
Disjunctive Learning with a Soft-Clustering
Method

Guillaume Cleuziou, Lionel Martin, and Christel Vrain

LIFO, Laboratoire d’Informatique Fondamentale d’Orléans
Faculté des Sciences

Rue Léonard de Vinci B.P. 6759
45067 Orléans cedex2 - FRANCE

{cleuziou,martin,cv}@lifo.univ-orleans.fr

Abstract. In the case of concept learning from positive and negative
examples, it is rarely possible to find a unique discriminating conjunc-
tive rule; in most cases, a disjunctive description is needed. This problem,
known as disjunctive learning, is mainly solved by greedy methods, iter-
atively adding rules until all positive examples are covered. Each rule is
determined by discriminating properties, where the discriminating power
is computed from the learning set. Each rule defines a subconcept of
concept to be learned with these methods. The final set of sub-concepts
is then highly dependent from both the learning set and the learning
method.
In this paper, we propose a different strategy: we first build clusters of
similar examples thus defining subconcepts, and then we characterize
each cluster by a unique conjunctive definition. The clustering method
relies on a similarity measure designed for examples described in first
order logic. The main particularity of our clustering method is to build
“soft clusters”, i.e. allowing some objects to belong to different groups.
Once clusters have been built, we learn first-order rules defining the
clusters, using a general-to-specific method: each step consists in adding
a literal that covers all examples of a group and rejects as many negative
examples as possible.
This strategy limits some drawbacks of greedy algorithms and induces a
strong reduction of the hypothesis space: for each group (subconcept),
the search space is reduced to the set of rules that cover all the examples
of the group and reject the negative examples of the concept.

1 Introduction

In this paper, we are interested in learning a disjunctive definition of a concept
from positive and negative examples. Introducing the disjunction into the hy-
potheses space is important because many concepts are truly disjunctive ones
and their definitions require several rules. A very simple example of such a con-
cept is the concept “parent”, in fact composed of two subconcepts “father”
and “mother” and defined by two clauses: parent(X,Y) ← mother(X,Y) and
parent(X,Y) ← father(X,Y), each rule defines a subconcept of the initial

concept. Nevertheless, learning disjunctive concepts leads to several problems.
First, there exists a trivial definition of the concept that covers all the posi-
tive examples and rejects the negative ones (except when an example is labeled
as positive and negative), namely the disjunction of the positive examples. Sec-
ondly, the complexity of the search space increases. To deal with these problems,
several algorithms have been developed. For instance, in the system INDUCE
[HMS83], R.S. Michalski introduced the star method that consists in choosing
a positive example e (often called the seed), building the star1of e w.r.t. the
negative examples, choosing the best definition in the star, and iterating the
process until all the positive examples are covered. This leads to a disjunctive
definition composed of all the descriptions found so far. A similar strategy is
applied in the system Progol [Mug95]: a positive example e is chosen and Progol
explores the search space defined by the descriptions that are more general than
e. In both cases, the result strongly depends on the choice of the seeds. The
system Foil [QCJ95] also searches a disjunctive definition by iteratively building
a conjunctive description that covers positive examples and rejects the negative
ones. Nevertheless, the strategy used to build a conjunctive definition differs:
Foil starts from the most general clause, namely the clause with an empty body
and iteratively adds a literal to the body of the clause until all the negative
examples are rejected; the choice of the literal depends on a heuristic function
that computes for each literal its gain in terms of the number of positive exam-
ples still covered when adding this literal to the clause, the number of positive
instantiations and the number of negative instantiations still covered. It suffers
from several drawbacks. As mentioned in [QCJ95,SBP93], there exists determi-
nate literals that cover all the positive examples and all the negative ones, such
literals have thus a very poor gain and are usually not chosen by the system
although they can be very important for building a good definition, allowing the
introduction of a new variable in the definition. Moreover, the result depends on
the heuristic function.

In this paper, we propose another strategy: first using a similarity measure,
we build clusters of examples, thus defining subconcepts. Once subconcepts have
been found, we learn a conjunctive description of each subconcept.The set of all
rules gives us the definition of the concept. An important point in that work
is that the similarity measure is based on a language specified by the user,
allowing to capture more complex similarities between examples than properties
depending on a single literal.

2 Overall presentation

2.1 Motivations

As already mentioned in the introduction, many disjunctive learning algorithms
use a greedy method, iteratively adding rules until all positive examples are

1 the star of an example e w.r.t. to negative examples is the set of all the conjunctive
descriptions that cover e and reject all the negative examples

covered. Depending on the systems, the rules can be built with a still greedy
approach, starting from a general rule and specializing it by adding at each step
the most discriminant literal. Various methods are proposed in the literature to
define the discriminative power (denoted by Γ (l, C)) of a literal l for a clause
C. Let E+ (resp. E−) be the set of positive (resp. negative) examples and let
cov(E,C) be the number of examples2 from E covered by the clause C, Γ (l, C)
depends at least on cov(E+, C∪{l}) and cov(E−, C∪{l}), where C∪{l} denotes
the clause obtained by adding l in the body of C. The definition of Γ (l, C) plays
a central role in this process, and therefore in the set of subconcepts induced.
Moreover, Γ (l, C) is highly dependent on the learning sets E+ and E−: few
changes in these sets may lead to very different solutions, and then to different
subconcepts.

At last, if h ← p, q is a clause which covers some positive examples and no
negative ones, Γ (p, h ←) and Γ (q, h ←) are not necessarily high, as shown in
Example 1. The consequence is that it may be impossible for a greedy method
to learn the clause h← p, q because starting from h←, neither p, nor q seems to
be a discriminant literal. This problem is more general than determinate literals,
already pointed out in [QCJ95,SBP93].

To sum up, the main drawback of greedy methods is that each subconcept
is characterized by a clause h ← b1, . . . bn where bi is a highly discriminant
literal for h ← b1, . . . bi−1. Instead of having subconcepts depending on the
discriminating power function, we propose a two-step process: (1) building sets
of similar positive examples, thus defining subconcepts in extension, (2) for each
subconcept, searching for a unique rule characterizing it, i.e. a rule that covers
all (resp. none of) the positive (resp. negative) examples of that subconcept.

– The main advantage of this approach is to strongly reduce the search space
when searching for the subconcept definition: hypotheses are considered only
if they cover all the positive examples of the subconcept3. Practically let G
be a subconcept (a set of positive examples) and let us assume that C =
h ← b1, . . . bi is the clause under construction. A literal l can be added to
the clause only if cov(G,C∪{l}) = |G|. Then, the discriminative power is no
longer a combination of 2 criteria (cov(E+, C ∪ {l}) and cov(E−, C ∪ {l}))
but is mainly characterized by cov(E−, C∪{l}). For example, we can choose
to add to C the literal l that minimizes cov(E−, C ∪ {l}) among the set of
literals li such that cov(G,C ∪ {li}) = |G|.

– When it is not possible to find a clause that defines a subconcept G, then
G is split into new subconcepts and definitions for these subconcepts are
looked for. This process is repeated until a clause can be learned for each
subconcept. In the worst case, this leads to subconcepts containing a single
positive example, an overfitting situation which may also occur with greedy

2 In Inductive Logic Programming, the number of instantiations of C that cover an
element of E may also be used to define the discriminating power.

3 This constraint can be reduced to handle noise: hypotheses are considered only if
they cover most of the positive examples of the subconcept.

algorithms, but which has not been encountered in our experiments. If no
clause can be found for such a subconcept, this means that there is no
complete and consistent solution for the initial learning problem.

2.2 Concept decomposition and clustering

In greedy algorithms the definition of Γ (l, C) plays a central role whereas in
our approach, the decomposition of concept into subconcepts is essential. The
goal of this paper is to propose a clustering method that allows the formation of
subconcepts. An important point is then the evaluation of our clustering method,
i.e., testing whether the decomposition leads to “good” subconcepts. The quality
of the decomposition can be considered from different points of view that are
not exclusive:

natural organization: In most cases, a concept can be ”naturally” divided
into subconcepts: each subconcept is composed of similar examples, which
do share some characteristic properties.

simplicity: From a practical point of view, a decomposition is good if it pro-
duces a low number of simple (short) rules.

accuracy: The accuracy of the prediction on new examples is good.

We propose a two-steps decomposition method. First, we define a similarity
measure and we compute the similarity between each pair of positive examples.
Then, we use a clustering algorithm to build possibly overlapping groups of
similar objects.

To motivate the approach, let us consider the following example. For sake
of simplicity, we consider simple examples which could be considered in a at-
tribute/value formalism. Nevertheless, as shown in Section 5, our approach can
be applied on specific ILP problems.

Example 1 Let us consider background knowledge composed of the following
ground atoms:

{r(a), r(b), r(f), r(h), s(a), s(b), s(g), s(i), t(c), t(d), t(g), t(i), u(c), u(d), u(f),
u(h), v(b), v(c), v(f), r(e), s(e), t(e), u(e), v(e)}

Let us assume that the set of positive examples is {p(a), p(b), p(c), p(d)} and the
set of negative examples is {p(f), p(g), p(h), p(i)}.

Considering a greedy algorithm, similar for instance to the Foil algorithm,
the construction starts with the clause p(X)←,

– if we add one of the literal r(X), s(X), t(X) or u(X), we get a clause covering
2 positive examples and 2 negative ones;

– if we add the literal v(X), we get a clause which covers 2 positive examples
and 1 negative one.

The literal v(X) is chosen and the final learned program contains at least 3
clauses. However, the concept can be characterized by the two following clauses:

C1: p(X)← r(X), s(X)
C2: p(X)← t(X), u(X)

which lead to 2 subconcepts : {p(a), p(b)} and {p(c), p(d)}. In order to learn these
2 clauses, our decomposition method should build these 2 subconcepts from the
background knowledge, i.e. it should consider that p(a) and p(b) (resp p(c) and
p(d)) are highly similar.

We propose to use the similarity measure defined in [MM01]: it is based on
the number of properties shared by two objects, from a specified set of properties
called the language. To introduce this measure on the example, let us consider
a language L containing all the clauses with head p(X) and with a single literal
in the body from {r(X), s(X), t(X), u(X), v(X)}. The similarity between two
examples ei and ej is then defined by the number of clauses C in L such that
either ei and ej are covered by C or ei and ej are not covered by C. For example,
p(a) and p(b) are both covered by p(X)← r(X) and by p(X)← s(X); they are
both not covered by p(X) ← t(X) and by p(X) ← u(X). In this case, the
similarity between p(a) and p(b) is equal to 4. In the same way, we can compute
the similarity matrix between each pair of positive examples, and we get the
following matrix:

p(a) p(b) p(c) p(d)
p(a) 5 4 0 1
p(b) 4 5 1 0
p(c) 0 1 5 4
p(d) 1 0 4 5

In this matrix, the 2 expected subconcepts clearly appear. However, in many
problems, subconcepts are not disjoint. For instance, let us now add to the
previous example the new positive example p(e). With this new example, the
similarity becomes:

p(a) p(b) p(e) p(c) p(d)
p(a) 5 4 2 0 1
p(b) 4 5 3 1 0
p(e) 2 3 5 3 2
p(c) 0 1 3 5 4
p(d) 1 0 2 4 5

From this matrix, the 2 initial subconcepts {p(a), p(b)} and {p(c), p(d)} still
appear, but p(e) can be inserted into both subconcepts. In fact, the new example
is covered by the clauses C1 and C2 and then the subconcepts induced by these
two clauses are {p(a), p(b), p(e)} and {p(e), p(c), p(d)}.

In this paper, we propose a clustering method able to build non disjoint
clusters. When applied to this example, it leads to the building of the two clusters
{p(a), p(b), p(e)} and {p(e), p(c), p(d)}.

Example 2 Let us consider now an example where the observations are de-
scribed with numeric properties.

Let us consider a set of objects {a, b, . . . u} described by two attributes x
and y. These objects are described in Figure 1 and are expressed in a back-
ground knowledge BK defining the predicates x (x(U, V) is true when the ob-
ject U satisfies x = V), y, ≥ and ≤. For instance, BK contains the ground
atoms x(a, 1), y(a, 1), x(b, 1), y(b, 2), . . ., ≥ (1, 1), ≥ (1, 2), . . . Finally, the set
of positive examples is {p(a), p(b), . . . , p(j)} and the set of negative examples is
{p(l), p(m), . . . , p(u)}

0 1 2 3 4 5 6
0

2

3

4

5

6

1

x

y

a c

db

l m

n

fe

j

h

pq

ts

r u i

g

o

Fig. 1. Examples with numerical values

If we allow the constants 1, . . ., 6 to appear in the learned clauses, it will
be hard for a greedy algorithm to learn a definition of the target concept.
Indeed, starting from p(X) ←, the literals x(X,Y) and y(X,Y) are deter-
minate literals. Starting from the clause p(X) ← x(X,Y) or from the clause
p(X) ← y(X,Y), the literals ≥ (Y, 1), ≥ (Y, 2), . . ., ≥ (Y, 6) are not discrim-
inant. In our framework, we can compute the similarity with respect to the
language

⋃
v=1..6 p(X) ← x(X,Y),≥ (Y, v) ∪ ⋃v=1..6 p(X) ← y(X,Y),≥ (Y, v).

This language leads to a similarity measure between examples which is close to
the Euclidean similarity, and which induces 2 clusters, corresponding to the sub-
concepts {p(a), p(b), . . . , p(d)} (characterized by the clause p(X) ← x(X,Y),≤
(Y, 2), y(X,Z),≤ (Z, 2)) and {p(e), p(f), . . . , p(j)} (characterized by p(X) ←
x(X,Y),≥ (Y, 4), y(X,Z),≥ (Z, 3)).

Let us notice that on both Example 1 and Example 2, the clauses that char-
acterize the obtained concepts do not belong to the language used to define the
similarity. Experiments on this example are detailed in Section 5.

2.3 Similarity measure

Different approaches have been proposed to define a similarity measure between
objects described in a first order logic formalism. The common way to build
a similarity function consists in first producing a description of objects. Then,
for descriptions based on sets of atoms, the similarity is defined by intersec-
tions [Bis92,EW96]; for descriptions based on rules, the similarity between two
objects is given by the number of rules that are satisfied by the two objects
[Seb97,SS94,MM01]. In any case, two objects are considered to be similar when
they share some properties. We use the similarity measure proposed in [MM01],
this measure is defined with respect to a finite set of clauses, called the language;
for a clause C and an example e, we define the function covered(C, e) as follows:
covered(C, e) = 1 if e is covered by C, otherwise covered(C, e) = 0. Given a
language L, we define L(ei, ej) as the set of clauses C such that either ei and ej
are covered by C or ei and ej are not covered by C:

L(ei, ej) = {C ∈ L such that covered(C, ei) = covered(C, ej)}

The similarity between ei and ej , written simL(ei, ej), is then defined by:

simL(ei, ej) =
|L(ei,ej)|
|L|

This is the similarity measure we have used in Example 1. However, it does
not take into account the set of negative examples. We propose to extend this
measure by giving a weight on the clauses of the language, which depends on
the set of positive and negative examples. More precisely, if E+ and E− are
respectively the sets of positive and negative examples, the weight of a clause C
is defined by w(C) = cov(E+, C)/(cov(E+, C) + cov(E−, C)) if cov(E+, C) > 0,
otherwise w(C) = 0. The maximum value of this weight is equal to 1 for clauses
which cover only positive examples. The weighted similarity we obtain is then:

w sim(ei, ej) =

∑
C∈L(ei,ej)

w(C)

|L|

it gives a higher weight for clauses that are closer to the target concept. This
measure may have a drawback when the language contains a large number of
clauses with low weights, since it may reduce the influence of clauses with high
weight. For this reason, we propose a definition of similarity, depending on a
threshold α, such that clauses with a weight lower than α are not considered:

w simα(ei, ej) =

∑
C∈L(ei,ej),w(c)>αw(C)

|L|

The most general clause, which covers all positive and negative examples,
has a weight equal to |E+|/(|E+| + |E−|). All the clauses that have a weight
lower than this value have a lower accuracy than the most general clause. For
this reason, practically we use in our experiments w simα with the threshold
α = |E+|/(|E+|+ |E−|).

3 The soft-clustering algorithm

3.1 Overview of the soft-clustering algorithm

The clustering process is the task that consists in organizing a set of objects into
classes, so that similar objects belong to the same cluster and dissimilar ones
belong to different clusters. Traditional clustering algorithms can be classified
into two main categories:

– hierarchical methods that build a hierarchy of classes and illustrated by well
known algorithms such as SAHN4, COBWEB or by newer ones like CURE
and CHAMELEON. Let us notice that in hierarchical methods, each level
of the hierarchy forms a partition of the set of observed events.

– partitioning methods, such as BIRCH, K-MEANS or K-MEDOIDS algo-
rithms that build a partition of the set of observed events, i.e., a training
observation cannot belong to two distinct clusters.

An extensive survey about clustering methods is given in [Ber02].

The clustering algorithms are usually assessed regarding to the following
characteristics: time efficiency, outliers processing, diversity of the clusters shapes,
ability to deal with several data types and quality of the final clusters. However
a common disadvantage of classical methods is that they require the clusters
to be disjoint. In the application of clustering we are interested in - learning a
disjunctive definition of a concept by first clustering its observations - learning
disjoint clusters truly induces a loss of information. Indeed the main idea of the
method we present in this paper is based on the hypothesis that most of the
concepts that specify a data set are not clearly separated, and that some objects
can be assigned to several clusters. The soft-clustering approach is a kind of
compromise between hard-clustering methods, cited before and fuzzy-clustering
methods which use a fuzzy membership function which gives to an element a
membership value for each class [BB99]. The fuzzy-clustering approach is well
known for the wealth of the information description and allows some of the ob-
servations to belong to several clusters. In our approach, we first determine a set
of poles that represent strong concepts present in the data and are built from
non-shared objects. In a second step, a function is defined for assigning objects
that are not yet covered in one or several clusters.

3.2 The notion of “Pole”

The notion of Pole we define here in our algorithm can be linked to the recent
definition of a core given by Ben-Dor and Yakhini in [BDSY99]. Their approach
is based on the idea that “ideally, all elements within a cluster should be similar
to each other, and not similar to any of others clusters”. They identify small
cores in a similarity graph which allows to approximate an ideal clique graph5.

4 Sequential Agglomerative Hierarchical Non-overlapping
5 A clique is a fully connected subset of vertices.

These cores are small disjoint subsets of the vertices of the input graph. In our
opinion, a clique graph does not represent classical real world situations: indeed,
a clique has good properties to express the interactions between elements of a
cluster, nevertheless, relations can appear between different clusters. Thus, the
elements that form a concept6 can be split into two categories: the elements
that belong only to that concept (the non-shared objects) and the elements also
linked to other concepts (the shared objects). In this way, a pole can be seen as
the non-shared part of the concept.

Before giving a complete definition of a pole, we first define the notion of
similarity graph and we describe the method for building a pole.

Definition 1. Let V be a set of elements, S be a similarity matrix (S : V ×V →
R) and α ∈ R be a threshold. The similarity graph G derived from V (denoted
by G(V,Eα)) is an undirected, valued graph such that the set of vertices of G is
equal to V and the set, Eα, of undirected edges is defined by:

(vi, vj) ∈ Eα and is valued by s iff S(vi, vj) ≥ α and S(vi, vj) = s

The threshold α is decisive for the whole process. The higher α is, the less
G(V,Eα) contains edges. Therefore the number of final clusters is linked to the
choice of this threshold. Rather than giving an arbitrary value for α, we notice
that several natural thresholds can be used. For instance :

α =





independent from the considered vertices :

(α1) α = 0
(α2) α = 1

|V |.|(V−1)|
∑
vi∈V

∑
vj∈V \{vi} S(vi, vj) (average value over S)

(α3) α such as | {(vi, vj) | S(vi, vj) > α} |=| {(vi, vj) | S(vi, vj) < α} |
= 1

2 | V | . | (V − 1) | the median value over S

dependent from the considered vertices :

(α4) α(i, j) = Max(1
|V |
∑
vk∈V S(vi, vk); 1

|V |
∑
vk∈V S(vj , vk))

(α5) α(i, j) = Max(S(vi, vi,k);S(vj , vj,k))where vi,k is the kth nearest
neighbor of vi (for a given k).

The threshold α1 suppose that the similarity matrix have negative values,
thus two elements are considered to be in relation if their similarity is positive
(α1), or if their similarity is greater than the average similarity (α2). In the
case of α3, since the threshold splits the space of potential edges into two equal
parts, the similarity graph contains exactly 50% of the edges. In contrast with the
three first thresholds, α4 and α5 take into account the situation of the elements
compared with all others in order to define a possible relation between two

6 The term of concept denotes the intuitive notion of cluster.

elements. For instance, α4(vi, vj)
7 allows to consider that vi is in relation with

vj if vi (resp. vj) is near from vj (resp. vi) on average than from the other
elements in the space. The threshold α5(vi, vj) determines the existence of a
relation between two elements if each element is among the k nearest neigbours
of the other.

With the previous definition of a similarity graph, the similarity matrix over
{p(a), p(b), p(e), p(c), p(d)} given in Example 1 (section 2.1) leads to the similar-
ity graph induced by the following adjacency matrix:

p(a) p(b) p(e) p(c) p(d) p(a) p(b) p(e) p(c) p(d)
p(a) 5 4 2 0 1 p(a) - 1 1 0 0
p(b) 4 5 3 1 0 p(b) 1 - 1 0 0
p(e) 2 3 5 3 2 p(e) 1 1 - 1 1
p(c) 0 1 3 5 4 p(c) 0 0 1 - 1
p(d) 1 0 2 4 5 p(d) 0 0 1 1 -

similarity matrix adjacency matrix

This adjacency matrix is obtained using α1,α2 or α4; two cliques clearly ap-
pear: {p(a), p(b), p(e)} and {p(e), p(c), p(d)}. Because of the small size of this
example, the threshold α3 does not exist. The similarity graph obtained with α5

for (k=2) differs from the previous one for two edges ((p(a), p(e)) and (p(d), p(e))
are not connected) thus four small cliques appear: {p(a), p(b)}, {p(b), p(e)},
{p(e), p(c)}, and {p(c), p(d)}.

The construction of a pole from the similarity graph consists in searching
a maximal-clique in the graph centered on a given point. Because of the com-
putational complexity of the maximum clique problem8, efficient heuristics for
approximating such a clique have been developed. For a more detailed introduc-
tion to heuristics that approximate a maximal clique, see for instance [BBPP99].
In our method we use a sequential greedy heuristic based on the principle “Best
in”: it constructs a maximal clique by repeatedly adding a vertex that is the
nearest one among the neighbours of the temporary clique. The algorithm that
implements that heuristic is given in Table 1. Once all possible cliques are built,
final poles are reduced to their non-shared part.

Definition 2. Let G be an undirected, valued graph, and let C be a set of vertices
of G. A neighbor of C in G is a vertex v of G such that ∀vj ∈ C, (v, vj) ∈ Eα.
Let VC denotes the set of neighbors of C in G. The nearest neighbor of C in G
is a neighbor v of C such that v = Argmaxvi∈VC

1
|C|
∑
vj∈C S(vi, vj), i.e; it is

the neighbor of C that is the nearest in average of all the elements of C.

7 α4 is the threshold retained for our experiments.
8 The maximum-clique search is a NP-complete problem.

Table 1. The Best in heuristic for the construction of one clique

Inputs: G(V,Eα) a valued graph, vs a starting vertex
C ← {vs}

Build V, the set of neighbors of C in G
While: V is not empty

Select vn the nearest vertex from C in V
where S(vi, vj) is the weight of the edge (vi, vj) in Eα

C ← {vn}

Build V the set of neighbors of C in G
Output: The clique C

3.3 The relative function for assignment

Let us now suppose that we have iteratively built a set of disjoint cliques in
the graph G. Each clique thus represents a class and we have now to assign
the remaining vertices of G (that do not belong to a clique) to one or several
classes. We define a boolean function that determines whether an element must
be assigned to a class or not. It takes into account the relative proximity between
an element and a class, defined as the average similarity between that element
and each element belonging to the class. The backbone of this task is that when
assigning an element to a concept we take into account the other concepts. More
formally, this function is defined as follows:

Definition 3. Let V be a set of elements, V ′ = C1 ∪ C2 ∪ · · · ∪ Cm a subset of
V with Ci ∩ Cj = Ø ∀i, j ∈ {1, . . .m}, S a similarity matrix (S : V × V → R).

The kth nearest concept from an element vi ∈ V is written Ci
k. The relative

assignment function of an element vi to a class Ci
k is defined by :

∀k : f(vi, Ci
k) =





1 if • ∀l < k f(vi, Ci
l) = 1

• S(vi, Ci
k) > 0

• S(vi, Ci
k) > 1

2 (S(vi, Ci
k−1) + S(vi, Ci

k+1))
for 1 < k < m

• S(vi, Ci
k) > 1

2 (S(vi, Ci
k−1))

for k = m

0 otherwise

We note that for the nearest concept (Ci
1) we have f(vi, Ci

1) iff S(vi, Ci
1) > 0.

Let us now give an important property of the assignment function f :

(P) ∀vi ∈ V : 0 ≤
m∑

k=1

f(vi, Ci
k) ≤ m

This property shows that when using f it is possible that an element (for
instance an outlier) is not assigned to any class; contrary to an outlier, a very
central element could be assigned to all the classes. The relative function is thus
different to probabilistic membership, as for instance [KK93], which characterizes
an element according to its distribution over the classes (or poles).

3.4 Description of the algorithm

In this section, we propose a formal description of the soft-clustering algorithm.
It relies on the definitions of pole and assignment function given in the previous
sections. The clustering process (Table 2) iterates the step of pole construction
until no more starting point is available. Then the remaining elements are as-
signed to one or several poles, using the assignment function.

Table 2. The Soft-Clustering Algorithm

Input: V the set of elements, S the similarity matrix over V
Initialization: C = Ø, P = Ø

// P: the set of poles, C: the set of vertices appearing in poles
Step 1: Construction of the similarity graph G(V,Eα)
Step 2: vs = startpoint(C, S,G)
Step 3: Build a pole P centered on vs

P ← P ∪ {P}, C = C ∪ P
Step 4: vs = startpoint(C, S,G)

if a startpoint vs is found, GOTO step 3

Step 5: Each Pole P is reduced to its non-shared objects P̃ ⊂ P
Step 6: For each element vi ∈ V \C assign vi to poles of P using f

where f is the relative assignment function

Output: A set of overlapping clusters P̃ ′1, P̃
′
2, . . .

where P̃ ′i = P̃i ∪ {vj ∈ V \C | f(vj , P̃i) = 1}

The startpoint function provides the element among V \C which is “the most
distant” from the set C. The result differs depending whether C is empty or not.
Several definitions of the function startpoint can be given. In our experiments,
we use the definition startpoint1 that corresponds to the intuitive idea of “the
most distant”:

startpoint1(C, S,G) =





when C = Ø Argmin(vi∈V) degree(vi, G)
with (degree(vi, G) ≥ 1)

when C 6= Ø Argmin(vi∈V \C) S(vi, C)

where degree(v,G) represents the number of edges of v in G.
Another definition could be:

startpoint2(C, S,G) =





when C = Ø

Argmin(vi∈V)
1

K+1 (degree(vi, G) +
∑k=K
k=1 degree(vi,k, G))

when C 6= Ø

Argmin(vi∈V \C)
1

K+1 (S(Vi, k) +
∑k=K
k=1 S(vi,k, C))

where vi,k denotes the kth nearest neighbor of vi and K a given constant.

In Example 1, the four elements {p(a), p(b), p(c), p(d)} have a minimal de-
gree equal to 2. If p(a) is randomly chosen as the starting point, the first
clique built is P1 = {p(a), p(b), p(e)}. Then the most distant element from P1

among {p(c), p(d)} is p(d) and the clique obtained from this vertex is P2 =
{p(e), p(c), p(d)}. Because p(e) is shared by P1 and P2, the restriction of the
cliques to their non-shared objects provides the two poles P̃1 = {p(a), p(b)} and
P̃2 = {p(c), p(d)}. Finally, the assignment step allows p(e) to be member of P̃1

and P̃2. The final clusters are thus the two non disjoint ones covered by the two
rules:

C1 : p(X)← r(X), s(X)
C2 : p(X)← t(X), u(X)
The soft-clustering algorithm we propose has several properties highly inter-

esting for the application to learning disjunctive concepts:
(1) the clusters that are built can overlap,
(2) the number of final clusters is not decided a priori,
(3) the input of the algorithm is a similarity matrix, thus allowing the method
to be applied to very different kinds of data.

4 General presentation of the method

The general learning algorithm is presented in Figure 2. Inputs of the method are:
the target concept, specified by positive and negative examples, a background
knowledge and a language associated to the similarity measure. We assume that
the target concept cannot be characterized by a single clause (otherwise, the
algorithm simply outputs this clause).

The first step of the method is the computation of the similarity between each
pair of positive examples. Then, the similarity matrix is used by the clustering
algorithm to produce a set of possibly non-disjoint groups. In some cases, this
algorithm produces a large number of groups or some groups are highly similar.
For this reason, we organize these groups into a hierarchical way: we use an
average-link agglomerative algorithm producing a tree where the leaves are the
groups obtained by the clustering method and the root of this tree represents
the entire initial concept. In this tree, each node (group of examples) is either a
leaf or has two direct sub-groups.

G

initial concept

similarity matrix
G1

G2

G3
groups G

G3G1UG2

G1 G2

soft-clustering
algorithm

G

? ?

? ?
hierarchical organization

learned rules

Fig. 2. Overview of the learning algorithm

Then the method tries to build a clause which characterizes groups (nodes)
of the tree, starting with the two sub-groups of the root group. If a clause is
found for a group, this clause is added to the learned program; if no clause is
found for a group, this process is recursively repeated on its direct sub-groups
(if the associated node is not a leaf).

Finally, if some groups have not been characterized by a clause, the learning
method (Figure 2) is recursively applied on these groups.

4.1 Learning a clause

As mentioned above, the decomposition method induces a strong reduction on
the search space. Given a set of positive examples G and the set of negative
examples E−, we try to build a clause which covers all the examples in G and
no negative ones. The learning method we use is a greedy search, starting from
the clause p(X1, . . . , Xn) ← (where p is the n-ary target predicate) and adding
literals one by one until each negative example is rejected by the clause. Since
the clause has to cover each example in G, we choose the literal which allows
to reject as many negative examples as possible, among the set of literals which
cover all the examples in G (no backtrack is needed).

4.2 Complexity

The time complexity of the method comes from the three main steps of the
algorithm:

similarity: To compute the similarity matrix, we have to test whether each
example is covered or not by each clause of the language L. It requires
(|E+| + |E−|) ∗ |L| covering tests; then the similarity between each pair of
positive examples is computed: |E+|2 ∗ |L| operations,

clustering: The time required for this step is mainly due to the pole construc-
tion: for each pole, it needs at most |E+|2 operations,

building clauses: The greedy search is reduced by the restriction of the search
space.

The space complexity is determined by the number of positive examples since
we have to compute a |E+| × |E+| similarity matrix. If |E+| is too high (more
than 1000), we can use a sample of this set: the number of positive examples
needed depends mainly on the number of learned clauses. For example, assume
that the target concept can be characterized with 10 clauses, with 1000 positive
examples we still have an average of 100 examples per groups.

5 Experiments

We propose here some preliminary experiments of our approach: we have tested
the method on examples for which a “natural” decomposition into subconcepts
is known, and we compare the results obtained with our clustering method w.r.t
expected subconcepts.

Example 1
The first experiment concerns Example 1: if we use the similarity w simα

with respect to the language L proposed in Example 1, we get similarity matrices
closed to those presented in the example. With the first matrix we get the 2
expected subconcepts {p(a), p(b)} and {p(c), p(d)}; the second matrix gives also
the 2 expected subconcepts {p(a), p(b), p(e)} and {p(e), p(c), p(d)} (p(e) belongs
to both subconcepts).

Example 2
The second experiment concerns Example 2. If we consider the similar-

ity associated to the language L1 =
⋃
v=1..6(p(X) ← x(X,Y),≥ (Y, v)) ∪⋃

v=1..6(p(X)← y(X,Y),≥ (Y, v)), we obtain the expected subconcepts :
{p(a), p(b), . . . , p(d)} and {p(e), p(f), . . . , p(j)}. If we consider now the similarity
associated to the language L2 containing all the clauses having p(X) as head and
having at most two literals in the body, the clustering algorithm gives a different
result: the produced groups are

G1 = {p(a), p(b), p(c), p(d)}
G2 = {p(e), p(b), p(g), p(j)}
G3 = {p(g), p(h), p(i), p(j)}

The explanation is based on the difference between L1 and L2: the clause
p(X)← x(X,Y), y(X,Y) belongs to L2 but not to L1. This definition is correct
since it covers 4 positive examples : {p(a), p(d), p(h), p(i)} and no negative ones,

and then it has a weight equal to 1. The consequence is that the similarity
between p(h) and p(i) is increased and for instance, the similarity between p(e)
and p(h) is reduced. This example shows that when different decompositions
exists, this may induce a fragmentation of some subconcepts (particularly when
the number of examples is low). For this reason, the result of our soft-clustering
algorithm is transformed into a hierarchical soft-clustering one before learning
a definition. In this example, G2 and G3 are the most similar groups, then the
hierarchical clustering result is

E+ is divided into G1 and G2,3,
G2,3 is divided into G2 and G3

where the first level of decomposition leads to the expected result.

Example 3: ancestor
The following example was proposed in [dRL93]. The background knowledge

contains ground atoms with predicates father, mother, male and female over
a 19 persons family. The target concept is ancestor. To compute the similarity
between examples, we consider the language containing all the clauses having
ancestor(X,Y) as head and having at most two literals in the body. On the
complete set of 56 positive examples, our clustering algorithm produces 3 disjoint
groups.

G1 : the first group is the set {ancestor(Xi, Yi) | Xi is the father of Yi}
G2 : the second group is the set {ancestor(Xi, Yi) | Xi is the mother of Yi}
G3 : the third group contains all other examples.

The most similar groups are G2 and G3 but no rule can be found to charac-
terize G2 ∪ G3. The algorithm tries to build a characterization for G1, G2 and
G3. A rule is learned for G1 and for G2 but not for G3. Then the clustering
algorithm is applied on the group G3 which produces two disjoint groups associ-
ated to the recursive definitions ancestor(X,Y)← father(X,Z)ancestor(Z, Y)
and ancestor(X,Y) ← mother(X,Z), ancestor(Z, Y). Finally, the decomposi-
tion produces 4 groups, corresponding to the usual definition of ancestor.

Example 4
The last example is introduced to test the ability to build non-disjoint groups.

Consider a graph containing two types of edges r and s. BK contains an atom
r(X,Y) (resp. s(X,Y)) if an edge of type r (resp. s) exists from X to Y . BK
contains the following set of ground atoms:

{r(b, f), r(b, g), r(f, l), r(g,m), r(k, r), r(l, o), r(m, p), r(m, o),
r(j, n), r(a, f), r(e, k), s(a, f), s(e, k), s(j, n), s(c, g), s(c, h),
s(c, i), s(d, i), s(d, j), s(h, l), s(h,m), s(h, n), s(i, n), s(n, q), }

The target concept is linked, specified by the set of atoms linked(X,Y) such
that there exists a path from X to Y . To compute the similarity between exam-
ples, we also consider the language containing all the clauses having linked(X,Y)
as head and having at most two literals in the body. In this example, there exists

some vertices linked by different paths. From 44 positive examples, the clustering
algorithm produces 5 groups G1, G2, G3, G4 and G5.

– G1 and G2 have 3 common examples: G1 is defined by linked(X,Y) ←
r(X,Y) and G2 is defined by linked(X,Y) ← s(X,Y). There are exactly 3
examples linked(X,Y) such that both r(X,Y) and s(X,Y) hold. G1 and G2

have no common objects with other groups.
– G3 has no common examples with other groups. It is defined by the clause
linked(X,Y)← r(X,Z), linked(Z, Y) and G3 contains all the examples cov-
ered by this clause, except for some examples which are also covered by the
clause linked(X,Y)← s(X,Z), linked(Z, Y).

– G4 and G5 have one common example and these groups are the most similar.
G4∪G5 is characterized by the clause linked(X,Y)← s(X,Z), linked(Z, Y).

In this example, intersections between groups are not as large as we could have
expected. This is mainly due to specificities which increase the similarity between
some examples and reduce the possibility for some examples to be assigned
to several poles, since the assignment function is base on relative similarities.
However, it is preferable to obtain “incomplete” groups since for each group, we
try to learn a unique clause. Then, the decomposition obtained on this example
is good and allows to produce a satisfying program.

6 Conclusion and further works

We have presented a clustering method used to split the set of positive examples
of a target concept into groups of similar examples. Each group is supposed to
correspond to a subconcept and we try to learn one clause for each subconcept.
This method induces a strong reduction of the search space during the learning
process, however it can be applied only if the clustering algorithm produces
“good” groups.

To analyze the quality of the obtained groups, we have performed experi-
ments on several examples for which a good decomposition was known. For all
these examples, the results obtained with the clustering algorithm correspond
to the subconcepts induced by the expected definitions. Moreover, these ex-
periments show that the soft-clustering method is able to produce non-disjoint
groups, corresponding to overlapping subconcepts.

In future works, we have to test whether this method produces better clauses
than usual greedy algorithms. We plan to test the method on real examples such
as Mutagenesis: to achieve this, we have to specify a language (associated to
the similarity measure) such that numerical and symbolic values have an fair
influence.

We plan also to study the relationship between the language and the similar-
ity induced. In our experiments, we have considered languages made of simple
rules (having at most two literals in the body and non recursive), this language
is only used for the similarity measure and the search space for rules may be
much more complex, it may be infinite and contain recursive definitions.

References

[BB99] A. Baraldi and P. Blonda. A survey of fuzzy clustering algorithms for pattern
recognition. II. IEEE Transactions on Systems, Man and Cybernetics, Part
B (Cybernetics), 29:786–801, 1999.

[BBPP99] I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo. The maximum clique
problem. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combina-
torial Optimization, volume 4. Kluwer Academic Publishers, Boston, MA,
1999.

[BDSY99] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression
patterns. Journal of Computational Biology, 6(3/4):281–297, 1999.

[Ber02] Pavel Berkhin. Survey of clustering data mining techniques. Technical re-
port, Accrue Software, San Jose, CA, 2002.

[Bis92] G. Bisson. Learning in FOL with a similarity measure. In 11th National
Conf. on Artificial Intelligence (AAAI), San Jose, CA., pages 82–87. AAAI
Press, 1992.

[dRL93] Dzeroski S. de Raedt L., Lavrac N. Multiple predicate learning. In Proceed-
ings of the Thirteen International Joint Conference on Artificial Intelligence,
Chambéry, France, pages pp. 1037–1043. Springer-Verlag, 1993.

[EW96] W. Emde and D. Wettschereck. Relational instance-based learning. In Saitta
L., editor, 13th Int. Conf. on Machine Learning (ICML’96), Bari, Italy,
pages 122–130. Morgan & Kaufmann, 1996.

[HMS83] William A. Hoff, Ryszard S. Michalski, and Robert E. Stepp. INDUCE
2: A program for learning structural descriptions from examples. Techni-
cal Report 904, Department of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, Illinois, 1983.

[KK93] R. Krishnapuram and J. Keller. A possibilistic approach to clustering. IEEE
Transactions on Fuzzy Systems, Vol. 1, No. 2, pages 98–110, 1993.

[MM01] Lionel Martin and Frédéric Moal. A language-based similarity measure.
In Machine Learning: ECML 2001, 12th European Conference on Machine
Learning, Freiburg, Germany, September 5-7, 2001, Proceedings, volume
2167 of Lecture Notes in Artificial Intelligence, pages 336–347. Springer,
2001.

[Mug95] S. Muggleton. Inverse entailment and Progol. New Generation Computing,
Special issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

[QCJ95] J. R. Quinlan and R. M. Cameron-Jones. Induction of logic programs: FOIL
and related systems. New Generation Computing, Special issue on Inductive
Logic Programming, 13(3-4):287–312, 1995.

[SBP93] Giovanni Semeraro, Clifford A. Brunk, and Michael J. Pazzani. Traps and
pitfalls when learning logical theories: A case study with FOIL and FOCL.
Technical Report ICS-TR-93-33, July 1993.

[Seb97] M. Sebag. Distance induction in first order logic. In Proceedings of ILP’97,
pages 264–272. Springer-Verlag, 1997.

[SS94] M. Sebag and M. Schoenauer. Topics in Case-Based Reasonning, volume 837
of LNAI, chapter A Rule-based Similarity Measure, pages 119–130. Springer-
Verlag, 1994.

