on a dedicated VM and co-deploying datanodes and
tasktrackers on the rest of VMs. The data replication parameter was fixed to 3
in the HDFS configuration file.

Query Total CPU Time HDFS Read Original table size
Q1 51.52 seconds 2709273139 Bytes (⇠2.7 Gbytes) ⇠19 Gbytes
Q2 478,13 seconds 19857918459 Bytes (⇠19 Gbytes) ⇠19 Gbytes

Table 1. E↵ect of partitioned data (w.r.t. condidence factor) on Q’s execution time.

Table 1 shows the execution of query Q: SELECT Count(*) FROM publicatio-
nAuthor WHERE cf factor>=85; in two di↵erent situations. We denote by Q1 its
execution using partitioned data (w.r.t. confidence degree), and by Q2 its execu-
tion using non partitioned data. In all tests, including those presented in Table 1,
we notice that Q1 outperforms Q2. Execution time for Q1 is approximately 10
times smaller than for Q2. The ratio between these two execution time can be
explained by the fact that in Q1 only relevant data (e.g. data corresponding
a confidence factor higher that 85%) is read from HDFS whereas in Q2 all in-
put data need to be read. In this scenario, HDFS disk I/O and the amount of
data transmitted over the network diminish considerably, implying a reduction
of the query processing time as well. However, queries with low ⌧

in

are not really
impacted by data partitioning according to confidence degrees because, in this
case, almost all input data should be read from HDFS, anyway.

5.2 Querying under constraints on a MapReduce environment

Table 2 shows some experimental results on partitioned and compressed data (as
described in Section 5.1) over 6 machines. Our performance is illustrated with
a conjunctive query q having 5 joins (6 � 8 after rewriting). T ime1 expresses
the maximal CPU time spent by one of our cluster machines. Lines TRew and
TSubQuery indicate the time needed, respectively, to compose query q1 (Algo-
rithm 1, line 4) and to generate subsidiary queries (Algorithm 1, line 7). Both
are negligible (at least when compared to the number of queries).

Test T1 applies the two validation steps of Algorithm 1 (rewriting and sub-
sidiary queries). The di↵erence between T11 and T12 relies on the number of
negative or key constraints. In T11 , 181 subsidiary queries are necessary for con-
straint validation, but only 35 are sent to the query evaluator (the others are
validated by results in the cache). All other tests apply only the rewriting step
(no subsidiary query is needed). As HiveQL does not allow queries with more
than one embedded sub-query, tests T2, T3, T4 use at most one negative or key
constraint. Tests T2 and T3 cannot be done by using subsidiary queries - indeed,
q1 has more than 150000 answers!

Personalized Environment for Querying Semantic Graphs 13

T11 T12 T2 T3 T4

Number of C
P

- C
N

- C
K

1-2-2 1-1-1 2-0-0 3-0-0 3-0-1
Minimum confidence degree used 85 85 60 60 60
Time to rewrite (TRew) 0.003 0.004 0.003 0.003 0.003
Time for first evaluation (T ime1) 3875 3875 3577 4533 5834
Number of answers 46 46 177371 184188 0
Number of subsidiary queries 181 120
Time to generate subsidiary queries (TSubQuery) 0.397 0.334
Number of sub queries evaluated 35 24
Time for total sub-queries evaluation (T ime2) 3910 2827
Number of validated answers 4 4

Table 2. Di↵erent steps of query validation and evaluation (time in seconds).

With our MapReduce evaluator, when the answers for q1 (Algorithm 1) are
numerous, the validation via subsidiary queries is not possible. In this situation
the rewriting option should be adopted for the whole set of constraints – but this
is not always possible due to HiveQL limited expression power. Excluding this
situation, the feasibility of our approach with a MapReduce evaluator is proved,
specially when only positive constraints are requested (in this case, C = C

rew

in Algorithm 1). In this latter scenario, we can deal with very large databases.
Notice also that the expression power of positive constraints is considerable since
they include TGD (present in tests T2, T3, T4).

6 Related Work

The system presented in this paper is related to three active research domains,
rarely related to each others: (i) the use of Datalog with RDF graphs [3], (ii)
consistent query answering [14,13,15] and (iii) the query-rewriting in Ontology-
Based Data Access (OBDA) systems [9,14].

Ontological queries (such as in [4,7]) have inspired our query language on
graph databases. However, contrary to those work, our positive constraints are
traditional database constraints and not the so-called ontological constraints,
seen as inference rules. Although proposals such [16] employ the same con-
straint point of view, our approach is original since constraints are triggered
by instantiated atoms in the query body (a step towards e�cient treatment of
large amount of data, since inconsistency source data are allowed but filtered
out from final answers). Key constraints are treated in [13] but an answer is
given if it is restricted to query positions not constrained by a key. For in-
stance, the query q(Z) r(X,Y, Z) in the presence of a key constraint r(X,Y1,
Z1), r(X,Y2, Z2) ! Y1 = Y2 and data r(a, b, c), r(a, b0, c) o↵ers c as an answer.
This result is discarded in our approach due to constraint violation. Indeed, for
us, answers are issued only from facts (in the query body) not taking part in a
constraint violation.

14 Bamha et al.

In [14], authors carry out an investigation to deal with inconsistencies for
DL-Lite

A,id,den

by proposing a notion of database-repair that reaches a trade-o↵
between the expressive power of the semantics and the computational complexity
of inconsistency-tolerant query answering. Indeed, in DL-Lite

A,id,den

positive
inclusion assertions, denial assertions and identification assertions correspond to
our positive constraints, negative constraints and key constraints respectively.
They define an AR-repair as a maximally consistent subset of the original ABox
of the ontology, and an IAR-repair as the intersection of all AR-repair of a
knowledge base. Then they propose an algorithm to rewrite the query under the
IAR-repair semantics which allows to obtain the consistent answers to the query
without actually computing the IAR-repair. In [15], we find a similar spirit but
for query answering over inconsistent Datalog± ontologies. The common point
between such approaches and ours relies on the idea of living with inconsistencies
in databases, but trying to obtain consistent results during query answering.
The di↵erence is that our answers are not based on inferred facts and they are
computed on the basis of several independent sources. We also take into account
data confidence according to provenance which can be parametrized by users.

In [1,2,8,18] we find proposals to deal with unwilling data. Our approach is
inspired in [1,2] where a fuzzy datalog is presented. Our originality is to o↵er a
parametrized use of confidence information.

Lastly, experimentations using MapReduce solutions for querying RDF graphs
have been performed as shown in [12,6]. The first survey focus on data warehous-
ing context in the cloud, which is again di↵erent from our purposes. The second
one classifies MapReduce-based solutions in two families: native and hybrid. As
most existing systems, our solution belongs to the first class. Our originality is to
use the confidence rates to distribute data among the nodes. This highly reduces
the numbers of actually queries values.

7 Conclusions and Perspectives

Our query environment o↵ers personalised contexts (defined by constraints) and
a declarative query language over distributed RDF data sources not trusted
equally. Our constraints generalize functional and inclusion dependencies. All
(and only) valid and reliable answers are returned to the user.

Initial tests with data sets from Berlin or DBPedia proved the feasibility
(in several seconds) and usefulness of our proposal. In this paper, for large data
sets, experimental tests show that: (i) our MapReduce query evaluator is well
adapted to our approach when only positive constraints are used; (ii) the impact
of confidence factors on data distribution is considerable. When more than one
constraint in sets C

N

or C
K

are needed, other evaluators should be envisaged to
treat a big amount of data.

Our long-term goal is a declarative query language capable of dealing with
standard database queries and graph analysis. This task, the current focus of
our work, comprises new operator specification (aggregation, recursion, . . .) and
integration to a query evaluator (adapted or extensible for graph analysis).

Personalized Environment for Querying Semantic Graphs 15

References

1. Á. Achs. Computed answer from uncertain knowledge: A model for handling un-
certain information. Computers and Artificial Intelligence, 26(1):63–76, 2007.

2. Á. Achs and A. Kiss. Fuzzy extension of datalog. Acta Cybern., 12(2):153–166,
1995.

3. M. Arenas, G. Gottlob, and A. Pieris. A datalog-based language for querying rdf
graphs. In AMW, volume 1644, 2016.

4. A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for
tractable query answering over ontologies. J. Web Sem., 14:57–83, 2012.

5. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
In OSDI ’ 04: Sixth Symposium on Operating System Design and Implementation,
San Francisco, CA, 2004.

6. J. M. Giménez-Gárcia and M. A. M. Javier D. Fernández. Mapreduce-based solu-
tions for scalable SPARQL querying. Open Journal of Semantic Web, 1(1):1–18,
2014.

7. F. Goasdoué, V. Lattès, and M. Rousset. The use of CARIN language and algo-
rithms for information integration: The PICSEL system. Int. J. Cooperative Inf.
Syst., 9(4):383–401, 2000.

8. G. Gottlob, T. Lukasiewicz, M. V. Martinez, and G. I. Simari. Query answering
under probabilistic uncertainty in datalog+ / - ontologies. Ann. Math. Artif. Intell.,
69(1):37–72, 2013.

9. G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: Rewriting and optimiza-
tion. In Proceedings of the 27th International Conference on Data Engineering,
ICDE 2011, April 11-16, 2011, Hannover, Germany, pages 2–13, 2011.

10. M. Halfeld Ferrari Alves, D. Laurent, and N. Spyratos. Update rules in datalog
programs. J. Log. Comput., 8(6):745–775, 1998.

11. M. A. H. Hassan, M. Bamha, and F. Loulergue. Handling data-skew e↵ects in join
operations using mapreduce. In Proceedings of the International Conference on
Computational Science, ICCS 2014, Cairns, Queensland, Australia, 10-12 June,
2014, pages 145–158, 2014.

12. Z. Kaoudi and I. Manolescu. RDF in the clouds: a survey. VLDB J., 24(1):67–91,
2015.

13. P. G. Kolaitis, E. Pema, and W. Tan. E�cient querying of inconsistent databases
with binary integer programming. PVLDB, 6(6):397–408, 2013.

14. D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Inconsistency-
tolerant query answering in ontology-based data access. J. Web Sem., 33:3–29,
2015.

15. T. Lukasiewicz, M. V. Martinez, and G. I. Simari. Inconsistency handling in
datalog+/- ontologies. In ECAI 2012 - 20th European Conference on Artificial
Intelligence. Including Prestigious Applications of Artificial Intelligence (PAIS-
2012) System Demonstrations Track, Montpellier, France, August 27-31 , 2012,
pages 558–563, 2012.

16. E. Prud’hommeaux, J. E. L. Gayo, and H. R. Solbrig. Shape expressions: an RDF
validation and transformation language. In Proceedings of the 10th International
Conference on Semantic Systems, SEMANTICS 2014, Leipzig, Germany, Septem-
ber 4-5, 2014, pages 32–40, 2014.

17. A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic, and G. Lausen. S2RDF: RDF
querying with SPARQL on spark. PVLDB, 9(10):804–815, 2016.

18. G. Stoilos, N. Simou, G. B. Stamou, and S. D. Kollias. Uncertainty and the
semantic web. IEEE Intelligent Systems, 21(5):84–87, 2006.

