
AN OPTIMAL EVALUATION OF ”GROUPBY-JOIN” QUERIES IN
DISTRIBUTED ARCHITECTURES

M. Al Hajj Hassan and M. Bamha
LIFO, Université d’Orléans, B.P. 6759, 45067 Orléans Cedex 2, France

{mohamad.alhajjhassan,mostafa.bamha}@univ-orleans.fr

Keywords: PDBMSa, Parallel joins, Data skew, Join product skew, GroupBy-Join queries, BSP cost model.

aPDBMS : Parallel Database Management Systems.

Abstract: SQL queries involving join and group-by operations are fairly common in many decision support applications
where the size of the input relations is usually very large, so the parallelization of these queries is highly
recommended in order to obtain a desirable response time. Several parallel algorithms that treat this kind of
queries have been presented in the literature. However, their most significant drawbacks are that they are very
sensitive to data skew and involve expansive communicationand Input/Output costs in the evaluation of the
join operation. In this paper, we present an algorithm that overcomes these drawbacks because it evaluates the
”GroupBy-Join” query without the need of the direct evaluation of the costly join operation, thus reducing its
Input/Output and communication costs. Furthermore, the performance of this algorithm is analyzed using the
scalable and portable BSP (Bulk Synchronous Parallel) costmodel which predicts a linear speedup even for
highly skewed data.

1 Introduction

Aggregate functions used to summarize large
volume of data based on a designated grouping are
widely employed in applications such as: the decision
support application, OnLine Analytical Processing
(OLAP) and Data Warehouse (Gupta et al., 1995; Li
et al., 2005; Taniar and Rahayu, 2001), because in
such applications, aggregated and summarized data
are more important than detailed records (Datta et al.,
1998). Aggregate operations may be applied on the
output of the join operation of multiple tables having
potentially billions of records. These tables may
rapidly grow every day especially in OLAP systems
(Datta et al., 1998). Moreover, the output of these
queries must be obtained in a reasonable processing
time. For these reasons, parallel processing of queries
involving group-by and join operations results in
huge performance gain, especially in the presence
of parallel DBMS (PDBMS). However, the use of
efficient parallel algorithm in PDBMS is fundamental
in order to obtain an acceptable performance (Bamha

and Hains, 2000; Bamha and Hains, 1999; Mourad
et al., 1994; Seetha and Yu, 1990).

Several parallel algorithms for evaluating ”GroupBy-
Join” queries were presented in the literature (Shatdal
and Naughton, 1995; Taniar et al., 2000), but these
algorithms are inefficient due to the following
reasons:

1. The communication cost in these algorithms is
very high because all the tuples of the relations are
redistributed between processors. Some of these
tuples may not even contribute in the result of the
join operation.

2. These algorithms fully materialize the intermedi-
ate results of the join operations. This is a sig-
nificant drawback because the size of the result
of this operation is generally large with respect to
the size of the input relations. In addition, the In-
put/Output cost in these algorithms is very high
where it is reasonable to assume that the output
relation cannot fit in the main memory of every
processor, so it must be reread from disk in order

to evaluate the aggregate function.

3. These algorithms cannot solve the problem of
data skew because data redistribution is generally
based on hashing data into buckets and hashing is
known to be inefficient in the presence of high fre-
quencies (Bamha, 2005; Schneider and DeWitt,
1989; Seetha and Yu, 1990).

In this paper, we present a new parallel algorithm
used to evaluate the ”GroupBy-Join” queries on
Shared Nothing machines (a distributed architecture
where each processor has its own memory and own
disks), when the join attributes are different from the
group-by attributes. Our main contribution is that, in
this algorithm, we do not need to materialize the join
operation as in the traditional algorithms where the
join operation is evaluated first and then the group-by
and aggregate functions (Yan and Larson, 1994).
This algorithm is also insensitive to data skew and its
communication and Input/Output costs are reduced
to a minimum.

In this algorithm, we partially evaluate the
aggregate function before redistributing the tuples.
This helps in reducing the cost of data redistribution.
We use the histograms of both relations in order to
find the tuples that participate in the result of the join
operation. It is proved in (Bamha and Hains, 2005;
Bamha and Hains, 1999), using the BSP model,
that the histogram management has a negligible cost
when compared to the gain it provides in reducing
the communication cost.
In traditional algorithms, all the tuples of the output
of the join operation are redistributed using a hashing
function. In the contrary, in our algorithm we only re-
distribute the result of the semi-join of the histograms
which are very small compared to the size of input
relations. The use of semi-join in multi-processor
machines to evaluate the ”GroupBy-Join” queries
helps in reducing the amount of data transferred
over the network and therefore the communication
cost in distributed systems (Chen and Yu, 1993;
Stocker et al., 2001). The performance of this
algorithm is analyzed using the BSP cost model
(Skillicorn et al., 1997) which predicts for our al-
gorithm a linear speedup even for highly skewed data.

The rest of the paper is organized as follows. In
section 2, we present the BSP cost model used to eval-
uate the processing time of different phases of the al-
gorithm. In section 3, we give an overview of differ-
ent computation methods of ”GroupBy-Join” queries.
In section 4, we describe our algorithm. We then con-
clude in section 5.

2 The BSP Cost Model

Bulk-Synchronous Parallel(BSP) cost model is
a programming model introduced by L. Valiant
(Valiant, 1990) to offer a high degree of abstrac-
tion like PRAM models and yet allow portable and
predictable performance on a wide variety of multi-
processor architectures (Skillicorn et al., 1997). A
BSP computer contains a set of processor-memory
pairs, a communication network allowing inter-
processor delivery of messages and a global synchro-
nization unit which executes collective requests for a
synchronization barrier. Its performance is character-
ized by 3 parameters expressed as multiples of the lo-
cal processing speed:

• the number of processor-memory pairsp,

• the timel required for a global synchronization,

• the timeg for collectively delivering a 1-relation
(communication phase where every processor re-
ceives/sends at most one word).

The network is assumed to deliver anh-relation in
timeg∗h for any arityh.

TIM
E

P1 P2 P3 Pp

global synchronisation

global synchronisation

...
. . .

. . .

Figure 1: A BSP superstep.

A BSP program is executed as a sequence ofsu-
persteps, each one divided into (at most) three succes-
sive and logically disjoint phases. In the first phase
each processor uses its local data (only) to perform
sequential computations and to request data transfers
to/from other nodes. In the second phase the network
delivers the requested data transfers and in the third
phase a global synchronization barrier occurs, mak-
ing the transferred data available for the next super-
step. The execution time of a supersteps is thus the
sum of the maximal local processing time, of the data
delivery time and of the global synchronization time:

Time(s) = max
i:processor

w(s)
i + max

i:processor
h(s)

i ∗g+ l

wherew(s)
i is the local processing time on processor

i during supersteps andh(s)
i = max{h(s)

i+ ,h(s)
i−} where

h(s)
i+ (resp. h(s)

i−) is the number of words transmitted

(resp. received) by processori during supersteps.
The execution time,∑sTime(s), of a BSP program
composed ofS supersteps is therefore a sum of 3
terms: W + H ∗ g+ S∗ l whereW = ∑smaxi w

(s)
i and

H = ∑smaxi h
(s)
i . In generalW, H andSare functions

of p and of the size of datan, or (as in the present ap-
plication) of more complex parameters like data skew
and histogram sizes. To minimize execution time of
a BSP algorithm, design must jointly minimize the
numberSof supersteps and the total volumeh (resp.
W) and imbalanceh(s) (resp.W(s)) of communication
(resp. local computation).

3 ”GroupBy-Join” Queries
Computation

In DBMS, the aggregate functions can be applied
on the tuples of a single table, but in most SQL
queries, they are applied on the output of the join
of multiple relations. In the later case, we can
distinguish two types of ”GroupBy-Join” queries.
We will illustrate these two types using the following
example.
In this example, we have three relations that represent
respectively Suppliers, Products and quantity of a
product shipped by a supplier in a specific date.

SUPPLIER (Sid, Sname, City)
PRODUCT (Pid, Pname, Category)
SHIPMENT (Sid, Pid, Date, Quantity)

Query 1
Select p.Pid, p.Pname, SUM (Quantity)
From PRODUCT as p, SHIPMENT as s
Where p.Pid = s.Pid
Group By p.Pid

Query 2
Select p.Category, SUM (Quantity)
From PRODUCT as p, SHIPMENT as s
Where p.Pid = s.Pid
Group By p.Category

The purpose ofQuery1 is to find the total quan-
tity of every product shipped by all the suppliers,
while that of Query2 is to find the total amount
of every category of product shipped by all the
suppliers.
The difference betweenQuery1 and Query2 lies
in the group-by and join attributes. InQuery1, the
join attribute (Pid) and the group-by attribute are
the same. In this case, it is preferable to carry out
the group-by and aggregate functions first and then
the join operation (Taniar et al., 2000; Taniar and
Rahayu, 2001), because this helps in reducing the

size of the relations to be joined. As a consequence,
applying the group-by and aggregate functions before
the join operation in PDBMS results in a huge gain
in the communication cost and the execution time of
the ”GroupBy-Join” queries.
In the contrary, this can not be applied on Query
2, because the join attribute (Pid) is different from
the group-by attribute (category). In this paper, we
will focus on this type of ”GroupBy-Join” queries.
In the traditional algorithms that treat this kind of
queries, the costly join operation is evaluated in the
first step and then the aggregate function (Taniar
et al., 2000; Taniar and Rahayu, 2001). However, in
our algorithm, we succeeded to partially evaluate the
aggregate functions before redistributing the tuples
using histograms, thus reducing the communication
cost as much as possible.

4 GroupBy-Join Queries: A new
approach

In this section, we present a detailed descrip-
tion of a new parallel algorithm used to evaluate
the ”GroupBy-Join” queries when the group-by
attributes are different from the join attributes. We
assume that the relationR (resp. S) is partitioned
among processors by horizontal fragmentation and
the fragmentsRi for i = 1, ..., p are almost of the
same size on every processor, i.e.|Ri | ≃

|R|
p wherep

is the number of processors.
For simplicity of description and without loss of
generality, we consider that the query has only
one join attributex and that the group-by attribute
set consists of one attributey of R and another
attributez of S. We also assume that the aggregate
function is applied on the values of the attributeu of S.

In the rest of this paper we use the following
notation for each relationT ∈ {R,S},:

• Ti denotes the fragment of relationT placed on
processori, a sub-relation ofT,

• Histw(T) denotes the histogram1 of relation T
with respect to the attributew, i.e. a list of pairs
(v,nv) wherenv 6= 0 is the number of tuples of re-
lationT having the valuev for the attributew. The
histogram is often much smaller and never larger
than the relation it describes,

• Histw(Ti) denotes the histogram of fragmentTi ,

1Histograms are implemented as a balanced tree (B-
tree): a data structure that maintains an ordered set of data
to allow efficient search and insert operations.

• Histwi (T) is processori’s fragment of the his-
togram ofT,

• Histw(T)(v) is the frequency (nv) of valuev in re-
lationT,

• Histw(Ti)(v) is the frequency of valuev in sub-
relationTi ,

• AGGRw
f ,u(T) 2 is the result of applying the aggre-

gate functionf on the values of the attributeu of
every group of tuples ofT having identical val-
ues of the group-by attributesw. AGGRw

f ,u(T) is
formed of a list of tuples(v, fv) where fv is the
result of the aggregate function of the group of tu-
ples having valuev for the attributew (w may be
formed of more than one attribute),

• AGGRw
f ,u(Ti) denotes the result of applying the

aggregate function on the attributeu of relation
Ti ,

• AGGRw
f ,u,i(T) is processori’s fragment of the re-

sult of applying the aggregate function onT,

• AGGRw
f ,u(T)(v) is the resultfv of the aggregate

function of the group of tuples having valuev for
the group-by attributew in relationT,

• AGGRw
f ,u(Ti)(v) is the resultfv of the aggregate

function of the group of tuples having valuev for
the group-by attributew in sub-relationTi ,

• ‖T‖ denotes the number of tuples of relationT,
and

• |T| denotes the size (expressed in bytes or number
of pages) of relationT.

The algorithm proceeds in six phases. We will
give an upper bound of the execution time of each
superstep using BSP cost model. The notationO(...)
hides only small constant factors: they depend only
on the program implementation but neither on data
nor on the BSP machine parameters.

Phase 1: Creating local histograms
In this phase, the local histogramsHistx,y(Ri)(i =

1, ..., p) of blocks Ri are created in parallel by a
scan of the fragmentRi on processori in time
ci/o ∗ maxi=1,...,p |Ri | where ci/o is the cost of writ-
ing/reading a page of data from disk.

In addition, the local fragmentsAGGRx,z
f ,u(Si)(i =

1, ..., p) of blocks Si are also created in parallel on
each processori by applying the aggregate functionf
on every group of tuples having identical values of the
couple of attributes(x,z) in time ci/o ∗maxi=1,...,p |Si |.

2AGGRw
f ,u(T) is implemented as a balanced tree (B-

tree).

(In this algorithm the aggregate function may be
MAX,MIN,SUM or COUNT. For the aggregate
AVG a similar algorithm that merges theCOUNT
and theSUMalgorithms is applied).

In this algorithm, we only redistribute the tuples
of Histx,y(Ri) and AGGRx,z

f ,u(Si) that participate effec-
tively in the join result. These tuples are determined
in phase 2, but we need first to compute the frequency
of each value of the attributex in Histx,y(Ri) and
AGGRx,z

f ,u(Si). So while creatingHistx,y(Ri) (resp.
AGGRx,z

f ,u(Si)), we also create on the fly their local

histogramsHist
′x(Ri) (resp.Hist

′x(Si)) with respect to
x, i.e. Hist

′x(Ri) (resp.Hist
′x(Si)) holds the frequency

of each value of the attributex in Histx,y(Ri) (resp.
AGGRx,z

f ,u(Si)) for i = 1, ..., p.

In fact, the difference betweenHistx(Ri) andHist
′x(Ri)

is thatHistx(Ri) holds the frequency of each value of
the attributex in relationRi (i.e., for each valued of
the attributex, we find the number of tuples ofRi
having the valued of x), while in Hist

′x(Ri) we count
tuples having the same values of the attributes(x,y)
only once.
We use the following algorithm to createHist

′x(Ri)

and a similar one is used to createHist
′x(Si).

Par (on each node in parallel) i = 1, ..., p
Hist

′x(Ri) = NULL 3

For every tuple t that will be inserted or used to
modify Histx,y(Ri) do
If Histx,y(Ri)(t.x,t.y) = NULL Then 4

f req1 = Hist
′x(Ri)(t.x)

If f req1 6= NULL Then
Increment the frequency of t.x in Hist

′x(Ri)
Else
Insert a new tuple (t.x,1) into Hist

′x(Ri)
EndIf

EndIf
EndFor

EndPar
In principle, this phase costs:

Timephase1 = O
(

ci/o∗ max
i=1,...,p

(|Ri |+ |Si|)
)

.

Phase 2: Local semi-joins computation
In order to minimize the communication cost,

only tuples of Histx,y(R) and AGGRx,z
f ,u(S) that will

be present in the join result are redistributed. To
this end, we compute the following local semi-
joins: Histx,y(Ri) = Histx,y(Ri) ⋉ AGGRx,z

f ,u(S) and
AGGR

x,z
f ,u(Si) = AGGRx,z

f ,u(Si) ⋉ Histx,y(R). To compute
these semi-joins, we use proposition 2 presented in
(Bamha and Hains, 2005), but instead of applying
the hashing function on the tuples ofHistx(Ri) and
Histx(Si) to compute the global histograms, we apply
it here on the tuples ofHist

′x(Ri) andHist
′x(Si). In fact

the number of tuples ofHist
′x(Ri) and that ofHistx(Ri)

are equal, what differs is only the value of the fre-
quency attribute in these histograms, so|Hist

′x(Ri)| =

|Histx(Ri)| (this also applies toHist
′x(Si) andHistx(Si)).

Hence the cost of this phase is (Bamha and Hains,
2005):

T imephase2 =

O
(

max
i=1,...,p

||Histx,y(Ri)||+ max
i=1,...,p

||AGGRx,z
f ,u(Si)||+

min
(

g∗ |Histx(R)|+ ||Histx(R)||,g∗
|R|
p

+
||R||

p

)

+

min
(

g∗ |Histx(S)|+ ||Histx(S)||,g∗
|S|
p

+
||S||

p

)

+ l
)

,

whereg is the BSP communication parameter andl
the cost of a barrier of synchronisation.

We recall (cf. to proposition 1 in (Bamha and
Hains, 2005)) that, in the above equation, the terms:

min
(

g∗ |Histx(R)|+ ||Histx(R)||,g∗
|R|
p

+
||R||

p

)

,

and

min
(

g∗ |Histx(S)|+ ||Histx(S)||,g∗
|S|
p

+
||S||

p

)

,

represent the necessary time to compute the global
histogramsHist

′x
i=1,...,p(R) and Hist

′x
i=1,...,p(S), respec-

tively starting from the local histogramsHist
′x(Ri) and

Hist
′x(Si) wherei = 1, ..., p.

During semi-join computation, we store an extra in-
formation calledindex(d) ∈ {1,2,3} for each value
d∈Hist

′x(R)∩Hist
′x(S). This information will allow

us to decide if, for a given valued, the frequencies of
tuples ofHistx,y(R) andAGGRx,z

f ,u(S) having the value
d are greater (resp. lesser) than a threshold frequency
f0. It also permits us to choose dynamically the probe
and the build relation for each valued of the join at-
tribute. This choice reduces the global redistribution
cost to a minimum.
In this algorithm, by evaluatingAGGRx,z

f ,u(S) we par-
tially apply the aggregate function on the attributeu
of S thus reducing the volume of data, this also ap-
plies to Histx,y(R) where all tuples having the same
values of(x,y) are represented by a single tuple, but
we will still consider that the frequencies of some tu-
ples ofAGGRx,z

f ,u(S) andHistx,y(R) having a valued of
the attributex is high. So in order to balance the load
of all the processors, these tuples must be evenly re-
distributed.
In the rest of this paper, we use the same threshold
frequency as in fa-join algorithm (Bamha and Hains,
2000; Bamha and Hains, 1999), i.e.f0 = p∗ log(p).
For a given valued ∈ Hist

′x(R)∩Hist
′x(S) 5,

5The intersection ofHist
′x(R) and Hist

′x(S) is found
while computing the semi-joins (c.f proposition 2 presented
in (Bamha and Hains, 2005))

• the valueindex(d) = 3, means that the frequency
of tuples of relationsHistx,y(R) andAGGRx,z

f ,u(S) as-
sociated to valued are less than the threshold fre-
quency. (i.e.Hist

′x(R)(d) < f0 andHist
′x(S)(d) <

f0),

• the valueindex(d) = 2, means thatHist
′x(S)(d) ≥

f0 andHist
′
x(S)(d) > Hist

′x(R)(d),

• the valueindex(d) = 1, means thatHist
′x(R)(d) ≥

f0 andHist
′x(R)(d) ≥ Hist

′x(S)(d).

Note that unlike the algorithms presented in (Shatdal
and Naughton, 1995; Taniar et al., 2000) where both
relationsR andS are redistributed, we will only re-
distributeHistx,y(Ri) ⋉ AGGRx,z

f ,u(S) andAGGRx,z
f ,u(Si) ⋉

Histx,y(R) to find the final result. This will reduce the
communication costs to a minimum.
At the end of this phase, we will divide the semi-joins
Histx,y(Ri) and AGGR

x,z
f ,u(Si) on each processori into

three sub-histograms in the following way:

Hist
x,y

(Ri) =
3

[

j=1

Hist
(j)x,y

(Ri)

and

AGGR
x,z
f ,u(Si) =

3
[

j=1

AGGR
(j)x,z
f ,u (Si)

where:

• All the tuples of Hist(1)x,y
(Ri) (resp.

AGGR
(1)x,z
f ,u (Si)) are associated to valuesd

such thatindex(d) = 1 (resp.index(d) = 2),

• All the tuples of Hist(2)x,y
(Ri) (resp.

AGGR
(2)x,z
f ,u (Si)) are associated to valuesd

such thatindex(d) = 2 (resp.index(d) = 1),

• All the tuples ofHist(3)x,y
(Ri) and AGGR

(3)x,z
f ,u (Si)

are associated to valuesd such thatindex(d) = 3,
i.e. the tuples associated to values which occur
with frequencies less than a threshold frequency
f0 in both relationsR andS.

The tuples of Hist(1)x,y
(Ri) and AGGR

(1)x,z
f ,u (Si) are

associated to high frequencies for the join attribute.
These tuples have an important effect on Attribute
Value Skew (AVS) and Join Product Skew (JPS). So
we will use an appropriate redistribution algorithm
in order to efficiently avoid both AVS and JPS.
However the tuples of relationsHist(3)x,y

(Ri) and
AGGR

(3)x,z
f ,u (Si) (are associated to very low frequencies

for the join attribute) have no effect neither on AVS
nor JPS. These tuples will be redistributed using a
hash function.

Phase 3: Creating the communication tem-
plates

The attribute values which could lead to attribute
value skew (those having high frequencies) are also
those which may cause join product skew in standard
join algorithms. To avoid the slowdown usually
caused by AVS and the imbalance of the size of local
joins processed by the standard join algorithms, an
appropriate treatment for high attribute frequencies is
needed (Bamha and Hains, 1999; Bamha and Hains,
2000; Bamha, 2005).

3.a To this end, we partition the histogram
Hist

′x(R⋊⋉ S) 6 into two sub-histograms:
Hist(1,2)′x(R ⋊⋉ S) and Hist(3)′x(R ⋊⋉ S) in the fol-
lowing manner:

• the valuesd ∈ Hist(1,2)′x(R⋊⋉ S) are associated
to high frequencies of the join attribute (i.e.
index(d) = 1 or index(d) = 2),

• the valuesd ∈ Hist(3)′x(R⋊⋉ S) are associated
to low frequencies of the join attribute (i.e.
index(d) = 3),

this partition step is performed in parallel, on each
processori, by a local traversal of the histogram
Hist

′x
i (R⋊⋉ S) in time:

Time3.a = O
(

max
i=1,...,p

||Hist
′x
i (R⋊⋉ S)||

)

.

3.b Communication templates for high frequencies:
We first create a communication template: the list of
messages which constitutes the relations’ redistribu-
tion. This step is performed jointly by all processors,
each one not necessarily computing the list of its own
messages, so as to balance the overall process.
So each processori computes a set of neces-
sary messages relating to the valuesd it owns in
Hist(1,2)′x

i (R ⋊⋉ S). The communication template is
derived by applying the following algorithm on the
tuples of relationsHist(1)x,y

(R) which is mapped
to multiple nodes. We also apply the same algo-
rithm to compute the communication template of
AGGR

(1)x,z
f ,u (S), but we replaceHist

′x(R) by Hist
′x(S).

6Hist
′x(R⋊⋉ S) is simply the intersection ofHist

′x(R)

andHist
′x(S).

if
(

Hist
′x(R)(d)mod(p) = 0

)

then
each processor j will hold a block of size

blockj (d) =
Hist

′x(R)(d)

p
of tuples of value d.

else
begin
Pick a random value j0 between 0 and (p−1)

if
(

processor’s index j is between j0 and

j0 +
(

Hist
′x(R)(d) mod p

)

)

then
the processor of index j will hold a block

of size: blockj (d) = ⌊
Hist

′x(R)(d)

p
⌋+1

else
the processor of index j will hold a block

of size: blockj (d) = ⌊
Hist

′x(R)(d)

p
⌋

end.
In the above algorithm,⌊x⌋ is the largest integral

value not greater thanx andblockj(d) is the number
of tuples of valued that processorj should own after
redistribution of the fragmentsTi of relationT.
The absolute value ofRestj(d) = Hist j(T)(d) −

blockj (d) determines the number of tuples of value
d that processorj must send (ifRestj(d) > 0) or
receive (ifRestj(d) > 0).

For d ∈ Hist(1,2)′x
i (R⋊⋉ S), processori owns a

description of the layout of tuples of valued over
the network. It may therefore determine the num-
ber of tuples of valued which every processor
must send/receive. This information constitutes the
communication template. Only thosej for which
Restj(d) > 0 (resp.Restj(d) < 0) send (resp. receive)
tuples of value ofd. This step is thus completed in
time: Time3.b = O

(

||Hist(1,2)′x(R⋊⋉ S)||
)

.

The tuples associated to low frequencies (i.e.
tuples havingd ∈ Hist(3)′x

i (R ⋊⋉ S)) have no effect
neither on the AVS nor the JPS. These tuples are
simply mapped to processors using a hash function
and thus no communication template computation is
needed.

The creation of the communication templates
has therefore taken the sum of the above two steps:
Timephase3 = Time3.a +Time3.b =

O
(

maxi=1,...,p ||Hist
′x
i (R⋊⋉ S)||+

||Hist(1,2)′x(R⋊⋉ S)||
)

.

Phase 4: Data redistribution
4.a Redistribution of tuples havingd ∈ Hist(1,2)′x

i (R⋊⋉

S):
Every processori holds, for every one of its local

d ∈ Hist(1,2)′x
i (R ⋊⋉ S), the non-zero communication

volumes it prescribes as a part of communication
template:Restj(d) 6= 0 for j = 1, ..., p. This informa-
tion will take the form ofsending orderssent to their
target processor in a first superstep, followed then by
the actual redistribution superstep where processors
obey all orders they have received.

Each processori first splits the processors indices
j into two groups: those for whichRestj(d) > 0
and those for whichRestj(d) < 0. This is done by a
sequential traversal of theRest..(d) array.

Let α (resp. β) be the number of j ’s
where Restj(d) is positive (resp. negative)
and Proc(k)k=1,...,α+β the array of processor
indices for which Restj(d) 6= 0 in the man-
ner that: Restproc(j)(d) > 0 for j = 1, ...,α and
Restproc(j)(d) < 0 for j = 1+ α, ...,β
A sequential traversal ofProc(k)k=1,...,α+β deter-
mines the number of tuples that each processorj will
send. The sending orders concerning attribute value
d are computed using the following procedure:

i := 1; j := α+1;
while (i ≤ α) do

begin
* n tuples = min(Restproc(i)(d),−Restproc(j)(d));
* order to send(Proc(i),Proc(j),d,n-tuples);
* Restproc(i)(d) := Restproc(i)(d) - n tuples;
* Restproc(j)(d) := Restproc(j)(d) + n tuples;
* if Restproc(i)(d) = 0 then i := i +1; endif
* if Restproc(j)(d) = 0 then j := j +1; endif

end.
Figure 2 gives an example of the valueRest as-

Communications :

2

12

10

10

43 1 5 2

24 10 -12 -2 -20

Processor :

Rest :

Figure 2: Sending orders as a function ofRestvalues.

sociated to a value of the join attribute and the
corresponding sending orders.

The maximal complexity of this algorithm is:
O

(

||Hist(1,2)′x(R ⋊⋉ S)||
)

because for a givend, no

more than(p−1) processors can send data and each
processori is in charge of redistribution of tuples

havingd ∈ Hist(1,2)′x
i (R⋊⋉ S).

For each processori and d ∈ Hist(1,2)′x
i (R ⋊⋉ S), all

the orderto send(j, i, ...) are sent to processorj when
j 6= i in time O

(

g∗ |Hist(1,2)′x(R⋊⋉ S)|+ l
)

.
Thus, this step costs:

T ime4.a =

O
(

g∗ |Hist(1,2)′x(R⋊⋉ S)|+ ||Hist(1,2)′x(R⋊⋉ S)||+ l
)

.

4.b Redistribution of tuples with valuesd ∈

Hist(3)′x
i (R⋊⋉ S):

Tuples ofHist(3)x,y
(Ri) andAGGR

(3)x,z
f ,u (Si) (i.e. tuples

havingd ∈ Hist(3)′x
i (R⋊⋉ S)) are associated to low fre-

quencies, they have no effect neither on the AVS nor
the JPS. These relations are redistributed using a hash
function.

At the end of steps 4.a and 4.b, each processori,
has local knowledge of how the tuples of semi-joins
Histx,y(Ri) andAGGR

x,z
f ,u(Si) will be redistributed. Re-

distribution is then performed in time:
Time4.b = O

(

g∗
(

|Histx,y(Ri)|+ |AGGR
x,z
f ,u(Si)|

)

+ l
)

.
Thus the total cost of the redistribution phase is the
sum of the costs of the above two steps:

T imephase4 =

O
(

g∗ max
i=1,...,p

(

|Hist
x,y

(Ri)|+ |AGGR
x,z
f ,u(Si)|+

|Hist(1,2)′x(R⋊⋉ S)|
)

+ ||Hist(1,2)′x(R⋊⋉ S)||+ l
)

We mention that we only redistribute the tuples
of the semi-joinsHistx,y(Ri) and AGGR

x,z
f ,u(Si) where

|Histx,y(Ri)| and|AGGR
x,z
f ,u(Si)| are generally very small

compared to|Ri | and |Si |. In addition|Hist
′x(R ⋊⋉ S)|

is generally very small compared to|Histx,y(R)| and
|AGGRx,z

f ,u(S)|. Thus we reduce the communication
cost to a minimum.

Phase 5: local computation of the aggregate
function

At this step, every processor has partitions of
Histx,y(R) and AGGR

x,z
f ,u(S). Using equation 2 in

(Bamha, 2005), we can deduce that the tuples of
Hist(1)x,y

(Ri), Hist(2)x,y
(Ri), Hist(3)x,y

(Ri) can be joined
with the tuples of AGGR

(2)x,z
f ,u (Si), AGGR

(1)x,z
f ,u (Si),

AGGR
(3)x,z
f ,u (Si) respectively. But the frequencies

of tuples of Hist(1)x,y
(Ri) and AGGR

(1)x,z
f ,u (Si) are by

definition greater than the corresponding (matching)
tuples inHist(2)x,y

(Ri) andAGGR
(2)x,z
f ,u (Si) respectively.

So we will chooseHist(1)x,y
(Ri) andAGGR

(1)x,z
f ,u (Si) as

thebuild relations andHist(2)x,y
(Ri) andAGGR

(2)x,z
f ,u (Si)

asprobe relations. Hence, we need to duplicate the
probe relations to all processors in time:

Timephase5.a =

O
(

g∗
(

|Hist
(2)x,y

(R)|+ |AGGR
(2)x,z
f ,u (S)|

)

+ l
)

.

Now, using the following Algorithm, we are able
to compute the local aggregate function on every
processor without the necessity to fully materialize
the intermediate results of the join operation.

In this algorithm, we create on each processori,
the relationAGGRy,z

f ,u((R ⋊⋉ S)i) that holds the local
results of applying the aggregate function on every
group of tuples having the value of the couple of
attributes (y,z). AGGRy,z

f ,u((R ⋊⋉ S)i) has the form
(y,z,v) wherey andz are the group-by attributes and
v is the result of the aggregate function.

Par (on each node in parallel) i = 1, ..., p
AGGRy,z

f ,u((R⋊⋉ S)i) = NULL; 7

For every tuple t of relation Hist(1)x,y
(Ri) do

For every entry v1 = AGGR
(2)x,z
f ,u (Si)(t.x,z) do

v2 = AGGRy,z
f ,u((R⋊⋉ S)i)(t.y,z);

If v2 6= NULL Then
Update AGGRy,z

f ,u((R⋊⋉ S)i)(t.y,z) = F(v1,v2)

where F() is the aggregate function;
Else
Insert a new tuple (t.y,z,v1) into the
histogram AGGRy,z

f ,u((R⋊⋉ S)i);
EndIf

EndFor
EndFor

For every tuple t of relation AGGR
(1)x,z
f ,u (Si)(t.x,z) do

For every entry v1 = Hist(2)x,y
(Ri) do

v2 = AGGRy,z
f ,u((R⋊⋉ S)i)(t.y,z);

If v2 6= NULL Then
Update AGGRy,z

f ,u((R⋊⋉ S)i)(t.y,z) = F(v1,v2)

where F() is the aggregate function;
Else
Insert a new tuple (t.y,z,v1) into the
histogram AGGRy,z

f ,u((R⋊⋉ S)i);
EndIf

EndFor
EndFor

For every tuple t of relation Hist(3)x,y
(Ri) do

For every entry v1 = AGGR
(3)x,z
f ,u (Si)(t.x,z) do

v2 = AGGRy,z
f ,u((R⋊⋉ S)i)(t.y,z);

If v2 6= NULL Then
Update AGGRy,z

f ,u((R⋊⋉ S)i)(t.y,z) = F(v1,v2)

where F() is the aggregate function
Else
Insert a new tuple (t.y,z,v1) into the
histogram AGGRy,z

f ,u((R⋊⋉ S)i)

EndIf
EndFor

EndFor
EndPar

The cost of applying this algorithm is:

T imephase5.b =

ci/o∗O
(

max
i=1,...,p

(

|Hist
(1)x,y

(Ri) ⋊⋉ AGGR
(2)x,z
f ,u (S)|+

|Hist
(2)x,y

(R) ⋊⋉ AGGR
(1)x,z
f ,u (Si)|+

|Hist
(3)x,y

(Ri) ⋊⋉ AGGR
(3)x,z
f ,u (Si)|

)

)

So the total cost of this phase is:

Timephase5 =

O
(

g∗
(

|Hist
(2)x,y

(R)|+ |AGGR
(2)x,z
f ,u (S)|

)

+ci/o∗ max
i=1,...,p

(

|Hist
(1)x,y

(Ri) ⋊⋉ AGGR
(2)x,z
f ,u (S)|+

|Hist
(2)x,y

(R) ⋊⋉ AGGR
(1)x,z
f ,u (Si)|+

|Hist
(3)x,y

(Ri) ⋊⋉ AGGR
(3)x,z
f ,u (Si)|

)

+ l
)

Phase 6: global computation of the aggregate
function

In this phase, a global application of the aggregate
function is carried out. For this purpose, every
processor redistributes the local aggregation results,
AGGRy,z

f ,u((R ⋊⋉ S)i), using a common hashing func-
tion. The input attributes of the hashing function are
y and z. After hashing, every processor applies the
aggregate function on the received messages in order
to compute the global resultAGGRy,z

f ,u(R⋊⋉ S).

AGGRy,z
f ,u(R ⋊⋉ S) is formed of three attributes.

The first two are the group-by attributes (y andz) and
the third is the result of the applying the aggregate
function.
The time of this step is:

T imephase6 =

O
(

min
(

g∗ |AGGRy,z
f ,u(R⋊⋉ S)|+ ||AGGRy,z

f ,u(R⋊⋉ S)||,

g∗
|R⋊⋉ S|

p
+

||R⋊⋉ S||
p

)

+ l
)

where we apply the same result used to redistribute
the histograms (cf. to proposition 1 in (Bamha and
Hains, 2005)) in redistributingAGGRy,z

f ,u((R⋊⋉ S)i).

Remark 1
In practice, the imbalance of the data related to the
use of the hash functions can be due to :

• a bad choice of the hash functionused. This im-
balance can be avoided by using the hashing tech-
niques presented in the literature making it possi-
ble to distribute evenly the values of the join at-
tribute with a very high probability (Carter and
Wegman, 1979),

• an intrinsic data imbalancewhich appears when
some values of the join attribute appear more fre-
quently than others. By definition a hash function
maps tuples having the same join attribute values
to the same processor. These is no way for a
clever hash function to avoid load imbalance that
result from these repeated values (DeWitt et al.,

1992). But this case cannot arise hereowing to
the fact that histograms contains only distinct val-
ues of the join attribute and the hashing functions
we use are always applied to histograms.

The global cost of evaluating the ”GroupBy-Join”
queries in this algorithm is the sum of redistribution
cost and local computation of aggregate function. It
is of the order:

T imetotal = O

(

ci/o ∗ max
i=1,...,p

(|Ri |+ |Si|)

+min
(

g∗ |Histx(R)|+ ||Histx(R)||,g∗
|R|
p

+
||R||

p

)

+min
(

g∗ |Histx(S)|+ ||Histx(S)||,g∗
|S|
p

+
||S||

p

)

+g∗ max
i=1,...,p

(

|Hist
x,y

(Ri)|+ |AGGR
x,z
f ,u(Si)|

+ |Hist(1,2)′x(R⋊⋉ S)|
)

+ ||Hist(1,2)′x(R⋊⋉ S)||

+g∗
(

|Hist
(2)x,y

(R)|+ |AGGR
(2)x,z
f ,u (S)|

)

+ci/o∗ max
i=1,...,p

(

|Hist
(1)x,y

(Ri) ⋊⋉ AGGR
(2)x,z
f ,u (S)|

+ |Hist
(2)x,y

(R) ⋊⋉ AGGR
(1)x,z
f ,u (Si)|

+ |Hist
(3)x,y

(Ri) ⋊⋉ AGGR
(3)x,z
f ,u (Si)|

)

+min
(

g∗ |AGGRy,z
f ,u(R⋊⋉ S)|+ ||AGGRy,z

f ,u(R⋊⋉ S)||,

g∗
|R⋊⋉ S|

p
+

||R⋊⋉ S||
p

)

+ max
i=1,...,p

||Histx,y(Ri)||+ max
i=1,...,p

||AGGRx,z
f ,u(Si)||+ l

)

.

Remark 2
In the traditional algorithms, the aggregate function
is applied on the output of the join operation. The
sequential evaluation of the ”groupBy-Join” queries
requires at least the following lower bound:

boundin f1 = Ω
(

ci/o∗ (|R|+ |S|+ |R⋊⋉ S|)
)

.

Parallel processing withp processors requires there-
fore:

boundin fp =
1
p
∗boundin f1.

Using our approach, the evaluation of the ”GroupBy-
Join” queries when the join attributes are different
from the group-by attributes has an optimal asymp-
totic complexity when:
max

(

|Hist(2)x,y
(R)|, |AGGR

(2)x,z
f ,u (S)|, |Hist(1,2)′x(R⋊⋉ S)|

)

≤ ci/o ∗max(
|R|
p

,
|S|
p

,
|R⋊⋉ S|

p
),

this is due to the fact that the local join results have
almost the same size and all the terms inTimetotal
are bounded by those ofboundin fp. This inequality
holds if we choose a threshold frequencyf0 greater
thanp (which is the case for our threshold frequency
f0 = p∗ log(p)).

5 Conclusion

In this paper, we presented a parallel algorithm
used to compute ”GroupBy-Join” queries in a dis-
tributed architecture when the group-by attributes and
the join attributes are not the same. This algorithm
can be used efficiently to reduce the execution time
of the query, because we do not materialize the costly
join operation which is a necessary step in all the
other algorithms presented in the literature that treat
this type of queries, thus reducing the Input/Output
cost. It also helps us to balance the load of all
the processors even in the presence of AVS and to
avoid the JPS which may result from computing the
intermediate join results.

In addition, the communication cost is reduced to
the minimum owing to the fact that only histograms
and the results of semi-joins are redistributed across
the network where their size is very small compared
to the size of input relations.
The performance of this algorithm was analyzed us-
ing the BSP cost model which predicts an asymptotic
optimal complexity for our algorithm even for highly
skewed data.

In our future work, we will implement this
algorithm and extend it to a GRID environment.

REFERENCES

Bamha, M. (2005). An optimal and skew-insensitive
join and multi-join algorithm for ditributed architec-
tures. InProceedings of the International Confer-
ence on Database and Expert Systems Applications
(DEXA’2005). 22-26 August, Copenhagen, Dane-
mark, volume 3588 ofLecture Notes in Computer Sci-
ence, pages 616–625. Springer-Verlag.

Bamha, M. and Hains, G. (2000). A skew insensitive al-
gorithm for join and multi-join operation on Shared
Nothing machines. Inthe 11th International Confer-
ence on Database and Expert Systems Applications
DEXA’2000, volume 1873 ofLecture Notes in Com-
puter Science, London, United Kingdom. Springer-
Verlag.

Bamha, M. and Hains, G. (2005). An efficient equi-semi-
join algorithm for distributed architectures. InPro-
ceedings of the 5th International Conference on Com-

putational Science (ICCS’2005). 22-25 May, Atlanta,
USA, volume 3515 ofLecture Notes in Computer Sci-
ence, pages 755–763. Springer-Verlag.

Bamha, M. and Hains, G. (September 1999). A frequency
adaptive join algorithm for Shared Nothing machines.
Journal of Parallel and Distributed Computing Prac-
tices (PDCP), Volume 3, Number 3, pages 333-345.
Appears also in Progress in Computer Research, F.
Columbus Ed. Vol. II, Nova Science Publishers, 2001.

Carter, J. L. and Wegman, M. N. (April 1979). Universal
classes of hash functions.Journal of Computer and
System Sciences, 18(2):143–154.

Chen, M.-S. and Yu, P. S. (1993). Combining joint and
semi-join operations for distributed query processing.
IEEE Transactions on Knowledge and Data Engineer-
ing, 5(3):534–542.

Datta, A., Moon, B., and Thomas, H. (1998). A case for
parallelism in datawarehousing and OLAP. InNinth
International Workshop on Database and Expert Sys-
tems Applications, DEXA 98, IEEE Computer Society,
pages 226–231, Vienna.

DeWitt, D. J., Naughton, J. F., Schneider, D. A., and Se-
shadri, S. (1992). Practical Skew Handling in Parallel
Joins. InProceedings of the 18th VLDB Conference,
pages 27–40, Vancouver, British Columbia, Canada.

Gupta, A., Harinarayan, V., and Quass, D. (1995).
Aggregate-query processing in data warehousing en-
vironments. InProceedings of the 21th International
Conference on Very Large Data Bases, pages 358 –
369, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Li, C., Chang, K. C.-C., and Ilyas, I. F. (2005). Effi-
cient processing of ad-hoc top-k aggregate queries in
olap. Technical report, UIUCDCS-R-2005-2596, De-
partment of Computer Science, UIUC.

Mourad, A. N., Morris, R. J. T., Swami, A., and Young,
H. C. (1994). Limits of parallelism in hash join algo-
rithms. Performance evaluation, 20(1/3):301–316.

Schneider, D. A. and DeWitt, D. J. (1989). A performance
evaluation of four parallel join algorithms in a shared-
nothing multiprocessor environment. InProceedings
of the 1989 ACM SIGMOD international conference
on Management of data, Portland, Oregon, United
States, May 1989, pages 110–121, New York, NY,
USA. ACM Press.

Seetha, M. and Yu, P. S. (December 1990). Effectiveness of
parallel joins.IEEE, Transactions on Knowledge and
Data Enginneerings, 2(4):410–424.

Shatdal, A. and Naughton, J. F. (1995). Adaptive paral-
lel aggregation algorithms.SIGMOD Record (ACM
Special Interest Group on Management of Data),
24(2):104–114.

Skillicorn, D. B., Hill, J. M. D., and McColl, W. F. (1997).
Questions and Answers about BSP.Scientific Pro-
gramming, 6(3):249–274.

Stocker, K., Kossmann, D., Braumandl, R., and Kemper, A.
(2001). Integrating semi-join-reducers into state-of-
the-art query processors. InProceedings of the 17th

International Conference on Data Engineering, pages
575 – 584. IEEE Computer Society.

Taniar, D., Jiang, Y., Liu, K., and Leung, C. (2000).
Aggregate-join query processing in parallel database
systems,. InProceedings of The Fourth International
Conference/Exhibition on High Performance Comput-
ing in Asia-Pacific Region HPC-Asia2000, volume 2,
pages 824–829. IEEE Computer Society Press.

Taniar, D. and Rahayu, J. W. (2001). Parallel processing of
’groupby-before-join’ queries in cluster architecture.
In Proceedings of the 1st International Symposium on
Cluster Computing and the Grid, Brisbane, Qld, Aus-
tralia, pages 178–185. IEEE Computer Society.

Valiant, L. G. (August 1990). A bridging model for par-
allel computation. Communications of the ACM,
33(8):103–111.

Yan, W. P. and Larson, P.-Å. (1994). Performing group-
by before join. InProceedings of the Tenth Inter-
national Conference on Data Engineering, pages 89–
100, Washington, DC, USA. IEEE Computer Society.

