AN OPTIMAL EVALUATION OF "GROUPBY-JOIN” QUERIES IN
DISTRIBUTED ARCHITECTURES

M. Al Hajj Hassan and M. Bamha
LIFO, Université d’'Orléans, B.P. 6759, 45067 Orleansd€e 2, France
{mohamad.alhajjhassan,mostafa.barh@univ-orleans.fr

Keywords: PDBMS?, Parallel joins, Data skew, Join product skew, GroupBypieries, BSP cost model.
2PDBMS : Parallel Database Management Systems.
Abstract: SQL queries involving join and group-by operations arelyagommon in many decision support applications

where the size of the input relations is usually very largethe parallelization of these queries is highly
recommended in order to obtain a desirable response timer&eparallel algorithms that treat this kind of
queries have been presented in the literature. Howevér, niust significant drawbacks are that they are very
sensitive to data skew and involve expansive communicati@hInput/Output costs in the evaluation of the
join operation. In this paper, we present an algorithm tvatcomes these drawbacks because it evaluates the
"GroupBy-Join” query without the need of the direct evalaatof the costly join operation, thus reducing its
Input/Output and communication costs. Furthermore, thifBopaance of this algorithm is analyzed using the
scalable and portable BSP (Bulk Synchronous Parallel) oastel which predicts a linear speedup even for
highly skewed data.

1 Introduction and Hains, 2000; Bamha and Hains, 1999; Mourad

et al., 1994; Seetha and Yu, 1990).

Aggregate functions used to summarize large Several parallel algorithms for evaluating "GroupBy-
volume of data based on a designated grouping arejoin” queries were presented in the literature (Shatdal
widely employed in applications such as: the decision and Naughton, 1995; Taniar et al., 2000), but these

support application, OnLine Analytical Processing algorithms are inefficient due to the following
(OLAP) and Data Warehouse (Gupta et al., 1995; Li reasons:

et al., 2005; Taniar and Rahayu, 2001), because in
such applications, aggregated and summarized data
are more important than detailed records (Datta et al.,
1998). Aggregate operations may be applied on the
output of the join operation of multiple tables having
potentially billions of records. These tables may
rapidly grow every day especially in OLAP systems 2. These algorithms fully materialize the intermedi-
(Datta et al., 1998). Moreover, the output of these ate results of the join operations. This is a sig-
gueries must be obtained in a reasonable processing nificant drawback because the size of the result
time. For these reasons, parallel processing of queries of this operation is generally large with respect to

1. The communication cost in these algorithms is
very high because all the tuples of the relations are
redistributed between processors. Some of these
tuples may not even contribute in the result of the
join operation.

involving group-by and join operations results in

huge performance gain, especially in the presence

of parallel DBMS (PDBMS). However, the use of
efficient parallel algorithm in PDBMS is fundamental

in order to obtain an acceptable performance (Bamha

the size of the input relations. In addition, the In-
put/Output cost in these algorithms is very high
where it is reasonable to assume that the output
relation cannot fit in the main memory of every
processor, so it must be reread from disk in order

to evaluate the aggregate function. 2 The BSP Cost Model

3. These algorithms cannot solve the problem of Bulk-Synchronous ParallglBSP) cost model is
data skew because data redistribution is generally@ programming model introduced by L. Valiant
based on hashing data into buckets and hashing is(Valiant, 1990) to offer a high degree of abstrac-
known to be inefficientin the presence of high fre- tion like PRAM models and yet allow portable and
quencies (Bamha, 2005; Schneider and DeWitt, predictable performance on a wide variety of multi-
1989; Seetha and Yu, 1990). processor architectures (Skillicorn et al., 1997). A

BSP computer contains a set of processor-memory

In this paper, we present a new parallel algorithm pairs, a commun|cat|on network allowing inter-
used to evaluate the "GroupBy-Join” queries on processor delivery of messages and a global synchro-

Shared Nothing machines (a distributed architecture NiZation unit which executes collective requests for a
where each processor has its own memory and OWnsynchromzatlon barrier. Its performance is character-

disks), when the join attributes are different from the 12€d Py 3 parameters expressed as multiples of the lo-
group-by attributes. Our main contribution is that, in

cal processing speed:

this algorithm, we do not need to materialize the join e the number of processor-memory pais
operation as in the traditional algorithms where the 4 the timel required for a global synchronization,
join operation is evaluated first and then the group-by
and aggregate functions (Yan and Larson, 1994). P
This algorithm is also insensitive to data skew and its (cc_)mmumcatlon phase where every processor re-
communication and Input/Output costs are reduced C€lves/sends at most one word).
to a minimum. The network is assumed to deliver arrelation in

In this algorithm, we partially evaluate the timeg=h forany arityh.
aggregate function before redistributing the tuples.
This helps in reducing the cost of data redistribution. PI P2 P3 ... Pp
We use the histograms of both relations in order to
find the tuples that participate in the result of the join
operation. It is proved in (Bamha and Hains, 2005;
Bamha and Hains, 1999), using the BSP model,
that the histogram management has a negligible cost
when compared to the gain it provides in reducing
the communication cost.
In traditional algorithms, all the tuples of the output
of the join operation are redistributed using a hashing global synchronisation
function. In the contrary, in our algorithm we only re- :
distribute the result of the semi-join of the histograms
which are very small compared to the size of input Figure 1: A BSP superstep.
relations. The use Of Semi'join in mu|ti-pl’OCESSOt’ A BSP program iS executed as a SequenC%f
machines to evaluate the "GroupBy-Join” queries perstepseach one divided into (at most) three succes-
helps in reducing the amount of data transferred sive and logically disjoint phases. In the first phase

over the network and therefore the communication €ach processor uses its local data (only) to perform

cost in distributed systems (Chen and Yu, 1993; Séquential computations and to request data transfers
Stocker et al, 2001). The performance of this to/from other nodes. In the second phase the network

) ; . delivers the requested data transfers and in the third
algorithm is analyzed using the BSP cost model phase a global synchronization barrier occurs, mak-
(Skillicorn et al., 1997) which predicts for our al- ing the transferred data available for the next super-
gorithm a linear speedup even for highly skewed data. step. The execution time of a supersteig thus the

sum of the maximal local processing time, of the data

)) delivery time and of the global synchronization time:
The rest of the paper is organized as follows. In

section 2, we present the BSP costmodelusedtoeval- ~ Time(s)= max w®+ max h® g+
uate the processing time of different phases of the al- I-processor I-processor
gorithm. In section 3, we give an overview of differ-
ent computation methods of "GroupBy-Join” queries.
In section 4, we describe our algorithm. We then con-
clude in section 5. hf? (resp. hi(f)) is the number of words transmitted

o the timeg for collectively delivering a 1-relation

global synchronisation

AniL

- - - - =

wherewfs) is the local processing time on processor

i during superstep andh(® = max{hi(i), h®} where

(resp. received) by processbiduring superstes.
The execution timey s Time(s), of a BSP program
composed ofS supersteps is therefore a sum of 3

terms: W+H «g+S«| wherew = yomaxw® and

H = T max hi(5>. In generaW, H andSare functions

of p and of the size of data, or (as in the present ap-
plication) of more complex parameters like data skew
and histogram sizes. To minimize execution time of
a BSP algorithm, design must jointly minimize the
numberS of supersteps and the total voluréresp.
W) and imbalanc@(® (resp.W(®) of communication
(resp. local computation).

3 "GroupBy-Join” Queries

Computation

In DBMS, the aggregate functions can be applied
on the tuples of a single table, but in most SQL
gueries, they are applied on the output of the join
of multiple relations. In the later case, we can
distinguish two types of "GroupBy-Join” queries.
We will illustrate these two types using the following
example.

In this example, we have three relations that represent

respectively Suppliers, Products and quantity of a
product shipped by a supplier in a specific date.

SUPPLI ER (Sid, Snane, Gity)
PRODUCT (Pid, Pnane, Category)
SHI PMENT (Sid, Pid, Date, Quantity)

Query 1

Select p.Pid, p.Pnane, SUM (Quantity)
From PRODUCT as p, SHIPMENT as s
Were p.Pid = s.Pid

G oup By p.Pid

Query 2

Select p.Category, SUM (Quantity)
From PRODUCT as p, SHIPMENT as s
Were p.Pid =s.Pid

G oup By p.Category

The purpose ofQueryl is to find the total quan-
tity of every product shipped by all the suppliers,
while that of Query? is to find the total amount
of every category of product shipped by all the
suppliers.

The difference betweerQueryl and Quen? lies

in the group-by and join attributes. IQueryl, the
join attribute Pid) and the group-by attribute are
the same. In this case, it is preferable to carry out

the group-by and aggregate functions first and then

the join operation (Taniar et al., 2000; Taniar and

size of the relations to be joined. As a consequence,
applying the group-by and aggregate functions before
the join operation in PDBMS results in a huge gain
in the communication cost and the execution time of
the "GroupBy-Join” queries.

In the contrary, this can not be applied on Query
2, because the join attribut®ig) is different from
the group-by attributec@ategory. In this paper, we
will focus on this type of "GroupBy-Join” queries.
In the traditional algorithms that treat this kind of
queries, the costly join operation is evaluated in the
first step and then the aggregate function (Taniar
et al., 2000; Taniar and Rahayu, 2001). However, in
our algorithm, we succeeded to partially evaluate the
aggregate functions before redistributing the tuples
using histograms, thus reducing the communication
cost as much as possible.

4 GroupBy-Join Queries: A new
approach

In this section, we present a detailed descrip-
tion of a new parallel algorithm used to evaluate
the "GroupBy-Join” queries when the group-by
attributes are different from the join attributes. We
assume that the relatioR (resp. S) is partitioned
among processors by horizontal fragmentation and
the fragmentsR, for i = 1,...,p are almost of the
same size on every processor, i|B;| ~ % wherep
is the number of processors.

For simplicity of description and without loss of
generality, we consider that the query has only
one join attributex and that the group-by attribute
set consists of one attributg of R and another
attributez of S. We also assume that the aggregate
functionis applied on the values of the attributef S.

In the rest of this paper we use the following
notation for each relatiom € {R,S},:

e T; denotes the fragment of relatidh placed on
processor, a sub-relation oT,

e Hist"(T) denotes the histogranof relation T
with respect to the attribute, i.e. a list of pairs
(v,ny) whereny # 0 is the number of tuples of re-
lation T having the valu@ for the attributen. The
histogram is often much smaller and never larger
than the relation it describes,

o Hist"(T;) denotes the histogram of fragmeéht

IHistograms are implemented as a balanced tree (B-
tree): a data structure that maintains an ordered set of data

Rahayu, 2001), because this helps in reducing theto allow efficient search and insert operations.

e Hist"(T) is processori’s fragment of the his-
togram ofT,

e HistV(T)(v) is the frequencyr,) of valuev in re-
lationT,

o Hist"¥(Ti)(v) is the frequency of valug in sub-
relationT;,

o AGGR/ ((T) 2 is the result of applying the aggre-
gate functionf on the values of the attributeof
every group of tuples of having identical val-
ues of the group-by attributes. AGGRY (T) is
formed of a list of tupleqyv, f,) where fy is the
result of the aggregate function of the group of tu-
ples having value for the attributew (w may be
formed of more than one attribute),

e AGGRY(Ti) denotes the result of applying the
aggregate function on the attributeof relation
Ti

e AGGR/;(T) is processoi’s fragment of the re-
sult of applying the aggregate function ®n

e AGGRY (T)(v) is the resultfy of the aggregate
function of the group of tuples having valudor
the group-by attributev in relationT,

e AGGR/,(Ti)(v) is the resultfy of the aggregate
function of the group of tuples having valudor
the group-by attributev in sub-relation;,

e ||T|| denotes the number of tuples of relatidn
and

¢ |T| denotes the size (expressed in bytes or number

of pages) of relatiofT .
The algorithm proceeds in six phases. We will

give an upper bound of the execution time of each

superstep using BSP cost model. The nota@gn.)

hides only small constant factors: they depend only
on the program implementation but neither on data

nor on the BSP machine parameters.

Phase 1: Creating local histograms

In this phase, the local histograrmistY(R))(i =
1,...,p) of blocks R are created in parallel by a
scan of the fragmenR on processorn in time
Gijo * MaX=1,. p|Ri| Where ¢, is the cost of writ-

ing/reading a page of data from disk.

In addition, the local fragment®GGR,(S)(i =
1,...,p) of blocks S are also created in parallel on
each processatby applying the aggregate functidn

on every group of tuples having identical values of the

couple of attributegx, z) in time ¢; /o + max1,.. p|S|-

2AGGR“’_U(T) is implemented as a balanced tree (B-
tree). '

(In this algorithm the aggregate function may be
MAX,MIN,SUM or COUNT. For the aggregate
AV G a similar algorithm that merges tHeOUNT
and theSU M algorithms is applied).

In this algorithm, we only redistribute the tuples
of Hist(R) and AGGR%,(S) that participate effec-
tively in the join result. These tuples are determined
in phase 2, but we need first to compute the frequency
of each value of the attribut& in Hist*Y(R)) and
AGGR(S)- So while creatingHist“¥(R) (resp.
AGGR{(S)), we also create on the fly their local

histogramsHist*(R)) (resp.Hist*(S)) with respect to
X, i.e. Hist*(R)) (resp.Hist*(§)) holds the frequency
of each value of the attribute in Hist*Y(R;) (resp.
AGGR(S)) fori=1,...,p.
In fact, the difference betweetist*(R;) andHist*(R))
is thatHist*(R,) holds the frequency of each value of
the attributex in relationR; (i.e., for each valuel of
the attributex, we find the number of tuples dg
having the valuel of x), while in Hist*(R;) we count
tuples having the same values of the attributey)
only once.
We use the following algorithm to creatist*(R))
and a similar one is used to creatst*(S).
Par (on each node in parallel) i=1,...,p
Hist*(R;) = NULL 3
For every tuplet that will be inserted or used to
modify Hist®Y(R,) do
If HistY(R)(t.xt.y) = NULL Then 4
freq = Hist*(R)(t.x)
If frequ # NULL Then
Increnent the frequency of t.x in Hist*(R))
Else
Insert a new tuple (t.x,1) into HistX(R))
EndIf
EndIf
EndFor
EndPar
In principle, this phase costs:

Timehasa = O(Ci/0>‘< imaxp(|Ri| + |S|))

Phase 2: Local semi-joins computation

In order to minimize the communication cost,
only tuples ofHist*¥(R) and AGGR(S) that will
be present in the join result are redistributed. To
this end, we compute the following local semi-
joins: HistY(R) = Hist(R) x AGGR?(S) and
AGGR}(S) = AGGR?(S) x Hist*Y(R). To compute
these semi-joins, we use proposition 2 presented in
(Bamha and Hains, 2005), but instead of applying
the hashing function on the tuples Hiist*(R;) and
Hist*(S) to compute the global histograms, we apply
it here on the tuples dlist*(R,) andHist*(S). In fact
the number of tuples dlist*(R;) and that oHist*(R))

are equal, what differs is only the value of the fre- e the valueindexd) = 3, means that the frequency

quency attribute in these histograms,|8ist*(R;)| = of tuples of relationsiist*¥(R) andAGGR';,(S) as-
|Hist*(R,)| (this also applies telist*(S) andHist*(S)). sociated to valud are less than the threshold fre-
Hence the cost of this phase is (Bamha and Hains, quency. (i.e.Hist*(R)(d) < fo andHist*(S)(d) <
2005): o),
Tim&shase = o the valueindexd) = 2, means thatlist*(S)(d) >
O(rrltax ||HistY (R[] + nl]ax HAGGF\’; S|+ fo andHist x(S)(d) > Hist*(R)(d),
""""" R IR| o the valueindexd) = 1, means thatlist*(R)(d) >
min(g* [Hist“(R)| + [[Hist*(R) |, g o —)+ fo andHist*(R)(d) > Hist*(S)(d).
_ _ . |3 [IEl Note that unlike the algorithms presented in (Shatdal
min(g+[Hist'(S)] + |[Hist'(S)[], g+ =+ =)) and Naughton, 1995; Taniar et al., 2000) where both

whereg is the BSP commun|cat|on parameter and relationsR and S are redistributed, we will only re-
the cost of a barrier of synchronisation. distributeHist*Y(R) x AGGR{,(S) andAGGR(S
Hist*Y(R) to find the final result This will reduce the

We recall (cf. to proposition 1 in (Bamha and communication costs to a minimum.
Hains, 2005)) that, in the above equation, the terms: At the end of this phase, we will divide the semi-joins

. . . IR [R]| Hist”Y(R) and AGGR,(S) on each processarinto
min(g « [Hist*(R)| + [|Hist*(R) |1, g« b), three sub-histograms in the following way:
and 3 "
Ty ()XY
min(g* [Hist*(S)| + ||Hist*(S)||, g ‘Si H‘j'), Hist™ (R) = Ul st (R)
j=

represent the necessary time to compute the global and

histogramsHist*; o(R) and HistX, p(S), respec- 3 _
tively starting from the local hlstograrmﬂst'x(Ri) and AGGRY(S) = [JAGGR/*(S)
Hist*(§) wherei = 1, ..., p. j=1

During semi-join computation, we store an extra in- \,nere:
formation calledindexd) € {1,2,3} for each value (xy

d € Hist(R) N Hist'(S). This information will allow o Al tlhe tuples of Hist™™(R) (resp.
us to decide if, for a given valudz the frequencies of AGGF#,ZX’Z(S» are associated to valuesl
tuples ofHist*¥(R) and AGGR(S) having the value such thaindexd) = 1 (resp.indexd) =

d are greater (resp. lesser) than a threshold frequency ——(2)x,
fo. It also permits us to choose dynamically the probe o Al tzt;xez tuples of H_'St<) "(R) (resp.
and the build relation for each valaeof the join at- AGGR’)%(3)) are associated to values
tribute. This choice reduces the global redistribution ~ such thaindexd) = 2 (resp.indexd) = 1),

cost to a minimum. T (3%y ~=e3)%,2
. ! . 2) o All the tuples ofHist (R and AGGHR ,(S)
In this algorithm, by evaluatingGGR,(S) we par are associated to valudssuch thaindexd) =

iall ly th r function on th ri ; . g
tially apply the aggregate function on the attribute i.e. the tuples associated to values which occur

of S thus reducing the volume of data, this also ap- with frequencies less than a threshold frequency
. Xy X
plies to Hist*Y(R) where all tuples having the same 5 in both relationsk ands.

values of(x,y) are represented by a single tuple, but
we will still conS|derthat the frequencies of some tu- The tuples of AistV *Y(R) and mlxz are
ples ofAGGR},(S) andHist®¥(R) having a valuel of associated to high frequencies for the join attrlbute
the attributex is hlgh So in order to balance the load These tup|es have an |mportant effect on Attribute
of all the processors, these tuples must be evenly re-vajue Skew (AVS) and Join Product Skew (JPS). So
distributed. we will use an appropriate redistribution algorithm
In the rest of this paper, we use the same thresholdin order to efficiently avoid both AVS and JPS.
frequency as in fa-join algorithm (Bamha and Hains, yowever the tuples of relationgiist®*Y (R) and

2000; Bamha and Hains, 1999), Ib p*log(p) AGGF#,Su S) (are associated to very low frequencies
For a given value € Hist*(R) N Hist*(S) 5, U :)
for the Jom attrlbute) have no effect neither on AVS
5The intersection oHist*(R) and Hist*(S) is found nor JPS. These tuples will be redistributed using a

while computing the semi-joins (c.f proposition 2 preseinte hash function.
in (Bamha and Hains, 2005))

Phase 3:
plates

The attribute values which could lead to attribute
value skew (those having high frequencies) are also
those which may cause join product skew in standard
join algorithms. To avoid the slowdown usually
caused by AVS and the imbalance of the size of local
joins processed by the standard join algorithms, an
appropriate treatment for high attribute frequencies is
needed (Bamha and Hains, 1999; Bamha and Hains,
2000; Bamha, 2005).

Creating the communication tem-

3.a To this end, we partition the histogram
Hist*(RxS) © into two sub-histograms:
HistL2X(R x S) and Histd¥*(R x §) in the fol-
lowing manner:

if (Hist*(R)(d)mod(p) =0) then
each processor j will hold a block of size

blockj(d) = w
else

begin
Pick a random value jo between O and (p—1)

if (processor’s index j is between jo and
jo+ (Hist*(R)(d) mod @) then
the processor of index j will hold a block

blockj(d) = [&pm(d)j +

of tuples of value d.

of size: 1

else
the processor of index j will hold a block
. /X
of size: block(d)= LMF)R)(O')J

end.

e the valuesd € Hist®2*(Rx S) are associated
to high frequencies of the join attribute (i.e.
indexd) =1 orindexd) = 2),

e the valuesd € Hist®*(Rx S) are associated
to low frequencies of the join attribute (i.e.
indexd) = 3),

this partition step is performed in parallel, on each
processori, by a local traversal of the histogram
Hist*(R x S) in time:

Timesa = O(igapoHisti'X(R M S)||).

3.b Communication templates for high frequencies:
We first create a communication template: the list of
messages which constitutes the relations’ redistribu-
tion. This step is performed jointly by all processors,
each one not necessarily computing the list of its own
messages, so as to balance the overall process.

So each processor computes a set of neces-
sary messages relating to the valugst owns in
Histi(l'zyx(R x S). The communication template is
derived by applying the following algorithm on the
tuples of relationsHist”*Y(R) which is mapped
to multiple nodes. We also apply the same algo-
rithm to compute the communication template of

AGGR)(S), but we replacetist*(R) by Hist*(S).

BHist*(Rx S) is simply the intersection oHist*(R)
andHistX(S).

In the above algorithm|x| is the largest integral

value not greater thaxandblock;(d) is the number
of tuples of valual that processoy should own after
redistribution of the fragmentg of relationT.

The absolute value ofResj(d) = Hist;(T)(d) —
block;j(d) determines the number of tuples of value
d that processorj must send (ifResj(d) > 0) or
receive (ifResf(d) > 0).

Ford e Hist‘1-<1’2),X(RN S), processor owns a
description of the layout of tuples of valuk over
the network. It may therefore determine the num-
ber of tuples of valued which every processor
must send/receive. This information constitutes the
communication template. Only thogefor which
Resf(d) > 0 (resp.Resj(d) < 0) send (resp. receive)
tuples of value odd. This step is thus completed in
time: Timey = o(|\Hist<1a2>’X(R x S)H).

The tuples associated to low frequencies (i.e.
tuples havingd e Histfs)'x(R x S)) have no effect
neither on the AVS nor the JPS. These tuples are
simply mapped to processors using a hash function
and thus no communication template computation is
needed.

The creation of the communication templates
has therefore taken the sum of the above two steps:
Timephase = Times a+ Timesp =

O(male,m?p | |Hist1-'X(R X S)||+

|| Hist12(R s>||).
Phase 4: Data redistribution)
4.aRedistribution of tuples having € Hist>?*(R x
S):
Every processoiholds, for every one of its local
d € Hist ™R x), the non-zero communication

volumes it prescribes as a part of communication 4.b Redistribution of tuples with valuesd ¢
template:Resf(d) # 0 for j = 1,..., p. Thisinforma- Hist®*(Rx 9):

tion will take the form ofsending ordersent to their Tuples offist® x,y(R) andAGGR‘,S S) (i.e. tuples
target processor in a first superstep, followed then by

the actual redistribution superstep where processorshavingd e Hist (R x 9) are assomated to low fre-
obey all orders they have received. guencies, they have no effect neither on the AVS nor

j into two groups: those for whiclResf(d) > 0 function.

and those for whicliRest(d) < 0. This is done by a At the end of steps.4 and 4b, each processay
sequential traversal of tHRest (d) array. has local knowledge of how the tuples of semi-joins

Let o (resp. PB) be the number ofj's Hist (R) andAGGR(S) will be redistributed. Re-
where Res]:(d) is positive (resp. negative) distribution is then performed in time:

and Proc(k)k_1_q:p the array of processor Timeh.b:O<g*(|Hi5t 'y(Ri)HIAGGFff\’,i(S)l)JF')-
indices for which Resf(d) # 0 in the man- Thus the total cost of the redistribution phase is the

ner that: Respqj)(d) > 0 for j = 1,..,a and sum of the costs of the above two steps:
ReShroqjy(d) <Ofor j=1+a,..,B

A sequential traversal oProo(K)i_;. qp deter- TiM&nase =
mines the number of tuples that each procegswitl max ([HstY(R AGGRY
send. The sending orders concerning attribute value (g* (| (R)I+1 F?”(S‘) +

d are computed using the following procedure:
i=1 ji=a+1
while (i <a) do

|Hist 1~2> (Rx 9))) +|[Hist™2*(R)] +1)

begin We mention that we only redistribute the tuples

* n_tupl es = min(ReShroo()(d), ~ReShrocj)(d); of the semi-joinsHist™(R) and AGGR;,(S) where

* order_to_send(Proc(l),Proc(J),d, n-tupl es); |HistY(R))| and|AGGR;,(S \aregenerallyverysmall

. iesﬁroc (d) = ';eSBmC(i)(dg N ”-t“plles3_ compared tgRi| and|S/|. In addition|Hist*(R x S)|

. e;f’sfgc) __ oetsri)é?i(i)-(—)i 1r_“teu£ dﬁs’ is generally very small compared t8istY(R)| and

. rocii (d) = =i+ . |IAGGR%(S)|. Thus we reduce the communication
if Reshogjy(d) =0 then j:=j+1 endif cost to 2 minimum

end.)

Figure 2 gives an example of the vallrestas-
5 4 2
-12 -2 -20
10

Figure 2: Sending orders as a functionRéstvalues.

Phase 5: local computation of the aggregate
function

At this step, every processor has partitions of
Hist”(R) and AGGR;,(S. Using equation 2 in
(Bamha, 2005), we can deduce that the tuples of
Hist VY(R), Hst?Y(R), Hist (R can be joined
with the tuples of AGGR,*(S), AGGR(S)
AGGR‘,?&X’Z(S) respectively. But the frequencies

=—(1)x ———==(1)X,
sociated to a value of the join attribute and the of t.up_les of Hist!)Xy(R‘) and AGGR",EJXZ(S) are by.
corresponding sending orders. definition greater than the corresponding (matching)

The maximal complexity of this algorithm is: tUPIes inFist ¥ (R) andAGGR?, (S respectively.
o(HHist(le)’X(R X S)H) because for a given, no So we will chooséHist VY (R)) andAGGR (S as

more than(p— 1) processors can send data and each thebuild relations andiist ?*¥(R;) andAGGFi,?&X'Z(S)
processori is in charge of redistribution of tuples asproberelations. Hence, we need to duplicate the

Processor : 3

Rest : 24

Communications :

havingd € Histfl’z),x(R X S). probe relations to all processors in time:

For each processarandd < Hisi;-(l'2> R 9), all Time&hass.a =

the orderto_sendyg, i, ...) are sent to processpmhen 2)x

j #iintime O(g+ |HistL2%(R x)| +1). (9* (IFt?(R)| + [AGGR?, +|)-

Thus, this step costs: Now, using the following Algorithm, we are able

to compute the local aggregate function on every
processor without the necessity to fully materialize
O(g* |Hist(172>'X(R x S)|+ ||Hist(172>'X(R x S| +|). the intermediate results of the join operation.

Timea =

So the total cost of this phase is:
In this algorithm, we create on each processgor .
the relationAGGR ((R x S)i) that holds the local TiM&hase =
results of applying the aggregate function on every O(g* (|H|st XV(R)| + |AGGF§2
group of tuples having the value of the couple of
attributes ¥,2). AGGR™((R x S);) has the form

(y,z v) wherey andz are the group-by attributes and

+qmag@g0Hﬁf”%R)wﬂ@éﬁiﬂaw—

v is the result of the aggregate function.

Par (on each node in parallel) i=1,..,p
AGGR((Rx S)i) = NULL; 7
For every tuplet of relation Hist ™Y Y(R) do
For every entry v, = AGGFé,2 S)(t.x,z) do
v2 = AGGR/,((Rx 9)i)(t.y,2);
If vo# NULL Then
Update AGGR((Rx S)i)(t.y,2) = F(vi,V2)
where F() is the aggregate function;
Else
Insert a new tuple (t.y,z,v1) into the
hi st ogr am AGGR';,((Rx S)i);
Endif ’

EndFor
EndFor

For every tuplet of relation AGGR{,lL)JX’Z(s,

For every entry vy = Hist 2*Y(R,) do
v2 = AGGR,((Rx 9)i)(t.y,2);
If v2# NULL Then
Update AGGR((Rx S)i)(t.y,2) = F(v1,V2)
where F() is the aggregate function;
Else
Insert a new tuple (t.y,zvy) into the
hi st ogram AGGR((R x S)i);
EndIf '
EndFor
EndFor
For every tuplet of relation Ast® ’y(Ri) do
For every entry vy = AGGF‘{,?u)(t.x,z) do
Vv, = AGGR (R x S)i)(t.y,z);
If v2# NULL Then
Update AGGR ((Rx S)i)(t.y,2) = F(v1,v2)
where F() is the aggregate function
Else
Insert a new tuple (t.y,z,v1) into the
hi st ogram AGGR,((R x 9)i)
Endif ’
EndFor
EndFor
EndPar

)(t.x,z) do

The cost of applying this algorithm is:

TiM&hassb =

ci/o*O(maxp(|H|st(Lixy Y(R) AGGR‘,Z,&X'Z(S)H

[FiSt(R) s AGGR, () |+
|WSt<3)X7y(Ri) 1><1 WGR%?&X’Z(S)D)

[HistY(R) x AGGR L |+
== (3)X, 3)X,
|H|st(Xy Y(R) AGGR,"U

+1)

Phase 6: global computation of the aggregate
function

In this phase, a global application of the aggregate
function is carried out. For this purpose, every
processor redistributes the local aggregation results,
AGGR ((R x S)i), using a common hashing func-
tion. The input attributes of the hashing function are
y andz After hashing, every processor applies the
aggregate function on the received messages in order
to compute the global restGGR; (R x S).

AGGR(R » S) is formed of three attributes.
The f|rst two are the group-by attributgsgndz) and
the third is the result of the applying the aggregate
function.

The time of this step is:

Timeyhase =
O(min(g* IAGGR (R 9)| + ||AGGR%(Rx 9)||,
NLEE LI
p p

where we apply the same result used to redistribute
the histograms (cf. to proposition 1 in (Bamha and
Hains, 2005)) in redistributinGGR”,((R x S)).

Remark 1
In practice, the imbalance of the data related to the
use of the hash functions can be due to:

e a bad choice of the hash functiased. This im-
balance can be avoided by using the hashing tech-
niques presented in the literature making it possi-
ble to distribute evenly the values of the join at-
tribute with a very high probability (Carter and
Wegman, 1979),

e an intrinsic data imbalancevhich appears when
some values of the join attribute appear more fre-
quently than others. By definition a hash function
maps tuples having the same join attribute values
to the same processor. These is no way for a
clever hash function to avoid load imbalance that
result from these repeated values (DeWitt et al.,

1992). But this case cannot arise hemging to
the fact that histograms contains only distinct val-
ues of the join attribute and the hashing functions
we use are always applied to histograms.

The global cost of evaluating the "GroupBy-Join”
queries in this algorithm is the sum of redistribution
cost and local computation of aggregate function. It
is of the order:

Timecs = OG0 max (R |+ S

IR
p

ISI IS]
.

+min(g - Hist(R) -+ Hist'R) g 5 + IR1)

+ min(g* [Hist(S)| + | [Hist*(S)||,g* =
+g+ max (FSEY(R) + |WGF$.U

+ HistX2(R x S)|)
<1’2>’X<R x S|

Y(R)|+ [AGGRL(
+ Gijo max (RISt (R) AGG%Z.U (9
i=1,...,p

+ ||Hist
+ g (|Hist ist 2
+ At Y(R) m AGGRL(S)

+ [t Y(R) % AGGR, “(S))
+min(gx |[AGGR (R S)|+|[AGGR (R x)],

IRx S ||IRx S|
* +)
p p
+ A [Hist(R)+ max [AGGR(S)] +1)

Remark 2

In the traditional algorithms, the aggregate function
is applied on the output of the join operation. The
sequential evaluation of the "groupBy-Join” queries
requires at least the following lower bound:

bounthr, = (G /o (|RI +|S + [Rx S))).

Parallel processing witlp processors requires there-
fore:

1
boundh, = B * bounchy, .

Using our approach, the evaluation of the "GroupBy-
Join” queries when the join attributes are different
from the group-by attributes has an optimal asymp-
totic complexity when:
max(|Hist 2*Y(R)|, [AGG

R s
)< p

2X2(g)|, |Hist 12X (R x S))

—)

<CI o *Ma

this is due to the fact that the local join results have
almost the same size and all the termsTime>a

are bounded by those @oundhs,. This inequality
holds if we choose a threshold frequenfgygreater
thanp (which is the case for our threshold frequency

fo = pxlog(p)).

5 Conclusion

In this paper, we presented a parallel algorithm
used to compute "GroupBy-Join” queries in a dis-
tributed architecture when the group-by attributes and
the join attributes are not the same. This algorithm
can be used efficiently to reduce the execution time
of the query, because we do not materialize the costly
join operation which is a necessary step in all the
other algorithms presented in the literature that treat
this type of queries, thus reducing the Input/Output
cost. It also helps us to balance the load of all
the processors even in the presence of AVS and to
avoid the JPS which may result from computing the
intermediate join results.

In addition, the communication cost is reduced to
the minimum owing to the fact that only histograms
and the results of semi-joins are redistributed across
the network where their size is very small compared
to the size of input relations.

The performance of this algorithm was analyzed us-
ing the BSP cost model which predicts an asymptotic
optimal complexity for our algorithm even for highly
skewed data.

In our future work, we will implement this
algorithm and extend it to a GRID environment.

REFERENCES

Bamha, M. (2005). An optimal and skew-insensitive
join and multi-join algorithm for ditributed architec-
tures. InProceedings of the International Confer-
ence on Database and Expert Systems Applications
(DEXA’2005). 22-26 August, Copenhagen, Dane-
mark, volume 3588 of_ecture Notes in Computer Sci-
ence pages 616-625. Springer-Verlag.

Bamha, M. and Hains, G. (2000). A skew insensitive al-
gorithm for join and multi-join operation on Shared
Nothing machines. Ithe 11th International Confer-
ence on Database and Expert Systems Applications
DEXA'200Q volume 1873 ofLecture Notes in Com-
puter SciencelLondon, United Kingdom. Springer-
Verlag.

Bamha, M. and Hains, G. (2005). An efficient equi-semi-
join algorithm for distributed architectures. RPro-
ceedings of the 5th International Conference on Com-

putational Science (ICCS’2005). 22-25 May, Atlanta, International Conference on Data Engineerjqmages

USA volume 3515 of_ecture Notes in Computer Sci- 575 — 584. IEEE Computer Society.
ence pages 755-763. Springer-Verlag. Taniar, D., Jiang, Y., Liu, K., and Leung, C. (2000).
Bamha, M. and Hains, G. (September 1999). A frequency Aggregate-join query processing in parallel database
adaptive join algorithm for Shared Nothing machines. systems,. IrProceedings of The Fourth International
Journal of Parallel and Distributed Computing Prac- Conference/Exhibition on High Performance Comput-
tices (PDCP), Volume 3, Number 3, pages 333:-345 ing in Asia-Pacific Region HPC-Asia200@lume 2,
Appears also in Progress in Computer Research, F. pages 824-829. IEEE Computer Society Press.
Columbus Ed. Vol. I, Nova Science Publishers, 2001. 1apnjar, D. and Rahayu, J. W. (2001). Parallel processing of
Carter, J. L. and Wegman, M. N. (April 1979). Universal ‘groupby-before-join’ queries in cluster architecture.
classes of hash functionslournal of Computer and In Proceedings of the 1st International Symposium on
System Science$8(2):143-154. Cluster Computing and the Grid, Brisbane, QId, Aus-

Chen, M.-S. and Yu, P. S. (1993). Combining joint and) tralia, pages 178-185. IEEE C-om.puter Society.
semi-join operations for distributed query processing. Valiant, L. G. (August 1990). A bridging model for par-

IEEE Transactions on Knowledge and Data Engineer- allel computation. Communications of the ACM
ing, 5(3):534-542. 33(8):103-111.

Datta, A., Moon, B., and Thomas, H. (1998). A case for Yan, W. P. and Larson, - (1994). Performing group-
parallelism in datawarehousing and OLAP. Ninth by before join. InProceedings of the Tenth Inter-
International Workshop on Database and Expert Sys- national Conference on Data Engineeringages 89—
tems Applications, DEXA 98 EE Computer Society, 100, Washington, DC, USA. IEEE Computer Society.

pages 226-231, Vienna.

DeWwitt, D. J., Naughton, J. F., Schneider, D. A., and Se-
shadri, S. (1992). Practical Skew Handling in Parallel
Joins. InProceedings of the 18th VLDB Conference
pages 27-40, Vancouver, British Columbia, Canada.

Gupta, A., Harinarayan, V., and Quass, D. (1995).
Aggregate-query processing in data warehousing en-
vironments. InProceedings of the 21th International
Conference on Very Large Data Basgmges 358 —
369, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Li, C., Chang, K. C.-C., and llyas, I. F. (2005). Effi-
cient processing of ad-hoc top-k aggregate queries in
olap. Technical report, UIUCDCS-R-2005-2596, De-
partment of Computer Science, UIUC.

Mourad, A. N., Morris, R. J. T., Swami, A., and Young,
H. C. (1994). Limits of parallelism in hash join algo-
rithms. Performance evaluatiqQr20(1/3):301-316.

Schneider, D. A. and DeWitt, D. J. (1989). A performance
evaluation of four parallel join algorithms in a shared-
nothing multiprocessor environment. Rroceedings
of the 1989 ACM SIGMOD international conference
on Management of data, Portland, Oregon, United
States, May 1989pages 110-121, New York, NY,
USA. ACM Press.

Seetha, M. and Yu, P. S. (December 1990). Effectiveness of
parallel joins.IEEE, Transactions on Knowledge and
Data Enginneerings2(4):410-424.

Shatdal, A. and Naughton, J. F. (1995). Adaptive paral-
lel aggregation algorithmsSIGMOD Record (ACM
Special Interest Group on Management of Data)
24(2):104-114.

Skillicorn, D. B., Hill, J. M. D., and McColl, W. F. (1997).
Questions and Answers about BSKcientific Pro-
gramming 6(3):249-274.

Stocker, K., Kossmann, D., Braumandl, R., and Kemper, A.
(2001). Integrating semi-join-reducers into state-of-
the-art query processors. Rroceedings of the 17th

